Probes of the Mass Density Field

z~1000

z~0-1

What about intermediate redshifts?

Lyman Break Galaxies

Lyman Break Galaxies

Lyman Break Galaxies

Quasars

Active Galactic Nuclei

AGN - Types

AGN - Types

Differences between active galaxy types and normal galaxies.										
Galaxy Type	Active Nuclei	Emission Lines			Excess of		Strong			Radio
		Narrow	Broad	X-rays	UV	Far-IR	Radio	Jets	Variable	loud
Normal	no	weak	none	weak	none	none	none	none	no	no
Starburst	no	yes	no	some	no	yes	some	no	no	no
Seyfert I	yes	yes	yes	some	some	yes	few	no	yes	no
Seyfert II	yes	yes	no	some	some	yes	few	yes	yes	no
Quasar	yes	yes	yes	some	yes	yes	some	some	yes	10%
Blazar	yes	no	some	yes	yes	no	yes	yes	yes	yes
BL Lac	yes	no	none/faint	yes	yes	no	yes	yes	yes	yes
ονν	yes	no	stronger than BL Lac	yes	yes	no	yes	yes	yes	yes
Radio galaxy	yes	some	some	some	some	yes	yes	yes	yes	yes

Hypothesis

All active galactic nuclei are supermassive black holes at the centers of galaxies being fed by an accretion disk. Different types are just differences in:

- Black hole mass
- Accretion rate
- Type of galaxy
- Viewing angle

AGN – Unified Model

Quasars

Ross et al. (2012)

Quasars

$$\sum_{z=0}^{m} \sum_{z=0}^{m} \sum_{z$$

Emission wavelength:

$$\lambda_e$$

 $=\frac{1+z_e}{1+z_o}$ λ_{o} λ_e

Observation wavelength:
$$\lambda_o = \lambda_e \left(1 + z_e
ight)$$

- A Lyman-α photon (1216 Å) emitted by the quasar has a longer wavelength by the time it encounters the HI cloud and so it will not be absorbed.
- The shorter wavelength photon emitted by the quasar that has stretched to 1216 Å by the time it encounters the HI cloud can be absorbed.

- In the emitted frame of the quasar, the Ly-α forest lies between the wavelengths of 1216/(1+z) and 1216 Å
- In the observed frame, the Ly-α forest lies between the wavelengths of 1216 and 1216(1+z) Å

The BOSS spectrograph covers the range 3600-10,400 Å

•The closest gas cloud that it can probe is at

$$\lambda_o = \lambda_e (1+z) \longrightarrow z = \frac{\lambda_o}{\lambda_e} - 1 = \frac{3600}{1216} - 1 \longrightarrow z = 1.96$$

• The farthest gas cloud that it can probe is at

$$z = \frac{10,400}{1216} - 1 \rightarrow z = 7.55$$

