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The Growth of Structure

δ ≡
ρ − ρ
ρ

CMB:  δ  10
−4

Superclusters:  δ  10

Clusters:  δ  10
2

Galaxies: δ 104

Stars:  δ  10
29

People:  δ  10
30

Stellar black hole: δ 1045



The Growth of Structure

ρ = ρ 1+ δ( )

R t( )

Assume small spherical overdensity
in a static universe.
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R
R
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4πGρ
3

δ t( )

Two unknowns: R t( )   and  δ t( )



The Growth of Structure

ρ = ρ 1+ δ( )

R t( )

Conservation of mass

M = 4π
3
R t( )3 ρ 1+δ t( )⎡⎣ ⎤⎦
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= const

 
δ ≪1  →   R t( ) ≈ R0 1− 1
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⎣⎢
⎤
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ρ = ρ 1+ δ( )

R t( )

 
δ = 4πGρδ

 
R ≈ −

1
3
R0 δ ≈ −

1
3
Rδ

 

R
R
≈ −

1
3
δ

 

R
R
= −

4πGρ
3

δ t( )

Combine with:



The Growth of Structure

ρ = ρ 1+ δ( )

R t( )
 
δ = 4πGρδ

δ t( ) = A1et tdyn + A2e− t tdyn

General solution:

tdyn = 4πGρ( )−1 2
wher
e

After a few dynamical times, only 
the growing mode is significant
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 δ t( )  et

In reality, density perturbations do not grow this fast
in the universe because:

• there is some pressure support

• the universe is not static, but expanding

 tdyn  Gρ( )−1 2 = c2 Gε( )1 2

 
ε =

3c2

8πG
H 2 → H −1  c2 Gε( )1 2
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R = −

GM
R2

= −
G
R2

4π
3

ρR3⎛
⎝⎜

⎞
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ρ = ρ 1+ δ( )

R t( )

= −
4π
3
GρR −

4π
3
G ρδ( )R

 

R
R
= −

4π
3
Gρ −

4π
3
Gρδ

M =
4π
3
R t( )3 ρ t( ) 1+ δ t( )⎡⎣ ⎤⎦ = const

Mass conservation:

Re-do, but now mean density evolves 
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ρ = ρ 1+ δ( )

R t( )

 

R
R
=
a
a
−
1
3
δ −

2
3
a
a
δ

R t( )∝ ρ t( )−1 3 1+ δ t( )⎡⎣ ⎤⎦
−1 3

ρ ∝ a−3

R t( )∝ a t( ) 1+ δ t( )⎡⎣ ⎤⎦
−1 3

An overdense region will grow slightly less rapidly than the scale factor.

≈ a t( ) 1− 1
3
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⎤
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= − 4π
3
Gρ − 4π
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ρ = ρ 1+ δ( )

R t( )
 

a
a
= −

4π
3
Gρ

With δ~0, this reduces to:

 
−
1
3
δ −

2
3
a
a
δ = −

4π
3
Gρδ

 
δ + 2H δ = 4πGρδ

Subtract this from previous equation:

Has extra term that acts to slow 
collapse in an expanding universe.
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Continuity (mass)

Euler (momentum)

Poisson (gravity) 

∂ρ
∂t

⎛
⎝⎜

⎞
⎠⎟ r

+ ρ∇r ⋅
u = 0

∂u
∂t

⎛
⎝⎜

⎞
⎠⎟ r

+ u ⋅∇r( ) u = −∇rΦ

∇r
2Φ = 4πGρ

Transform to comoving coordinates

 

r = ax
u = r = ax + v
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• Add a small perturbation

 ρ
x,t( ) = ρ t( ) +δ x,t( )ρ t( )

• Linear approximation: keep first order terms in δ and v

• Rearrange equations to get rid of v

• Subtract off equation for unperturbed case to get δ

 
δ + 2H δ = 4πGρδ
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δ + 2H δ =

4πG
c2

εmδ
δ is the density of matter only

δ =
εm − εm
εm

Ωm =
εm
εc

=
8πGεm
3c2H 2

 
δ + 2H δ −

3
2
H 2Ωmδ = 0

The solution to this equation depends on Ωm
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 Ωm 1• Radiation-dominated phase in early universe 

H =
1
2t  

δ +
1
t
δ = 0

δ t( ) ≈ B1 + B2 ln tSolution:

Perturbations grow at a logarithmic rate.
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 Ωm 1• Lambda-dominated phase in late universe 

H = HΛ = const

δ t( ) ≈ C1 + C2e
−2HΛ tSolution:

Perturbations reach a constant amplitude.

