
Probes of the Mass Density Field 

z~1000 

z~0-1 

What about intermediate redshifts? 



Lyman Break Galaxies 



Quasars 



Active Galactic Nuclei 



AGN - Types 



AGN - Types 



AGN – Unified Model 

Hypothesis 
 
All active galactic nuclei are supermassive black holes 
at the centers of galaxies being fed by an accretion disk. 
Different types are just differences in: 
 
•  Black hole mass 

•  Accretion rate 

•  Type of galaxy 

•  Viewing angle  



AGN – Unified Model 



Quasars 

Ross et al. (2012) 



Quasars 



The Lyman alpha Forest 



The Lyman alpha Forest 

z=0 zQSO 

Emission wavelength: 

Observation wavelength: 

λe
λo

λe

= 1+ ze
1+ zo

λo = λe 1+ ze( )



The Lyman alpha Forest 

z=0 zQSO zHI 

•  A Lyman-α photon (1216 Å) emitted by the quasar has 
a longer wavelength by the time it encounters the HI 
cloud and so it will not be absorbed. 

•  The shorter wavelength photon emitted by the quasar 
that has stretched to 1216 Å by the time it encounters 
the HI cloud can be absorbed. 



The Lyman alpha Forest 

z=0 zQSO zHI 

•  In the emitted frame of the quasar, the Ly-α forest lies 
between the wavelengths of 1216/(1+z) and 1216 Å 

•  In the observed frame, the Ly-α forest lies between the 
wavelengths of 1216 and 1216(1+z) Å 

λ



The Lyman alpha Forest 

The BOSS spectrograph covers the range 3600-10,400 Å 
 
•  The closest gas cloud that it can probe is at 

λo = λe 1+ z( )→ z = λo

λe

−1= 3600
1216

−1→ z = 1.96

•  The farthest gas cloud that it can probe is at 

z = 10,400
1216

−1→ z = 7.55



The Lyman alpha Forest 



The Lyman alpha Forest 



The Lyman alpha Forest 



Statistics of the Galaxy Distribution 

measure the environment  
around individual galaxies 
 
or 
 
measure average statistics  
for a sample of galaxies  



The 2-point Correlation Function 

The excess probability that two galaxies are separated by 
a distance r relative to that for a random distribution. 

For a random point distribution of number density n, the number of  
points at a distance between r and r+dr from any one point is: 

n ⋅dV = n ⋅4πr2dr r
The total number density of pairs at this 
separation is then: 

n
2
× n ⋅4πr2dr = n2 2πr2dr



The 2-point Correlation Function 

For a point distribution that is not random, the number density of pairs 
At this separation is: 

n2 2πr2dr 1+ ξ r( )⎡⎣ ⎤⎦
The correlation function is then equal to: 

ξ r( ) = npairs, data r( )
npairs, rand r( ) −1

ξ r( ) = DD r( )
RR r( ) −1



The 2-point Correlation Function 

•  When the sample volume is complex, calculate number of 
random pairs using an actual generated random data set that 
occupies the same volume as the data. 

ξ r( ) = DD − 2DR + RR
RR

Complications 

•  Must normalize the DD, DR, and RR terms when the number of 
data and random points are not the same. 

•  In practice, we often use other estimators.  For example, the 
most commonly used estimator for galaxy samples is the 
Landy-Szalay estimator: 



The 2-point Correlation Function 

•  To deal with redshift distortions, we usually measure a projected 
correlation function. 

ξ rp ,π( )

Complications 

sπ

rp

line 
of 

sight 

wp rp( ) = 2 ξ rp,π( )dπ
0

πmax

∫



The 2-point Correlation Function 

Zehavi et al. (2005) 



The 2-point Correlation Function 

Zehavi et al. (2005) 



The 2-point Correlation Function 

Zehavi et al. (2011) 



The 2-point Correlation Function 

Zehavi et al. (2011) 



Other Correlation Functions 

ω θ( )•  Angular correlation function 
 
•  Cross-correlation function 
 
•  Higher order: three-point, etc 

r2r1

r3



The 2-point Correlation Function 

Masjedi et al. (2006) 



The 2-point Correlation Function 

Galaxy “bias” refers to the amount of galaxy clustering  
relative to the clustering of the underlying dark matter 

b =
ξgalaxy
ξmass

This is a function of scale r, but on large scales it becomes 
constant. 
 
For example, the bias of Milky Way – like galaxies is  b ~ 1 

          the bias of Luminous Red Galaxies is  b ~ 2 



Power Spectrum 



Power Spectrum 

 ξ r( ) = δ x( )δ x + r( )
 
δ x( ) = ρ x( ) − ρ

ρ

 
δ k = δ x( )ei


k i
x∫ d 3x

 
P k( ) = δ k

2

 
P k( ) = ξ r( )ei


k i
r∫ d 3x

Density field Correlation function 

Fourier density modes Power spectrum 



Power Spectrum 

 δ

k

Any density field can be decomposed into an infinite  
set of modes (i.e., sine waves) 

Each mode has a 
 
•  wavelength 

•  amplitude 

•  phase 

λ   or wavenumber  k = 2π
λ

 
δ k

The power spectrum is the amplitude as a function of k 

e− iθ



Power Spectrum 



Power Spectrum 



Power Spectrum 



Power Spectrum 



Power Spectrum 

 
WR k( ) = WR r( )ei


k i
r∫ d 3r

Window function: filter used to smooth density field 

•  Gaussian filter of scale R 

•  Top-hat filter of scale R  

WR r( ) = e− r2 2R2

WR r( ) = 1 r < R
0 r > R

⎧
⎨
⎩

In Fourier space: 



Power Spectrum 



Power Spectrum 

Density field, smoothed with window function 

δR
x( ) = δ ′x( )WR

′x − x( )∫ d3 ′x

Mean density, smoothed with window function 

 δR = δR
x( )

Variance of smoothed density field 

 
σ R
2 = δR

x( )2

 
σ R
2 = P k( ) WR k( )2∫ d 3k

= 0  since  δ =
ρ − ρ
ρ



Power Spectrum 

R=2 Mpc/h 
 
Top-hat filter 



Power Spectrum 

R=8 Mpc/h 
 
Top-hat filter 



Power Spectrum 

R=20 Mpc/h 
 
Top-hat filter 



Power Spectrum 

The variance is large on small scales and approaches 
zero on large scales. 

σ R
2 =

1
N

δR − δR( )∑ 2
= δR

2

0 



Power Spectrum 

Is the variance of the matter density field 

It also sets the amplitude of the matter power  
spectrum on scale R 

σ R
2

For a power spectrum with a power-law shape P(k)~kn, 
defining the variance on one scale sets the amplitude 
on all scales.  Also, any window function will do. 

We choose a top-hat filter of R=8 Mpc/h to describe 
the amplitude of P(k) 



Cosmological Parameters 

Cosmological parameter #1:  the Hubble constant  

h
h ≈ 0.7 ± 0.02



Cosmological Parameters 

Cosmological parameter #2:  the amplitude of the matter 
        power spectrum  

σ 8
σ 8 ≈ 0.82 ± 0.02



Power Spectrum 

Primordial  
power spectrum 

P k( )∝ kn
Quantum fluctuations + inflation: 



Cosmological Parameters 

Cosmological parameter #3:  the power spectrum index  

ns
ns ≈ 0.96 ± 0.02



Power Spectrum 

Matter Radiation 



Power Spectrum 

Matter Radiation 



Power Spectrum 

Matter Radiation 



Power Spectrum 

Matter Radiation 

 ρ  a
−3 = 1+ z( )3  ρ  a

−4 = 1+ z( )4

a 
Matter-radiation equality 

aeq ≈ 2.8 ×10
−4

zeq ≈ 3600
teq ≈ 47,000yr

ρ



Power Spectrum 

Density fluctuations cannot grow when the universe 
is radiation-dominated if their wavelength is smaller 
than the size of the horizon. 

