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The Friedmann Equation
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The Friedmann Equation
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General Relativity:

• Replace density with energy density
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The Friedmann Equation
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The Friedmann Equation
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The Friedmann Equation
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universe expands.



The Friedmann Equation

At the present epoch: H0
2 1− Ω0( ) = −
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Replace curvature constant in Friedman equation:
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The Fluid Equation

dQ = dE + PdV 1st law of thermodynamics

E t( ) = ε t( )V t( ) E + P V = 0

 εV + ε V + P V = 0
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The Acceleration Equation
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The Acceleration Equation
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The energy density is always positive

• If Pressure is positive then the universe must decelerate.
(e.g., baryonic gas, photons, dark matter)

• If Pressure is negative, the universe can accelerate.
(e.g., dark energy)



The Equations of Motion of the Universe
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Friedmann Equation

Acceleration Equation

Two equations and three unknowns: a t( ),  ε t( ),  P t( )
Need a third equation: Equation of state P = P ε( )

P = wε



The Equation of State

P = wε

• Non-relativistic particles: matter (Ideal gas law)

P =
ρ
µ
kT =

kT
µc2

ε w =
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µc2

≈ 0

• Relativistic particles: radiation

P =
1
3
ε w =

1
3

• Mildly relativistic particles:

0 < w <
1
3



Cosmological Constant / Dark Energy

1915 Einstein�s GR equations predict a dynamic universe.

1917 But Einstein thought the Universe was static, so he introduced 
the �Cosmological Constant�, Λ, to his equations of motion.

1929 When Hubble discovered the expansion of the universe, Einstein
called Λ his �greatest blunder�.

1998 SN results show that the universe is accelerating in its expansion
so scientists revive Λ

The cosmological constant or �Dark Energy� is thought to be the 
energy of a vacuum, predicted by quantum mechanics.



Cosmological Constant / Dark Energy
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Acceleration Equation
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If the energy density of Dark Energy is constant with time
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Cosmological Constant / Dark Energy
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Cosmological Parameters

Cosmological parameter #4:  the matter density 

Ωm
Ωm ≈ 0.28± 0.01



Cosmological Parameters

Cosmological parameter #5:  the baryon density 

Ωb
Ωb ≈ 0.047± 0.001



Cosmological Parameters

Cosmological parameter #6:  the dark energy density 

ΩΛ

ΩΛ ≈ 0.72 ± 0.01



Cosmological Parameters

Cosmological parameter #7:  the radiation density 

Ωγ

Ωγ ≈ 5 ×10
−5

Ων

Ων ≈ 3.4 ×10
−5



Cosmological Parameters



The Evolution of Energy Density
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The Evolution of Energy Density

ε = ε0a
−3 1+w( )

• Non-relativistic particles (baryons, dark matter)

w = 0     →

• Relativistic particles (photons, neutrinos)

w = 1
3

 →

• Dark energy
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The Friedmann Equation
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The Friedmann Equation
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Cosmological Parameters

Cosmological parameter #8:  the spatial curvature 

Ωk

Ωk = −0.002 ± 0.004



Cosmological Parameters

Cosmological parameter #9:  the equation of state of dark
energy 

w
w ≈ −1.04 ± 0.07



The Friedmann Equation
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The Friedmann Equation



The Friedmann Equation
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Solving this equation gives expansion history a(t)
(which also specifies the age of the universe t0)



Solving the Friedmann Equation
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Solving the Friedmann Equation
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Solving the Friedmann Equation
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Solving the Friedmann Equation
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H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+ΩΛ,0
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Solving the Friedmann Equation



Solving the Friedmann Equation

Knop et al. (2003)



Distance Measures in Cosmology

tH ≡
1
H0

= 9.78h−1Gyr

Hubble time:  Time it took the universe to reach its present size if
expansion rate has always been the same.

DH ≡
c
H0

= 3000h−1Mpc

Hubble distance:  Distance light travels in a Hubble time.

Proper distance:  Distance measured in rulers between two points.

DP



Distance Measures in Cosmology

 
dDP = c ×

da
a

• Proper distance between point at a and a+da:

 

= c
da

a
a
a

⎛
⎝⎜

⎞
⎠⎟
= c

da
aH

=
c
H0

da
a

H
H0

⎛
⎝⎜

⎞
⎠⎟

−1

= DH
dz

1+ z( )E z( )

• Integrating: DP = DH
d ′z

1+ ′z( )E ′z( )0

z

∫



The Friedmann Equation
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Distance Measures in Cosmology

Comoving distance:  Distance between points that remains constant
if both points move with the hubble flow.

DC ≡
DP

a
= DP 1+ z( )

DC = DH
d ′z
E ′z( )0

z

∫



Distance Measures in Cosmology

Comoving distance (line-of-sight)

DC = DH
d ′z
E ′z( )0

z

∫

DC

Comoving distance (transverse)

DM =

DH
1
Ωk

sinh Ωk DC DH( ) for Ωk > 0

DC for Ωk = 0
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1
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sin Ωk DC DH( ) for Ωk < 0
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Distance Measures in Cosmology

Angular diameter distance: Ratio of object’s physical size to angular 
size.

DA =
DM

1+ z( )

DA

Rθ DA =
R
θ



Distance Measures in Cosmology

Luminosity distance: Distance that defines the relationship between
luminosity and flux.

DL = 1+ z( )DM = 1+ z( )2 DA

DL =
L
4πF



Distance Measures in Cosmology

Comoving volume: Volume in which densities of non-evolving objects
are constant with redshift.

VC =
4π
3
DM

3    for  Ωk = 0

dVC = DH
1+ z( )2 DA

2

E z( ) dΩdz



Distance Measures in Cosmology

Lookback time: Difference between age of universe now and age of
universe at the time photons were emitted from object.

tL = tH
d ′z

1+ ′z( )E ′z( )0

z

∫

Age of the universe at redshift z:  t0 − tL z( )

t0

tL

t = 0 t z( )



Constraining Cosmological Parameters

Dunkley et al. (2009)



Constraining Cosmological Parameters

Ωk = 0Ωk > 0 Ωk < 0



Constraining Cosmological Parameters

DA =
λ
θ
=

l
2π

λ

DA =
c

H0 1+ z( )
d ′z
E ′z( )0

z

∫

Measurement

Physics

E z( ) = Ωm,0 1+ z( )3 +Ωk ,0 1+ z( )2 +ΩΛ,0 1+ z( )3 1+w( )

Cosmological parameters



Constraining Cosmological Parameters

Dunkley et al. (2009)



Constraining Cosmological Parameters

Komatsu et al. (2009)



Constraining Cosmological Parameters

Hinshaw et al. (2013)

w = w0 +waa



Constraining Cosmological Parameters

Hinshaw et al. (2013)

WMAP
SPT
ACT


