# **Problem 1**

- **a.** Use the equations of stellar structure to find the mass-luminosity relation and the mass-radius relation of Main Sequence stars. You may use dimensional analysis and drop all constants to find simple proportionalities. For example, the mass conservation equation can reduce to  $\rho \sim M/R^3$ . Assume the equation of state for an ideal gas  $(P \sim \rho T)$ , nuclear fusion with the CNO cycle  $(\varepsilon \sim \rho T^{15})$ , and opacity is dominated by electron Thomson scattering  $(\kappa = const)$ .
- **b.** Make simple assumptions and estimate how the lifetime of such a Main Sequence star scales with the star's mass.
- **c.** Use the Stefan-Boltzmann relation to find the proportionality between luminosity L and effective temperature  $T_{\it eff}$

## Problem 2

On the course website (<a href="http://people.vanderbilt.edu/~a.berlind/teaching/252\_fa09/">http://people.vanderbilt.edu/~a.berlind/teaching/252\_fa09/</a>), you will find a file called "cluster.dat". It contains four columns with measurements of 75 stars in a cluster that you made last time you went observing. The first two columns are Right Ascension and Declination (the star's coordinates), the third column is the star's V-band magnitude V, and the last column is the (B-V) color. Make a color-magnitude plot for the cluster using this data.

#### **Problem 3**

You were lucky enough to find a visual binary system in the cluster. After observing the system for many years, you found an angular binary separation of  $\alpha = 0.388''$  and an orbital period of P = 53.98 years. You also measured the two stars' V-band magnitudes to be  $V_1 = 8.44$  and  $V_2 = 9.21$ . Using the mass-luminosity relation you found from theory (normalized to the sun), determine the system's distance, parallax, masses, and absolute magnitudes  $M_V$  for the two stars. Iterate your solution until it converges (you should get convergence after 3-4 iterations so you don't need a computer to do this). You can use the fact that the absolute V-band magnitude for the sun is 4.83, and bolometric corrections are approximately constant for most stars.

## Problem 4 – for graduate students or ambitious undergraduates

Now that you have a distance to the cluster, convert the 75 V-band magnitudes into absolute magnitudes. You can now make a  $M_V$  vs. (B-V) plot and compare it to the theoretical  $L-T_{eff}$  relation you found above to see how well the theory does. To do this, you need to convert the  $L-T_{eff}$  relation into a  $M_V-(B-V)$  relation. You can follow these steps:

**a.** Make a finely spaced (e.g., every 100K) table of values for  $T_{\rm eff}$ , running from 3500K to 40,000K (corresponding to the temperature sequence from M stars to O stars). For

each value of temperature compute a luminosity using the  $L-T_{eff}$  relation (again, normalized to the sun:  $L=L_{sun}$ ,  $T_{eff}=5{,}778K$ ).

**b.** For each temperature, compute the predicted (B-V) color by convolving the blackbody spectrum for that temperature with the B and V-band filter response functions to compute the expected flux in each band. You can find these functions in the file "BV\_filters.dat", also on the course website. The file has 3 columns: wavelength in nm, transmittance of B filter, transmittance of V filter (transmittance is the fraction of light that passes through the filter). The blackbody spectrum as a function of wavelength is:

$$B_T(\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp(hc/\lambda kT - 1)}, \text{ and the flux in a given filter is } \int_0^\infty B(\lambda)F(\lambda)d\lambda, \text{ where}$$

- $F(\lambda)$  is the filter transmittance function. (Note: all colors are defined to be zero for A0 stars with  $T_{\rm eff} = 9500 K$  so you need to subtract from all colors the value for that temperature)
- **c.** Convert the luminosities to absolute V-band magnitudes, using the fact that the absolute bolometric magnitude of the sun is 4.75 and the average bolometric correction for stars like the sun is approximately 0.2.
- **d.** Now plot your theoretical  $M_V (B V)$  on top of your observed one to see how well they agree. List the main assumptions you made in your theoretical calculation.

## **Problem 5 - optional for extra credit**

If the above problems take you less time than I anticipate and you feel like challenging yourself more, look at the spectra of 5 stars on the course website (labeled star1 – star5) and classify them as best you can into spectroscopic classes, looking up whatever information you need. The files list wavelength in Angstroms and flux.