Radiation dominated Matter dominated 
Cannot grow Grow 

Grow Grow 
 λ  c H0

 λ  c H0



Power Spectrum 

k 

horizon 

Radiation-dominated P(k) 



Power Spectrum 

k 

horizon 

Radiation-dominated P(k) 



Power Spectrum 

k 

horizon 

Radiation-dominated P(k) 



Power Spectrum 

k 

horizon 

Radiation-dominated P(k) 



Power Spectrum 

k 

horizon 

Radiation-dominated P(k) 



Power Spectrum 

k 

horizon 

Matter-dominated P(k) 



Power Spectrum 

k 

horizon 

Matter-dominated P(k) 



Power Spectrum 



The Friedmann Equation 

R(t) 

 
R = −

GM
R2

 
R R = −

GM R
R2

 

d
dt

1
2
R2⎛

⎝⎜
⎞
⎠⎟
=
d
dt

GM
R

⎛
⎝⎜

⎞
⎠⎟

 

1
2
R2 = GM

R
+ K

M 

Kinetic + potential energy  
per unit mass = constant 



The Friedmann Equation 

 

1
2
R2 = GM

R
+ K M = ρ 4

3
πR3

 

1
2
R2 = 4πGρR

2

3
+ K

 

R2

R2
=
8πGρ
3

+
2K
R2

a t( ) = R t( )
R t = 0( ) =

R
R0

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πGρ
3

+
2K
R0
2a2



The Friedmann Equation 

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3

ρ t( ) + 2K
R0
2

1
a t( )2

Newtonian form of 
Friedman equation 

General Relativity: 

•  Replace density with energy density 

ρ t( )→ ε t( )
c2 

•  Constant of integration is curvature of spacetime 

2K
R0
2 → −

kc2

R0
2

E = m2c4 + p2c2( )1 2

k =
−1 negative curvature
0 flat space
+1 positive curvature

⎧
⎨
⎪

⎩⎪



The Friedmann Equation 

k=0 

k=+1 

k=-1 



The Friedmann Equation 

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) − kc
2

R0
2

1
a t( )2  

a
a
≡ H t( )

H t( )2 = 8πG
3c2

ε t( )

εc t( ) = 3c2

8πG
H t( )2 Critical density 

εc,0
c2

= 2.8×1011h2MMpc
-3

If k=0 



The Friedmann Equation 

H t( )2 = H t( )2Ω t( ) − kc
2

R0
2

1
a t( )2

Ω t( ) = ε t( )
εc t( ) Energy density in units of critical density 

1− Ω t( ) = −
kc2

R0
2

1
H t( )2 a t( )2

Ω t( )  
< 1 k = −1
= 1 k = 0
> 1 k = +1

⎧
⎨
⎪

⎩⎪
Sign of 1-Ω does not change as  
universe expands. 



The Friedmann Equation 

At the present epoch: H0
2 1− Ω0( ) = −

kc2

R0
2

Replace curvature constant in Friedman equation: 

H t( )2
H0

2 1− Ω t( )⎡⎣ ⎤⎦ =
1− Ω0( )
a t( )2

1− Ω t( ) = H0
2 1− Ω0( )

H t( )2 a t( )2



The Fluid Equation 

dQ = dE + PdV 1st law of thermodynamics 

E t( ) = ε t( )V t( ) E + P V = 0

 εV + ε V + P V = 0

 

V t( ) = 4
3
πR t( )3 →

V =
4
3
π 3R2 R→

V = V 3
R
R
= V 3

a
a

 
V ε + 3

a
a

ε + P( )⎛
⎝⎜

⎞
⎠⎟
= 0

 
ε + 3

a
a

ε + P( ) = 0



The Acceleration Equation 

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) − kc
2

R0
2

1
a t( )2

 
a2 = 8πG

3c2
ε t( )a t( )2 − kc

2

R0
2

 
2 aa = 8πG

3c2
εa2 + 2εa a( )

 

a
a
=
4πG
3c2

ε a
a
+ 2ε⎛

⎝⎜
⎞
⎠⎟

 

ε + 3
a
a

ε + P( ) = 0

ε a
a
= −3 ε + P( )



The Acceleration Equation 

 

a
a
=
4πG
3c2

−3 ε + P( ) + 2ε( )

 

a
a
= −

4πG
3c2

ε + 3P( )

The energy density is always positive 
 
•  If Pressure is positive then the universe must decelerate. 
  (e.g., baryonic gas, photons, dark matter) 
 
•  If Pressure is negative, the universe can accelerate. 
  (e.g., dark energy) 



The Equations of Motion of the Universe 

 

a
a
= −

4πG
3c2

ε + 3P( )

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) − kc
2

R0
2

1
a t( )2

Friedmann Equation 

Acceleration Equation 

Two equations and three unknowns:  a t( ),  ε t( ),  P t( )
Need a third equation: Equation of state  P = P ε( )

P = wε



The Equation of State 

P = wε

•  Non-relativistic particles: matter (Ideal gas law) 

P =
ρ
µ
kT =

kT
µc2

ε w =
kT
µc2

≈ 0

•  Relativistic particles: radiation 

P =
1
3
ε w =

1
3

•  Mildly relativistic particles: 

0 < w <
1
3



Cosmological Constant / Dark Energy 

1915  Einstein’s GR equations predict a dynamic universe. 
 
1917  But Einstein thought the Universe was static, so he introduced  
          the “Cosmological Constant”, Λ, to his equations of motion. 
 
1929  When Hubble discovered the expansion of the universe, Einstein 
          called Λ his “greatest blunder”. 
 
1998  SN results show that the universe is accelerating in its expansion 
          so scientists revive Λ 
	



The cosmological constant or “Dark Energy” is thought to be the  
energy of a vacuum, predicted by quantum mechanics. 



Cosmological Constant / Dark Energy 

 

a
a
= −

4πG
3c2

ε + 3P( ) + Λ
3

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) − kc
2

R0
2

1
a t( )2

+
Λ
3

Friedman Equation 

Acceleration Equation 

 
ε + 3

a
a

ε + P( ) = 0 Fluid Equation: 

If the energy density of Dark Energy is constant with time 

 
ε = −3

a
a

ε + P( ) = 0→ P = −ε → w = −1



Cosmological Constant / Dark Energy 

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) − kc
2

R0
2

1
a t( )2

+
Λ
3

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) + 8πG
3c2

c2Λ
8πG

⎛
⎝⎜

⎞
⎠⎟
−
kc2

R0
2

1
a t( )2

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

εm + εΛ( ) − kc
2

R0
2

1
a t( )2

H t( )2 1− Ωm − ΩΛ( ) = −
kc2

R0
2

1
a t( )2



Cosmological Parameters 

Cosmological parameter #4:  the matter density  

Ωm
Ωm ≈ 0.28± 0.01



Cosmological Parameters 

Cosmological parameter #5:  the baryon density  

Ωb
Ωb ≈ 0.047± 0.001



Cosmological Parameters 

Cosmological parameter #6:  the dark energy density  

ΩΛ

ΩΛ ≈ 0.72 ± 0.01



Cosmological Parameters 

Cosmological parameter #7:  the radiation density  

Ωγ

Ωγ ≈ 5 ×10
−5

Ων

Ων ≈ 3.4 ×10
−5



Cosmological Parameters 



The Evolution of Energy Density 

 
ε + 3

a
a

ε + P( ) = 0 P = wε

 
ε + 3

a
a
1+ w( )ε = 0

dε
dt

= −
da
dt
3
a
1+ w( )ε

dε
ε

= −
da
a
3 1+ w( )

lnε = lnε0 − 3 1+ w( ) lna

ε = ε0a
−3 1+w( )

