Problem 1

Write a computer program to solve the Lane-Emden equation:

 $\frac{1}{\xi^2} \frac{d}{d\xi} \left[\xi^2 \frac{d\theta}{d\xi} \right] = -\theta^n, \text{ for a polytrope of index } n. \text{ The equation can be re-written in the}$

more useful form: $\theta'' = -\frac{2}{\xi}\theta' - \theta^n$

Start your integration at the center of the star $(\xi = 0)$ using the following initial conditions: $\theta = 1$, $\theta' = 0$, and stop the integration at the surface, when $\theta = 0$. Make the following plots:

- θ vs. ξ
- θ' vs. ξ
- θ'' vs. ξ

In each plot, show curves for polytropic indices of n = 3/2 and n = 3. Calculate the outer radius of the star ξ_1 , at which $\theta = 0$, and the derivative $\theta'(\xi_1)$ at this radius, for these two cases. Attach a printout of your code.

(check your answer: you should get $\xi_1 = 3.65$ for a n = 3/2 polytrope)

Problem 2

Assume the polytrope for a white dwarf, which is made up of a non-relativistic, degenerate gas ($P = K\rho^{5/3}$). Write down expressions that give you the radius of the white dwarf R, the scale radius r_n , the central density ρ_0 , and the central pressure P_0 , assuming that you know the white dwarf mass M, the dimensionless radius ξ_1 , the derivative $\theta'(\xi_1)$, the equation of state constant K, and physical constants.

Problem 3

Plug numbers into your equations from Problem 2 to get values for R, ρ_0 , and P_0 , assuming a $M = 1M_{sun}$ white dwarf made up of fully ionized Carbon and Oxygen (i.e., the electron mean molecular weight is $\mu_e = 2$). Use the values of ξ_1 and $\theta'(\xi_1)$ that you got in Problem 1.

Now that you have ρ_0 and P_0 , use your results from Problem 1 to make plots of the density ρ and pressure P of the white dwarf, as a function of physical radius r.