Write a code to compute the relation between redshift and the following cosmological quantities: comoving distance D_c , luminosity distance D_L , angular diameter distance D_A , total comoving volume of a sphere out to that redshift V_c , and lookback time t. The code should work for any combination of cosmological parameters that result in a flat universe. The parameters are: the hubble constant h, the matter density parameter Ω_m , the dark energy density parameter Ω_A , and the dark energy equation of state parameter w.

Run your code for the following four cosmological models:

1. Flat universe, no dark energy:	$h=1, \Omega_m=1.00, \Omega_A=0.00$
2. Flat universe, "cosmological constant" dark energy:	$h=1, \Omega_m=0.25, \Omega_A=0.75, w=-1$
3. Flat universe, dark energy with a high w:	$h=1, \Omega_m=0.25, \Omega_A=0.75, w=-0.8$
4. Flat universe, dark energy with a low w:	$h=1, \Omega_m=0.25, \Omega_A=0.75, w=-1.2$

Make the following four plots, showing all four of the above models in each plot:

- a) comoving distance D_C vs. redshift z
- **b)** luminosity distance D_L vs. redshift z
- c) angular diameter distance DA vs. redshift z
- d) comoving volume of a sphere V_C vs. redshift z
- e) lookback time vs. redshift z

In all plots make the redshift (x-axis) run from 0 to 3. In the three distance plots show the distances in units of h^{-1} Gpc. In the volume plot show the volume in h^{-3} Gpc³. In the last plot show the lookback time in Gyr.

Clearly show all your steps in a write-up, including the equations you used. Please don't make me try to see what equations you used by looking at your code! Hand in a printout of your code in addition to the four plots.