If w is constant with a: 



The Evolution of Energy Density 

ε = ε0a
−3 1+w( )

•  Non-relativistic particles (baryons, dark matter) 

w = 0     →

•  Relativistic particles (photons, neutrinos) 

w = 1
3

 →

•  Dark energy 

w = −1   →

ε = ε0a
−3 = ε0 1+ z( )3

ε = ε0a
−4 = ε0 1+ z( )4

ε = ε0



The Friedmann Equation 

H t( )2
H0

2 =
H t( )2
H0

2 Ω t( ) + 1− Ω0( )
a t( )2

εc =
3c2

8πG
H 2

H 2

H0
2
ε
εc

= εc
εc,0

ε
εc

= ε
εc,0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪H 2

H0
2 =

ε
εc,0

+
1− Ω0( )
a2

ε = εm + εr + εΛ =
εm,0
a3

+
εr ,0
a4

+ εΛ,0



The Friedmann Equation 

H 2

H0
2 =

1
εc,0

εm,0
a3

+
εr ,0
a4

+ εΛ,0
⎛
⎝⎜

⎞
⎠⎟
+
1− Ω0( )
a2

H 2

H0
2 =

Ωm,0

a3
+
Ωr ,0

a4
+ΩΛ,0 +

1− Ω0

a2

Ω0 = Ωm,0 +Ωr ,0 +ΩΛ,0

1− Ω0 = Ωk ,0

Ωm,0 +Ωr ,0 +ΩΛ,0 +Ωk ,0 = 1



Cosmological Parameters 

Cosmological parameter #8:  the spatial curvature  

Ωk

Ωk = −0.002 ± 0.004



Cosmological Parameters 

Cosmological parameter #9:  the equation of state of dark 
                                                energy  

w
w ≈ −1.04 ± 0.07



The Friedmann Equation 

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

Ωm z( ) = εm
εc

=
εm,0
a3εc

=
εm,0
a3εc,0

εc,0
εc

=
Ωm,0

a3
H0

2

H 2

Ωr z( ) = Ωr ,0

a4
H0

2

H 2

ΩΛ z( ) = ΩΛ,0

a3 1+w( )
H0

2

H 2



The Friedmann Equation 



The Friedmann Equation 

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

Solving this equation gives expansion history a(t) 
(which also specifies the age of the universe t0) 



Solving the Friedmann Equation 

H 2

H0
2 =

1
a2

Special case #1: empty universe Ωk ,0 = 1

→ H = H0
1
a  → a = H0 → d ′a

0

a

∫ = H0d ′t
0

t

∫

a t( ) = H0t

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

0 0 0 

t0 =
1
H0



Solving the Friedmann Equation 

H 2

H0
2 =

1
a4

Special case #2: radiation dominated universe Ωr ,0 = 1

→ H = H0
1
a2  

→ a = H0
1
a

→ ′a d ′a
0

a

∫ = H0d ′t
0

t

∫

a t( ) = 2H0t( )1 2

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

0 0 0 

t0 =
1
2H0



Solving the Friedmann Equation 

H 2

H0
2 =

1
a3

Special case #3: matter dominated universe Ωm,0 = 1

→ H = H0
1
a3 2  

→ a = H0
1
a
→ ′a d ′a

0

a

∫ = H0d ′t
0

t

∫

a t( ) = 3
2
H0t

⎛
⎝⎜

⎞
⎠⎟
2 3

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

0 0 0 

t0 =
2
3H0



Solving the Friedmann Equation 

H 2

H0
2 = 1

Special case #4: dark energy dominated universe ΩΛ,0 = 1

→ H = H0  → a = H0a →
d ′a
′aa

1

∫ = H0d ′t
t

t0

∫

a t( ) = eH0 t− t0( )

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+ΩΛ,0

0 0 0 

t0 = ∞



Solving the Friedmann Equation 



Solving the Friedmann Equation 

Knop et al. (2003) 



Distance Measures in Cosmology 

tH ≡
1
H0

= 9.78h−1Gyr

Hubble time:  Time it took the universe to reach its present size if 
                           expansion rate has always been the same. 

DH ≡
c
H0

= 3000h−1Mpc

Hubble distance:  Distance light travels in a Hubble time. 

Proper distance:  Distance measured in rulers between two points. 

DP



Distance Measures in Cosmology 

 
dDP = c ×

da
a

•  Proper distance between point at a and a+da: 

 

= c
da

a
a
a

⎛
⎝⎜

⎞
⎠⎟
= c

da
aH

=
c
H0

da
a

H
H0

⎛
⎝⎜

⎞
⎠⎟

−1

= DH
dz

1+ z( )E z( )

•  Integrating: DP = DH
d ′z

1+ ′z( )E ′z( )0

z

∫



The Friedmann Equation 

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

H
H0

= Ωm,0 1+ z( )3 +Ωk ,0 1+ z( )2 +ΩΛ,0 1+ z( )3 1+w( ) = E z( )

0 



Distance Measures in Cosmology 

Comoving distance:  Distance between points that remains constant 
                                        if both points move with the hubble flow. 

DC ≡
DP

a
= DP 1+ z( )

DC = DH
d ′z
E ′z( )0

z

∫



Distance Measures in Cosmology 

Comoving distance (line-of-sight) 

DC = DH
d ′z
E ′z( )0

z

∫

DC

Comoving distance (transverse) 

DM =

DH
1
Ωk

sinh Ωk DC DH( ) for Ωk > 0

DC for Ωk = 0

DH
1
Ωk

sin Ωk DC DH( ) for Ωk < 0

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

DM



Distance Measures in Cosmology 

Angular diameter distance: Ratio of object’s physical size to angular  
                                                     size. 

DA =
DM

1+ z( )

DA

Rθ DA =
R
θ



Distance Measures in Cosmology 

Luminosity distance: Distance that defines the relationship between 
                                         luminosity and flux. 

DL = 1+ z( )DM = 1+ z( )2 DA

DL =
L
4πF



Distance Measures in Cosmology 

Comoving volume: Volume in which densities of non-evolving objects 
                                      are constant with redshift. 

VC =
4π
3
DM

3    for  Ωk = 0

dVC = DH
1+ z( )2 DA

2

E z( ) dΩdz



Distance Measures in Cosmology 

Lookback time: Difference between age of universe now and age of 
                               universe at the time photons were emitted from object. 

tL = tH
d ′z

1+ ′z( )E ′z( )0

z

∫

Age of the universe at redshift z:   t0 − tL z( )

t0

tL

t = 0 t z( )



Constraining Cosmological Parameters 

Dunkley et al. (2009) 



Constraining Cosmological Parameters 

Ωk = 0Ωk > 0 Ωk < 0



Constraining Cosmological Parameters 

DA =
λ
θ
=

l
2π

λ

DA =
c

H0 1+ z( )
d ′z
E ′z( )0

z

∫

Measurement 

Physics 

E z( ) = Ωm,0 1+ z( )3 +Ωk ,0 1+ z( )2 +ΩΛ,0 1+ z( )3 1+w( )

Cosmological parameters 



Constraining Cosmological Parameters 

Dunkley et al. (2009) 



Constraining Cosmological Parameters 

Komatsu et al. (2009) 



Constraining Cosmological Parameters 

Hinshaw et al. (2013) 



Constraining Cosmological Parameters 

Hinshaw et al. (2013) 

WMAP 
SPT 
ACT 



The Growth of Structure 



The Growth of Structure 

δ ≡
ρ − ρ
ρ

CMB:  δ  10
−4

Superclusters:  δ  10

Clusters:  δ  10
2

Galaxies: δ 104

Stars:  δ  10
29

People:  δ  10
30

Stellar black hole: δ 1045



The Growth of Structure 

ρ = ρ 1+ δ( )

R t( )

Assume small spherical overdensity 
in a static universe. 

