Problem 1

The energy-averaged cross section is given by $\langle \sigma v \rangle = C S_0 \tau^2 e^{-\tau}$, where C and S_0 are constants, τ is given by $\tau = \frac{19.721W^{1/3}}{(1-\tau)^{1/3}}$ and $W = Z_i^2 Z_k^2 \frac{A_j A_k}{A_j A_k}$, where Z,A are the charge and mass numbers of species \overrightarrow{j} and \overrightarrow{k} . The reaction rate (number of reactions per unit time, per unit volume) is given by $r_{j,k} = X_j X_k r'_{j,k}$, where X_j, X_k are the mass fractions of species j and k, and $r'_{ik} = \frac{\rho^2}{\sqrt{(\rho^2 + \rho^2)}} \langle \sigma v \rangle$. Consider the reactions: with corresponding reaction rates $r_{1,12}, r_{1,13}, r_{1,14}, r_{1,15}$ $(T/10^7 K)^{1/3}$ and $W = Z_j^2 Z_k^2$ ² *AjAk* $A_j + A_k$ *Z*,*A* \ldots *j* and *k*, and $r'_{j,k} = \frac{\rho^2}{(1 + s)^j}$ $(1+\delta_{jk})A_jA_k m_p^2$ $\frac{1}{2}$ $\langle \sigma v \rangle$ $C_6^{12} + H_1^1 \rightarrow C_6^{13}$ $C_6^{13} + H_1^1 \rightarrow N_7^{14}$ N_7^{14} + $H_1^1 \rightarrow N_7^{15}$

$$
N_7^{15} + H_1^1 \rightarrow C_6^{12} + H e_2^4
$$

a. Derive expressions for the above 4 reaction rates as functions of C, S_0 , ρ , T, and the mean functions Y mass fractions X_i .

b. Evaluate the temperature exponent $\frac{f(x)}{f(x)}$ for the above 4 equations at $T = 3 \times 10^{7} K$. \mathbf{f} and \mathbf{f} $\partial (\ln \langle \sigma v \rangle)$ [∂] ln*T*

Problem 2

a. Write down a set of coupled differential equations for d/dt of the mass fractions $C^{12}, C^{13}, N^{14}, N^{15}, H^1, He^4$ (I am using these symbols to signify mass fractions, instead of the standard X_j symbol), assuming that the reactions in problem 4 are the only ones occurring (e.g., N^{14} is only produced by the 2nd reaction and destroyed by the 3rd one). **b.** Derive expressions for the relative abundances of C^{12} , C^{13} , N^{15} (in equilibrium) as functions of the N^{14} abundance.

c. Given that the total number of $C + N$ nuclei are conserved, derive an expression for the absolute equilibrium abundances C^{12} , C^{13} , N^{14} , N^{15} as functions of the reaction rates and the total number of $C + N$ nuclei. $\ddot{}$ $C^{12}, C^{13}, N^{14}, N^{15}$

(*NOTE: for this problem, you can take the reaction rates as known functions of* € t_{t} , t_{t} $r'_{1,12}$