Problem 1

Write a computer program to solve the Lane-Emden equation:

\[\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^n, \]

for a polytrope of index \(n \). The equation can be re-written in the more useful form:

\[\theta'' = -\frac{2}{\xi} \theta' - \theta^n \]

Start your integration at the center of the star (\(\xi = 0 \)) using the following initial conditions: \(\theta = 1 \), \(\theta' = 0 \), and stop the integration at the surface, when \(\theta = 0 \).

Make the following plots:
- \(\theta \) vs. \(\xi \)
- \(\theta' \) vs. \(\xi \)
- \(\theta'' \) vs. \(\xi \)

In each plot, show curves for polytropic indices of \(n = 3/2 \) and \(n = 3 \). Calculate the outer radius of the star \(\xi_1 \), at which \(\theta = 0 \), and the derivative \(\theta'(\xi_1) \) at this radius, for these two cases. Attach a printout of your code.

(check your answer: you should get \(\xi_1 = 3.65 \) for a \(n = 3/2 \) polytrope)

Problem 2

Assume the polytrope for a white dwarf, which is made up of a non-relativistic, degenerate gas \((P = K\rho^{\gamma/3}) \). Write down expressions that give you the radius of the white dwarf \(R \), the scale radius \(r_n \), the central density \(\rho_c \), and the central pressure \(P_c \), assuming that you know the white dwarf mass \(M \), the dimensionless radius \(\xi \), the derivative \(\theta'(\xi_1) \), the equation of state constant \(K \), and physical constants.

Problem 3

Plug numbers into your equations from Problem 2 to get values for \(R \), \(\rho_c \), and \(P_c \), assuming a \(M = 1M_{\odot} \) white dwarf made up of fully ionized Carbon and Oxygen (i.e., the electron mean molecular weight is \(\mu_e = 2 \)). Use the values of \(\xi_1 \) and \(\theta'(\xi_1) \) that you got in Problem 1. Show the values you got.

Now that you have \(\rho_c \) and \(P_c \), use your results from Problem 1 to make plots of the density \(\rho \) and pressure \(P \) of the white dwarf, as a function of physical radius \(r \).

What mass white dwarfs have a non-relativistic core?