 
R = −

G ΔM( )
R2

= −
G
R2

4π
3
R3ρδ⎛

⎝⎜
⎞
⎠⎟

 

R
R
= −

4πGρ
3

δ t( )

Two unknowns:  R t( )   and  δ t( )



The Growth of Structure 

ρ = ρ 1+ δ( )

R t( )

Conservation of mass 

M =
4π
3
R t( )3 ρ 1+ δ t( )⎡⎣ ⎤⎦

R t( ) = R0 1+ δ t( )⎡⎣ ⎤⎦
−1 3

R0 =
3M
4πρ

⎛
⎝⎜

⎞
⎠⎟

1 3

= const

 
δ 1  →   R t( ) ≈ R0 1− 1

3
δ t( )⎡

⎣⎢
⎤
⎦⎥



The Growth of Structure 

ρ = ρ 1+ δ( )

R t( )

 
δ = 4πGρδ

 
R ≈ −

1
3
R0 δ ≈ −

1
3
Rδ

 

R
R
≈ −

1
3
δ

 

R
R
= −

4πGρ
3

δ t( )

Combine with: 



The Growth of Structure 

ρ = ρ 1+ δ( )

R t( )
 
δ = 4πGρδ

δ t( ) = A1et tdyn + A2e− t tdyn

General solution: 

tdyn = 4πGρ( )−1 2
where 

After a few dynamical times, only  
the growing mode is significant 



The Growth of Structure 

 δ t( )  et

In reality, density perturbations do not grow this fast 
in the universe because: 

•  there is some pressure support 

•  the universe is not static, but expanding 

 tdyn  Gρ( )−1 2 = c2 Gε( )1 2

 
ε =

3c2

8πG
H 2 → H −1  c2 Gε( )1 2



The Growth of Structure 

 
R = −

GM
R2

= −
G
R2

4π
3

ρR3⎛
⎝⎜

⎞
⎠⎟

ρ = ρ 1+ δ( )

R t( )

= −
4π
3
GρR −

4π
3
G ρδ( )R

 

R
R
= −

4π
3
Gρ −

4π
3
Gρδ

M =
4π
3
R t( )3 ρ t( ) 1+ δ t( )⎡⎣ ⎤⎦ = const

Mass conservation: 



The Growth of Structure 

ρ = ρ 1+ δ( )

R t( )

 

R
R
=
a
a
−
1
3
δ −

2
3
a
a
δ

R t( )∝ ρ t( )−1 3 1+ δ t( )⎡⎣ ⎤⎦
−1 3

ρ ∝ a−3

R t( )∝ a t( ) 1+ δ t( )⎡⎣ ⎤⎦
−1 3

An overdense region will grow slightly less rapidly than the scale factor. 

≈ a t( ) 1− 1
3
δ t( )⎡

⎣⎢
⎤
⎦⎥

= − 4π
3
Gρ − 4π

3
Gρδ



The Growth of Structure 

ρ = ρ 1+ δ( )

R t( )
 

a
a
= −

4π
3
Gρ

With δ~0, this reduces to: 

 
−
1
3
δ −

2
3
a
a
δ = −

4π
3
Gρδ

 
δ + 2H δ = 4πGρδ

Subtract this from previous equation: 

Has extra term that acts to slow  
collapse in an expanding universe. 



The Growth of Structure 

Continuity (mass) 
 
 
Euler (momentum) 
 
 
Poisson (gravity)  

∂ρ
∂t

⎛
⎝⎜

⎞
⎠⎟ r

+ ρ∇r ⋅
u = 0

∂u
∂t

⎛
⎝⎜

⎞
⎠⎟ r

+ u ⋅∇r( ) u = −∇rΦ

∇r
2Φ = 4πGρ

Transform to comoving coordinates 

 

r = ax
u = r = ax + v



The Growth of Structure 

•  Add a small perturbation 

 ρ
x,t( ) = ρ t( ) +δ x,t( )ρ t( )

•  Linear approximation: keep first order terms in δ and v 

•  Rearrange equations to get rid of v 

•  Subtract off equation for unperturbed case to get δ 

 
δ + 2H δ = 4πGρδ



The Growth of Structure 

 
δ + 2H δ =

4πG
c2

εmδ
δ is the density of matter only	



δ =
εm − εm
εm

Ωm =
εm
εc

=
8πGεm
3c2H 2

 
δ + 2H δ −

3
2
H 2Ωmδ = 0

The solution to this equation depends on Ωm  



The Growth of Structure 

 Ωm 1•  Radiation-dominated phase in early universe  

H =
1
2t  

δ +
1
t
δ = 0

δ t( ) ≈ B1 + B2 ln tSolution: 

Perturbations grow at a logarithmic rate. 



The Growth of Structure 

 Ωm 1•  Lambda-dominated phase in late universe  

H = HΛ = const

δ t( ) ≈ C1 + C2e
−2HΛ tSolution: 

Perturbations reach a constant amplitude. 

 
δ + 2HΛ

δ = 0



The Growth of Structure 

Ωm ≈ 1•  Matter-dominated phase in recent universe  

H =
2
3t  

δ +
4
3t
δ −

2
3t 2

δ = 0

Guess:  δ t( ) ≈ Dtn  →  δ = nDtn−1
 
δ = n n −1( )Dtn−2

n n −1( )Dtn−2 + 4
3t
nDtn−1 − 2

3t 2
Dtn = 0

n n −1( )Dtn−2 + 4
3
nDtn−2 − 2

3
Dtn−2 = 0

n n −1( )+ 4
3
n − 2

3
= n2 + 1

3
n − 2

3
= 0

n =
−1
2 3

⎧
⎨
⎩



The Growth of Structure 

Ωm ≈ 1•  Matter-dominated phase in recent universe  

H =
2
3t  

δ +
4
3t
δ −

2
3t 2

δ = 0

δ t( ) ≈ D1t 2 3 + D2t
−1Solution: 

When growing mode dominates,  δ ∝ t 2 3 ∝ a ∝ 1
1+ z



The Growth of Structure 



The Growth of Structure 

 δ
x,t( ) = D t( ) δ x( )

 
δ + 2H δ −

3
2
H 2Ωmδ = 0

None of the terms or derivatives depend on location  
 
The solution may thus be written as: 

 
x

D t( )          is called the “growth factor” and it satisfies the 
above differential equation.  It is also normalized to be 
equal to unity at t = today. 



The Growth of Structure 

Since the growth function is normalized to be unity today, 
 
          must be the density at t = today assuming linear 
 
theory.  It is the linearly extrapolated density fluctuation. 

 
δ x( )

D t( ) = t
t0

⎛
⎝⎜

⎞
⎠⎟

2 3

e.g., in a matter dominated universe: 



The Spherical Collapse model 

Reminder: these solutions are for linear theory only! 
 
Once δ grows to ~1, they do not apply. 
 
We need different solutions to describe the collapse 
of density fluctuations. 

Hubble expansion wins Collapse of density region 



The Spherical Collapse model 

The Friedmann equation applies to a small density 
perturbation, in addition to the whole universe. 

In a matter-dominated universe, 
has a parametric solution:    

R = −
GM
R2

R = A 1− cos θ( )⎡⎣ ⎤⎦  

 t = B θ − sin θ( )⎡⎣ ⎤⎦
(the “cycloid” solution) 

Where,  A3 = GMB3



The Spherical Collapse model 

θ = π θ = 2π

turnaround 

collapse 



The Spherical Collapse model 

Expand and only keep low order terms: 

R = A 1− cos θ( )⎡⎣ ⎤⎦  

 t = B θ − sin θ( )⎡⎣ ⎤⎦

cos θ( ) ≈ 1− θ 2

2
+
θ 4

24
− ...

sin θ( ) ≈θ −
θ 3

6
+ ...

