Problem 1

The energy-averaged cross section is given by $\langle \sigma v \rangle = CS_0 \tau^2 e^{-\tau}$, where *C* and S_0 are constants, τ is given by $\tau = \frac{19.721W^{1/3}}{(T/10^7 K)^{1/3}}$ and $W = Z_j^2 Z_k^2 \frac{A_j A_k}{A_j + A_k}$, where *Z*, *A* are the charge and mass numbers of species *j* and *k*. The reaction rate (number of reactions per unit time, per unit volume) is given by $r_{j,k} = X_j X_k r'_{j,k}$, where X_j, X_k are the mass fractions of species *j* and *k*, and $r'_{j,k} = \frac{\rho^2}{(1 + \delta_{jk})A_jA_k m_p^2} \langle \sigma v \rangle$. Consider the reactions: $C_6^{12} + H_1^1 \rightarrow C_6^{13}$ $C_6^{13} + H_1^1 \rightarrow N_7^{14}$ with corresponding reaction rates $r_{1,12}, r_{1,13}, r_{1,14}, r_{1,15}$

 $N_7^{15} + H_1^1 \rightarrow C_6^{12} + He_2^4$

a. Derive expressions for the above 4 reaction rates as functions of *C*, S_0 , ρ , *T*, and the mass fractions X_i .

b. Evaluate the temperature exponent $\frac{\partial (\ln \langle \sigma v \rangle)}{\partial \ln T}$ for the above 4 equations at $T = 3 \times 10^7 K$.

Problem 2

a. Write down a set of coupled differential equations for d/dt of the mass fractions $C^{12}, C^{13}, N^{14}, N^{15}, H^1, He^4$ (I am using these symbols to signify mass fractions, instead of the standard X_j symbol), assuming that the reactions in problem 4 are the only ones occurring (e.g., N^{14} is only produced by the 2nd reaction and destroyed by the 3rd one). **b.** Derive expressions for the relative abundances of C^{12}, C^{13}, N^{15} (in equilibrium) as functions of the N^{14} abundance.

c. Given that the total number of C + N nuclei are conserved, derive an expression for the absolute equilibrium abundances $C^{12}, C^{13}, N^{14}, N^{15}$ as functions of the reaction rates and the total number of C + N nuclei. By "total number of C + N nuclei", I mean the number density of all nuclei: $n_{\rm CN} = n_{12} + n_{13} + n_{14} + n_{15}$.

(*NOTE:* for this problem, you can take the reaction rates as known functions of temperature, i.e., you don't need to evaluate the expressions for $r'_{1,12}$, etc.)