AST 252/352: Stellar Astrophysics

MWF 2:10-3pm Stevenson 6638 August 25 – December 8 Professor Andreas Berlind *Office*: Stevenson 6916 *Phone*: 615-343-2184 *Email*: <u>a.berlind@vanderbilt.edu</u> *Office hours*: TTh 1-2pm

Course website: http://people.vanderbilt.edu/~a.berlind/teaching/252_fa08/

Textbooks

The main textbook for this course is: "Stellar Interiors" by Hansen, Kawaler, & Trimble (Springer - second edition)

Other classic textbooks: "Stellar Structure and Evolution" by Kippenhahn & Weigert (Springer). "Principles of Stellar Evolution and Nucleosynthesis" by Clayton (Chicago Press)

Topics Covered

(not a complete list and in no particular order): Equations of stellar structure Observations of stellar properties Virial Theorem and timescales Equations of state Nuclear reactions Heat transfer by radiation, conduction, and convection Opacity sources Stellar evolution Stellar models

Course Reqirements

Reading

There will be weekly reading from the main textbook and occasionally from journal review articles. The assigned readings will be posted on the website.

Problem Sets

There will be occasional (roughly bi-weekly) problem sets. These will contain both pencil and paper problems, and sometimes assignments that require using a computer. I will assume that you can program in your favorite language and that you are or can become familiar with a basic plotting package. This course is not meant to be

competitive; you are welcome to collaborate with other students on any problems, as long as the final presentation is your own.

Final Project

There will be a final project in place of an exam. The project will involve building your own stellar structure computer model from scratch. The model will compute the density, temperature, luminosity, etc. as a function of radius within stars of various masses. This project will teach you how the various physical processes we will learn about during the course affect the physical characteristics of a star like the sun. As an aside, the project will also teach you how to numerically solve differential equations.

Undergraduates only: Exam option

Undergraduate students have the option of taking a take-home final exam in place of the final project if they so choose.

Grading

Grading will be 50% based on the problem sets and 50% on the final project or exam. The lowest problem set grade will be dropped. There will be no exams.