R ≈ A θ 2

2
−
θ 4

24
⎡

⎣
⎢

⎤

⎦
⎥

 t ≈ B θ 3

6
⎡

⎣
⎢

⎤

⎦
⎥ →  θ ≈

6t
B

⎛
⎝⎜

⎞
⎠⎟

1 3

→  R ≈
A
2

6t
B

⎛
⎝⎜

⎞
⎠⎟

2 3

1− 1
12

6t
B

⎛
⎝⎜

⎞
⎠⎟

2 3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
A
2
θ 2 1− θ 2

12
⎡

⎣
⎢

⎤

⎦
⎥



The Spherical Collapse model 

R t( ) ≈ A
2
6t
B

⎛
⎝⎜

⎞
⎠⎟
2 3

1− 1
12

6t
B

⎛
⎝⎜

⎞
⎠⎟
2 3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Compare this to our previous linear theory result: 

R t( ) ≈ a t( ) 1− 1
3
δ t( )⎡

⎣⎢
⎤
⎦⎥

a t( ) = 3
2
H0t

⎛
⎝⎜

⎞
⎠⎟
2 3

where: 

δ t( )∝ t 2 3and: 

The cycloid solution at small t agrees with linear theory. 



The Spherical Collapse model 

Turnaround 

Collapse 

Virialization 

The sphere breaks away from general expansion and reaches  
a maximum radius at θ=π.  At this point, linear theory predicts 
that the density contrast is δlin=1.06.	



The sphere collapses to a singularity at θ=2π.  This occurs  
when δlin=1.69.	



Complete collapse never occurs in practice because the kinetic  
energy of collapse is converted into random motions.  When the  
sphere has collapsed to half its maximum size, its kinetic energy 
is K=-0.5U, where U is the potential energy.  This is the condition 
for equilibrium according to the virial theorem.  This occurs at θ=3π/2 
when the density contrast is δlin=1.58. 



The Spherical Collapse model 

1+ δvir ≡ Δvir =
ρ
ρ
≈ 147If virialization occurs at 3π/2: 

If virialization occurs at 2π: 

Δvir ≈ 178Ωm
−0.7More generally: 

Δvir ≈ 18π 2 + 82 Ωm −1( ) − 39 Ωm −1( )2⎡
⎣

⎤
⎦Ωm

−1

Even more generally (for flat matter + dark energy models): 

1+ δvir ≡ Δvir =
ρ
ρ
≈ 178

Bryan & Norman (1998) 



Large Scale Velocity Field 

According to linear theory, the peculiar velocity is: 

 

v x( ) = f Ωm( )
4π

δm ′x( )∫
′x − x( )
′x − x 3 d

3 ′x

where: 

f Ωm( ) ≈ Ωm
0.6

The differential form of this equation is: 

 

∇⋅ v x( ) = − f Ωm( )δm

x( )



Large Scale Velocity Field 

We can measure the radial peculiar velocity of a galaxy 
by measuring its redshift and a redshift-independent 
distance. 

vr = cz − H0d

By comparing the observed velocity field to the observed 
density field, we can constrain Ω.  There are two main 
approaches that have been used: 
 
•  velocity-velocity comparison 

•  density-density comparison 



Large Scale Velocity Field 

Velocity-Velocity 

•  Measure the density field from a galaxy redshift survey, 
smoothing on some (small) scale. 

•  Use linear theory to predict the full 3D velocity field. 

•  Predict radial velocities for all the galaxies. 

•  Compare these predictions to the actual measured 
galaxy velocities. 

•  The slope of the predicted vs. observed relation gives us 
f(Ωm). 



Large Scale Velocity Field 

Density-Density 

•  Measure the radial velocity field from a galaxy redshift 
survey, smoothing on some (large) scale. 

•  Integrate this radially to get the potential field and 
compute the gradient of the potential field to get the full 
3D velocity field.  Then use linear theory to predict the 
density field. 

 
•  Compare this prediction to the actual measured galaxy 

density field. 

•  The slope of the predicted vs. observed relation gives us 
f(Ωm). 



Large Scale Velocity Field 

Density-Density 

 
Φ r( ) = − vr ′r ,θ ,ϕ( )

0

r

∫ d ′r

 
v r( ) = −∇rΦ

r( )

 δm
r( ) = − f Ωm( )−1∇r ⋅

v r( )



Large Scale Velocity Field 

We only actually measure the galaxy density field, which 
on large scales is related to the mass density via a linear 
bias factor: 

δ g = bδm

So these methods actually constrain the quantity: 

β =
f Ωm( )
b

≈ Ωm
0.6

b



Large Scale Velocity Field 

Dekel et al. (1999) 



Large Scale Velocity Field 

Dekel et al. (1999) 



Large Scale Velocity Field 

Sigad et al. (1998) 



Large Scale Velocity Field 

Many systematic errors! 
 
 
For example, homogeneous and inhomogeneous 
Malmquist bias, which is caused by anisotropic 
scattering of galaxy positions due to large distance 
errors. 
 



N-body Simulations 



N-body Simulations 



N-body Simulations 

Initial conditions: 
•  What kind of Dark Matter? 
•  How much Dark Matter? 
•  Initial density fluctuations P(k) 

GRAVITY 

Final distribution of dark matter. 



N-body Simulations 

•  Start with a grid of particles representing dark matter. 

•  Give them initial smooth density fluctuations. 

•  Compute the force of gravity on every particle from every other 
particle in a series of time steps. 
 
A very computationally expensive technique!  Only made possible 
recently with fast computers. 



N-body Simulations:  Initial Conditions 

Cosmological model 
 
 h,Ωm ,Ωb ,Ων ,σ 8 ,ns  →  P k( )

Phases for modes 
 

•  Gaussian random phase δ(r) 
•  Non-Gaussian? 

Evolve to starting redshift 
 

•  zinit=30-200 
•  Zel’dovich approximation 
•  2LPT 



N-body Simulations:  Initial Conditions 

 
x = q + D t( ) ψ q( )

 

v = a dD
dt

ψ q( )

 


∇ ⋅

ψ = −

δ q( )
D t( )

Assign initial positions and velocities 
using Zel’dovich approximation  



N-body Simulations:  Force calculations 

•  Direct particle-particle    (N2) 
 
•  Particle-Mesh (PM)    (NglogNg) 

•  Particle-particle particle-mesh (P3M)  (N2  / NglogNg) 

•  Tree      (NlogN) 

•  Tree-PM      (NlogN / NglogNg) 

•  Adaptive mesh refinement (AMR) 

•  Adaptive refinement tree (ART) 

•  Moving mesh (AREPO) 



N-body Simulations:  Force calculations 



Kravtsov et al. 





We can constrain cosmological models. 

SDSS observations 

e.g., dark matter models 

massive 
neutrinos 

“cold” 
particles 



We can constrain cosmological models. 

van Dalen & Schaefer (1992) 



We can constrain cosmological models. 

1/2 1/10 1 Fraction of present age: 

Flat universe with dark energy 

Flat universe with high DM 

Different initial P(k) 

Open universe with low DM 

Ωm = 0.3  ΩΛ = 0.7

Ωm = 1

Ωm = 1

Ωm = 0.3



We can constrain cosmological models. 



We can constrain cosmological models. 

Jenkins et al. (1998) 



Virgo Collaboration 



What is a dark matter halo? 

Dark Matter collapses under  
its own self-gravity into  
“virialized” regions, or “halos”. 
 
Halos are typically defined as  
regions with density of ~200  
times the mean density, but  
there are several halo-finding 
algorithms. 
 
Halos come in different sizes, 
masses, and shapes. 

High mass halo (the kind that  
  would host a galaxy cluster) 

Intermediate mass halo (the kind  
  that would host a galaxy group) 

Low mass halo (the kind that  
  would host a single galaxy) Very low mass halo (the kind  

  that would host no galaxy at all) 



What is a dark matter halo? 

•  Friends-of-Friends (FoF) 

   linking length b 

•  Spherical Overdensity (SO) 

   choice of center, density threshold Δvir 

•  Density Maxima (DENMAX, BDM) 

    choice of center, density threshold Δvir , criteria for unbinding 
 
•  Other (e.g., Voronoi tesselation) 



What is a dark matter halo? 

Bound dense regions within 
a larger halo are referred to  
as subhalos, substructure, or  
satellite halos. 
 
Subhalos have a density higher 
than ~200 times the mean. 
 
A halo can host a single galaxy, 
or a cluster of galaxies.  Within 
a cluster, individual galaxies 
would sit inside subhalos. 

Subhalo / Satellite halo 

Host/Parent/Central halo Halo 
Kravtsov et al. 







Halo properties: Abundance (mass function) 

Warren et al. (2006) 

We now know the z=0  
mass function to ~5% for 
reasonable choices of  
cosmological parameters. 
(For one N-body code and  
one halo-finder) 
 
There may be larger 
uncertainties for higher 
redshifts or more exotic 
cosmological models. 

M 



Halo properties: Abundance (mass function) 
Press-Schechter (1974) theory 
 
Halos collapse from regions in the primordial density field that exceed 
a threshold density.  One halo forming does not influence the likelihood 
of other halos forming nearby. 

The halo mass function thus depends on: 
 
•  The distribution of initial densities  P(k) 

•  The linear growth of fluctuations  D(z) 

•  The density threshold for collapse  δcrit 



Halo properties: Abundance (mass function) 

Consider a spherical region of mass M.  This region corresponds  
to a scale: 

 
σ R

2 = P k( ) WR k( )2∫ d 3k   →   σ M( )

R =
3M
4πρ

⎛
⎝⎜

⎞
⎠⎟

1 3

The density field smoothed on this scale has a variance of: 

P δ |M( )dδ =
1

2πσ M( )
exp −

δ 2

2σ M( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dδ

The probability of the density having a value between δ and δ+dδ is: 



Halo properties: Abundance (mass function) 

The fractional volume in this smoothed  
density field with δ>δc is: 

F > M( ) = P δ |M( )dδ
δc

∞

∫

The fractional volume corresponding to 
masses in the range M to M+dM is: 

dF > M( )
dM

dM



Halo properties: Abundance (mass function) 
The volume of a region that will make  
a single halo of mass M is: 

M
ρ

The number of halos of mass in the range M to M+dM is: 

fraction of volume ×Vtot

volume of 1 halo
=

ρ
M

dF > M( )
dM

dM ×Vtot

The number density of halos of mass in the range M to M+dM is: 

dn
dM

dM =
ρ
M

dF > M( )
dM

dM



Halo properties: Abundance (mass function) 

Spherical collapse model 

dn
dM

=
2
π

ρ
M 2

δc
σ

d lnσ
d lnM

exp −
δc

2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥

Power spectrum 

There are numerous improvements to the Press-Schechter mass function 

Linear theory growth rate σ M , z( ) = σ M , z = 0( )D z( )



Halo properties: Abundance (mass function) 

Cooray & Sheth (2002) 



Halo properties: Abundance (mass function) 



Halo properties: Abundance (mass function) 



Halo properties: Abundance (mass function) 



Halo properties: Abundance (mass function) 

LasDamas 



Halo properties: Abundance (mass function) 

z>>0 zin 

Zel’dovich 
 
2LPT 



Halo properties: Abundance (mass function) 

LasDamas 



Halo properties: Abundance (mass function) 

LasDamas 



Halo properties: Clustering (halo bias) 

LasDamas 



Halo properties: Clustering (halo bias) 

LasDamas 



Halo properties: Clustering (halo bias) 

Seljak & Warren (2005) 

Good to ~3% for standard 
cosmology. 

bh =
Phh k < 0.1( )
Pmm k < 0.1( )



Halo properties: Clustering (halo bias) 

Seljak & Warren (2005) 

Good to ~10% across 
different cosmologies. 



Halo properties: Structure (density profile) 

r 



Halo properties: Structure (density profile) 

ρ r( ) = ρs

1+ r rs( )2 r rs( )

Navarro, Frenk & White (NFW) 

logr 

ρs ,rs( )⇔ Mvir ,c ≡ Rvir rs( )

Mvir =
4
3
πRvir

3 Δvirρ

Navarro et al. (2004) 



Halo properties: Structure (density profile) 
NFW, varying mass 



Halo properties: Structure (density profile) 
NFW, varying concentration 



Halo properties: Structure (density profile) 

Mvir 

c ≡ Rvir rs

Bullock et al. (2001) 

c 

concentration – mass relation 

c ≈ c*
1+ z( ) M M*( )−0.13



Halo properties: Structure (density profile) 

Navarro et al. (2010) 

ρ = ρ−2e
−2 αe

r r−2( )α −1⎡
⎣

⎤
⎦

Density profile slope vs. r 

Einasto profile 



Halo properties: History (merger tree) 

Wechsler et al. (2002) 

•  High mass halos have 
accreted more of their 
mass recently relative to 
low mass halos. 

a 

time M 

Assembly History 



Halo properties: History (merger tree) 

Wechsler et al. (2002) 

•   Halo concentrations are 
determined by their 
accretion history. 



Halo properties: Assembly Bias 

Wechsler et al. (2006) 



Halo properties: Assembly Bias 

Gao & White (2007) 



Halo properties: Assembly Bias 

Gao & White (2007) 



Halo properties: Assembly Bias 

Gao & White (2007) 



From dark matter to galaxies 



Galaxies are assumed 
to form in dark matter 
halos. 



This is what we see! 



A dark matter halo forms.  Inside the halo is hot/warm gas. 
The gas has some angular momentum. 

Galaxy formation theory in a nutshell 



Gas cools inside the halo and settles into a 
rotating disk. 

Galaxy formation theory in a nutshell 



Stars form from the cold dense gas. 

Galaxy formation theory in a nutshell 

SF: ON 



Stars grow old and fade, new stars are born. 
Gas undergoes heating and cooling. 

Galaxy formation theory in a nutshell 

SF: ON 



Energy feedback due to supernovae or a massive central 
black hole can reheat the gas or blow it out of the galaxy. 

This can end star formation. 

Galaxy formation theory in a nutshell 
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The galaxy gets dimmer and redder. 

Galaxy formation theory in a nutshell 
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If the halo is in a gas-rich environment, more gas can  
fall into the halo from the inter-galactic medium. 

Galaxy formation theory in a nutshell 
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If the halo merges with another halo containing a galaxy,  
the smaller galaxy becomes a satellite. 

Galaxy formation theory in a nutshell 



Galaxy formation theory in a nutshell 

If the halo merges with another halo containing a galaxy,  
the smaller galaxy becomes a satellite. 

If the main halo is massive enough, it can contain hot gas that 
might ram-pressure strip the gas out of the satellite galaxy, 

thereby ending its star formation. 

SF: OFF 
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Galaxy formation theory in a nutshell 

Eventually, the subhalo will be destroyed via tidal stripping 
and the satellite galaxy will spiral in due to dynamical friction. 

SF: OFF 

SF: ON 



Galaxy formation theory in a nutshell 

The galaxy merger can cause shocks in any remaining gas, 
which can trigger starbursts and exhaust the gas supply. 

Mergers can also affect the galaxy morphology. 

SF: OFF 



Galaxy formation theory in a nutshell 

In high mass halos, halo mergers happen frequently, but 
dynamical friction timescales are long, resulting in  

galaxy clusters. 

SF: OFF 



Galaxy formation theory in a nutshell 
Key questions: 
 
•  What is the initial distribution of gas within halos and how does it cool?

(e.g., multiphase medium) 

•  How do stars form exacty?  (e.g., conditions for star formation, 
dependence of IMF on environment, metallicity) 

•  How does supernova feedback work?   (e.g., thermal vs. kinetic energy 
injection, efficiency) 

•  How does AGN feedback work? 

•  How does merging affect galaxies’ star formation and morphology? 

•  How does fresh gas in the IGM feed galaxies? 



Lots of unknowns! 
 
 
 
 
But also lots of data describing the distribution 

of galaxies! 



Large surveys: Measurements of Galaxy Clustering 
First Moments    

� 

δ(  x )

Blanton et al. (2005) 

Luminosity Functions 



Large surveys: Measurements of Galaxy Clustering 
Second Moments   

� 

δ(  x )δ(  x + r)

Masjedi et al. (2006) 

Zehavi et al. (2005) 

Correlation Functions 

ξgg(r)	



wp(rp) 



Large surveys: Measurements of Galaxy Clustering 
Higher Moments and Other Statistics 

Scoccimarro et al. (2006) 

Berlind et al. (2006) 

Bispectrum Group Multiplicity Function 

Q(ϑ) 

ngrp(N) 
Sheldon et al. (2005) 

ξgm(r)	



Galaxy-Mass Correlations 



Large surveys: Measurements of Galaxy Clustering 
High Redshift 

 

Coil et al. (2006) Lee et al. (2006) 

Z ~ 1 z ~ 4 

GOODS 

ω(θ)	

wp(rp) 



How can we extract this information from the data? 
e.g., what does a particular shape of ξ(r) for bright red galaxies tell us  
about how these galaxies formed?  Can we use this statistic to constrain 
cosmological parameters? 

Galaxy clustering data contains information about cosmology 
and galaxy formation/evolution. 

Galaxy Formation 
 

Gas cooling, Star formation,  
Feedback, Mergers, etc. 

Dark Matter clustering Galaxy clustering 

Cosmological Model 
 

Ω, P(k), etc. 

bias 



Ab-initio  
Predictions Hydrodynamic Simulations of Dark Matter + Gas 

Semi-Analytic Models 

Gravity 
 and  

Hydrodynamics 
+	



Heating 
and 

Cooling 
+	



Prescriptions for 
Star Formation 

and 
Feedback 

=	



+	



Prescriptions for: 
Gas distribution, Gas Cooling, 

Star Formation, Feedback, 
Galaxy Mergers + more 

in DM halos 

=	



Springel et al. 

Virgo Consortium 

(Sub-grid physics) 



Benson, 2010 



Benson, 2010 



Benson, 2010 
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Galaxy formation theory in a nutshell 



Galaxy formation theory in a nutshell 



Forward approach is not practical 

•  Hydrodynamic simulations take too long + cannot resolve much of 
   the important physics         make many assumptions. 
 
•  Semi-analytic models have too many free parameters and do not 
   necessarily include all the relevant physics.	



For constraining cosmological parameters:  too many uncertainties  
  in galaxy formation physics.  We can predict dark matter clustering to 
  fairly high precision, but we have trouble going from DM to galaxies. 
 
For constraining galaxy formation physics:  difficult to understand  
  how parameters affect clustering statistics.  e.g., what does it mean if 
  a model predicts a 3-point correlation function that is too high for faint 
  red galaxies?  



“Environmental” bias 

δg = f δm( )δg = bδm

δg and δm are defined on some smoothing scale	

 δ ≡
ρ
ρ
−1

⎛
⎝⎜

⎞
⎠⎟

•  Cannot describe bias on scales smaller than smoothing scale. 

•  Choice of smoothing scale is arbitrary. 

•  Bias is only simple (b=const) on very large scales. 

•  Only well-suited to describe some clustering statistics. 

•  δm is generally unobservable. 

To constrain cosmology: parameterize our ignorance in order to bypass  
 the need to understand galaxy formation. 



“Halo Occupation” Bias 
1.  All galaxies live in DM halos 
2.  The galaxy content of a halo is statistically independent of 
       the halo’s larger scale environment (depends only on mass)	



The bias of any class of galaxies (luminosity, type, etc.) is fully  
 defined by the Halo Occupation Distribution (HOD): 
 
•  The probability distribution P(N|M) that a halo of mass M contains 
    N galaxies of that class. 
 
•  The relation between the spatial distributions of galaxies and DM 
    within halos. 
 
•  The relation between the velocity distributions of galaxies and DM 
    within halos. 



Galaxy Formation 
 

Gas cooling, Star formation,  
Feedback, Mergers, etc. 

 
Galaxy-Mass correlations 

Cosmological Model 
 

Ω, P(k), etc. 

Halo Occupation Distribution 
P(N|M) 

Spatial bias within halos 
Velocity bias within halos 

Dark Halo Population 
 

n(M), ρ(r|M), ξ(r|M), v(r|M) 

Galaxy clustering 



Dark Halo Population  



Dark Halo Population  Galaxy Population  



Why is the Halo Occupation Distribution (HOD)  
the right way to think about bias? 

•  Complete:  It tells us everything a theory of galaxy formation has  
                      to say about galaxy clustering (all statistics, all scales). 
 
•  Physically illuminating:  Discrepancies offer guidance about their   
                                            physical origin. 
 
•  Observationally powerful:  Description of bias at the level of systems  
                                                in dynamic equilibrium, where methods       
                                                can constrain mass. 
 
Nice conceptual division between roles of “cosmological model” and 
“theory of Galaxy formation”. 



The basic approach. 

•  Develop machinery to compute galaxy clustering statistics 
given halo properties (mass function, etc.) + HOD. 

•  We know how to go from cosmological parameters to halo 
properties. 

•  Parameterize the HOD (and thus our ignorance about galaxy 
formation). 

•  Fit cosmological + HOD parameters (or HOD parameters at 
fixed cosmology) to galaxy clustering measurements. 

•  Use measured HODs to gain insight into galaxy formation. 



How do we parameterize the HOD? 

•  Look at theoretical predictions for guidance. 

•   Interested in moments of P(N|M), as well as radial 
and velocity distributions within halos.	



N M = NP N M( )
N
∑

N N −1( ) M
= N N −1( )

N
∑ P N M( )

N N −1( ) N − 2( ) M
= N N −1( )

N
∑ N − 2( )P N M( )



How do we parameterize the HOD? 
A note about the second moment of integer distributions 

N 2 = N 2 + NFor a Poisson distribution: 

N N −1( ) = N 2 − N

= N 2 − N

= N 2

The number of pairs is: 

Narrower distributions have a smaller value than this and wider distributions 
have a larger value for the number of pairs. 



How do we parameterize the HOD? 

•  HOD for halos + subhalos. 

•  <Nsub> is a power law with 
   slope ~1. 
 
•  Distribution about <Nsub>    
   is Poisson.	

 Kravtsov, Berlind et al. (2004) 

N N −1( ) M

1 2

N M

N M

Nhost
Nsub

N-body 



How do we parameterize the HOD? 
SPH 

Zheng, Berlind et al. (2005) 



How do we parameterize the HOD? 
Semi-Analytic 

Zheng, Berlind et al. (2005) 



How do we parameterize the HOD? 

For luminosity/mass threshold samples: 

 

N = Ncen + Nsat

Ncen =
0, M  Mmin

1, M  Mmin

⎧
⎨
⎩

P Nsat Nsat( ) = Nsat
Nsat

Nsat !
e− Nsat

Nsat =

0, M  M 0

M
M1

⎛
⎝⎜

⎞
⎠⎟

α
, M  M 0

⎧

⎨
⎪

⎩
⎪



The HOD contains information about physics! 

Dynamical friction 
Tidal disruption 

Baryon/DM fraction 
Gas cooling 
Star formation efficiency 

DM halo merger statistics 



How do we compute clustering statistics? 
Number density 

ng = dM dn
dM0

∞

∫ N M



How do we compute clustering statistics? 
2-pointCorrelation function Small scales:  All pairs come from same halo. 

                          1-halo term 

1+ ξg
1h r( ) = 2πr2ng

2( )−1 dM dn
dM0

∞

∫
N N −1( ) M

2
λ r M( )

Large scales:  Pairs come from separate halos. 
                          2-halo term 

bg = ng
−1 dM dn

dM
N M

0

∞

∫ bh M( )

ξg r( ) = bg2ξm r( )

Berlind & Weinberg (2002) 



How do we compute clustering statistics? 
2-point correlation function 

Characteristic size of halo 

1-halo term 

2-halo term 

Halo model generically predicts 
departures from a power law in 
the correlation function. 



How do we compute clustering statistics? 
N-point correlation functions 

3-point function has 3 terms: 1-halo, 2-halo, 3-halo 
1-halo term depends on <N(N-1)(N-2)> 

Redshift-space and velocity statistics 

Need model for velocity distribution in DM halo  
+ velocity bias for galaxies 

Φ L( ) = dM dn
dM0

∞

∫ N M ,L( )

Luminosity function 



How do we compute clustering statistics? 

•  Non-linear P(k) in 2-halo term 

•  Scale dependence of halo bias: b(M,r) 

•  Halo exclusion 

•  Non-spherical halos 

•  Non-NFW profiles 

•  Dependence of b(M) and/or P(N|M) on halo assembly history 

•  Parameterize P(N|M) for non-trivial galaxy populations                       

Improvements to standard halo model 



Measurements of the HOD 

Zehavi et al. (2004) 

Deviation from power law 
detected.  Halo model gives 
a good fit to the data. 
(χ2/dof = 0.93 vs. 6.12 for plaw) 

1-halo term 

2-halo term 

DM wp 



Measurements of the HOD 

Zehavi et al. (2005) 



Measurements of the HOD 

Zehavi et al. (2005) 



Measurements of the HOD 

Tinker et al. (2003) 



Measurements of cosmology 

Abazajian et al. (2003) 







How do we compute clustering statistics? 

n N( ) = dM dn
dM

P N M( )
0

∞

∫

Group/cluster multiplicity function 

Berlind & Weinberg (2002) 



How do we compute clustering statistics? 

M0 

Mmin 

M1 

α	





Group Multiplicity Function 

Berlind et al. (2006) 



Measurements of the HOD 

Berlind et al. in prep. 

M0 

Mmin 

M1 

α	





Testing the halo model assumptions 

1.  All galaxies live in halos.   ✔ 

2.  The statistical content of halos depends only on halo mass. 
       i.e., P(N|M) is sufficient, as opposed to P(N|M,X) 

Recent work shows that halo bias bh(M) depends on halo assembly  
history at fixed mass.  If <N(M)> also shows this dependence, then 
standard halo model will be incorrect. 
 
Preliminary work shows that this effect is not greater than ~5% for L* 
galaxies.  This systematic effect needs to be addressed if galaxy 
clustering is to be used for precision cosmology. 



Populate an N-body simulation with an HOD to compute 
clustering statistics instead of using analytic formulas. 

Alternative to the analytic halo model approach 



Populate an N-body simulation with an HOD to compute 
clustering statistics instead of using analytic formulas. 
 
Advantages:   
•  Halo clustering, abundances, and profiles are correct on all scales 
   above the simulation’s resolution limit. 
•  Can calculate any clustering statistic. 
 
Disadvantages: 
•  Not good for very small scale clustering. 
•  Much slower. 

Alternative to the analytic halo model approach 



Alternatives to the halo model / HOD approach 

Use a high resolution N-body simulation to place galaxies in 
halos + subhalos, assuming relations between galaxy and 
subhalo properties. (i.e., use subhalo distribution instead of HOD) 



Galaxy luminosity function Halo mass function 
(including subhalos) 

Halo/Subhalo Abundance Matching 



Halo/Subhalo Abundance Matching 

Luminosity 
or 

Stellar Mass 

Halo/Subhalo Mass 



Halo/Subhalo Abundance Matching 

Conroy et al. (2006) 

SDSS 
z~0 



Halo/Subhalo Abundance Matching 

Conroy et al. (2006) 

DEEP2 
z~1 



Halo/Subhalo Abundance Matching 

Conroy et al. (2006) 

LBGs 
z~3 



Halo/Subhalo Abundance Matching 

Conroy et al. (2006) 

Subaru 
z~4 



Halo/Subhalo Abundance Matching 

Conroy et al. (2006) 

GOODS 
z~4-5 



Halo/Subhalo Abundance Matching 

What subhalo property should be used? 

Macc , Vacc 

Mfin , Vfin 



Halo/Subhalo Abundance Matching 

Conroy et al. (2006) 



Halo/Subhalo Abundance Matching 

Reddick et al. (2013) 



Alternatives to the halo model / HOD approach 

Use a high resolution N-body simulation to place galaxies in 
halos + subhalos, assuming relations between galaxy and 
subhalo properties. (i.e., use subhalo distribution instead of HOD) 
 
Advantages: 
•  Let gravity predict what the spatial and velocity distribution of 
   galaxies is. 
•  Works fairly well for luminosity threshold samples:  Lgal ~ Msub 
    (Conroy et al. 2006) 
 
Disadvantages: 
•  Not clear how to populate subhalos with non-trivial galaxy samples     
   (split by color, type, etc). 
•  Assumes that subhalo evolution within host halos traces that of  
   galaxies. 
•  Much too slow to constrain cosmology. 



Alternatives to the halo model / HOD approach 

Use a Conditional Luminosity Function (CLF) to model the 
luminosity dependence of clustering. 
 
 
 
 
Advantages: 
•  Don’t have to assume a form for <N(M)> 
•  More ambitious: model the luminosity dependence explicitly 
 
Disadvantages: 
•  Have to assume a form for ϕ(L|M) 
•  More ambitious: luminosity dependence is model dependent 

Methods are very similar and complementary. 

N M = dLΦ L M( )
Lmin

∞

∫Φ L( ) = dM dn
dm

Φ L M( )
0

∞

∫



Describing vs. Understanding 

HOD/HAM/CLF are excellent statistical tools for describing the  
wealthof galaxy clustering data: for translating complicated statistics 
into a more physically informative language. 
 
 
It is still essential that we understand the physics behind the 
data: gas cooling, star formation, feedback, etc.  For this we  
need ab-initio models such as hydrodynamic simulations and  
semi-analytic models. 
 
 
The methods are highly complementary. 



SYNOPSIS 
•  Galaxy properties 
    
•  Stellar populations 

•  Distance measures 

•  Hubble expansion and  
   z-space distortions 

•  Redshift surveys 

•  Galaxy environments 

•  Galaxy groups and clusters 

•  Galaxy clustering statistics 

•  Cosmological parameters 

•  Expansion history of the 
   universe 

•  Growth of perturbations 

•  N-body simulations 

•  Dark matter halos 

•  Galaxy formation 

•  The halo model 