 
δ + 2HΛ

δ = 0



The Growth of Structure

Ωm ≈ 1• Matter-dominated phase in recent universe 

H =
2
3t  

δ +
4
3t
δ −

2
3t 2

δ = 0

Guess: δ t( ) ≈ Dtn  →  δ = nDtn−1
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3
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3
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3
= 0
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⎧
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⎩
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Ωm ≈ 1• Matter-dominated phase in recent universe 

H =
2
3t  

δ +
4
3t
δ −

2
3t 2

δ = 0

δ t( ) ≈ D1t 2 3 + D2t
−1Solution:

When growing mode dominates, δ ∝ t 2 3 ∝ a ∝ 1
1+ z
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 δ
x,t( ) = D t( ) δ x( )

 
δ + 2H δ −

3
2
H 2Ωmδ = 0

None of the terms or derivatives depend on location 

The solution may thus be written as:

 
x

D t( ) is called the �growth factor� and it satisfies the
above differential equation.  It is also normalized to be 
equal to unity at t = today.
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Since the growth function is normalized to be unity today,

must be the density at t = today assuming linear

theory.  It is the linearly extrapolated density fluctuation.

 
δ x( )

D t( ) = t
t0

⎛
⎝⎜

⎞
⎠⎟

2 3

e.g., in a matter dominated universe:



Large Scale Velocity Field

According to linear theory, the peculiar velocity is:

 

v x( ) = f Ωm( )
4π

δm ′x( )∫
′x − x( )
′x − x 3 d

3 ′x

where:

f Ωm( ) ≈ Ωm
0.6

The differential form of this equation is:

 

∇⋅ v x( ) = − f Ωm( )δm

x( )



Large Scale Velocity Field

We can measure the radial peculiar velocity of a galaxy 
by measuring its redshift and a redshift-independent 
distance.

vr = cz − H0d

By comparing the observed velocity field to the observed 
density field, we can constrain Ω.  There are two main 
approaches that have been used:

•velocity-velocity comparison

•density-density comparison



Large Scale Velocity Field

Velocity-Velocity

•Measure the density field from a galaxy redshift survey, 
smoothing on some (small) scale.

•Use linear theory to predict the full 3D velocity field.

•Predict radial velocities for all the galaxies.

•Compare these predictions to the actual measured galaxy 
velocities.

•The slope of the predicted vs. observed relation gives us 
f(Ωm).



Large Scale Velocity Field

Density-Density

•Measure the radial velocity field from a galaxy redshift 
survey, smoothing on some (large) scale.

•Integrate this radially to get the potential field and 
compute the gradient of the potential field to get the full 3D 
velocity field.  Then use linear theory to predict the density 
field.

•Compare this prediction to the actual measured galaxy 
density field.

•The slope of the predicted vs. observed relation gives us 
f(Ωm).



Large Scale Velocity Field

Density-Density

 
Φ r( ) = − vr ′r ,θ ,ϕ( )

0

r

∫ d ′r

 
v r( ) = −∇rΦ

r( )

 δm
r( ) = − f Ωm( )−1∇r ⋅

v r( )



Large Scale Velocity Field

We only actually measure the galaxy density field, which 
on large scales is related to the mass density via a linear 
bias factor:

δ g = bδm

So these methods actually constrain the quantity:

β =
f Ωm( )
b

≈ Ωm
0.6

b



Large Scale Velocity Field

Dekel et al. (1999)



Large Scale Velocity Field

Dekel et al. (1999)



Large Scale Velocity Field

Sigad et al. (1998)



Large Scale Velocity Field

Many systematic errors!

For example, homogeneous and inhomogeneous Malmquist 
bias, which is caused by anisotropic scattering of galaxy 
positions due to large distance errors.

vr = cz − H0d

cz
H0d H0 ′d



The Spherical Collapse model

Reminder: these solutions are for linear theory only!

Once δ grows to ~1, they do not apply.

We need different solutions to describe the collapse
of density fluctuations.

Hubble expansion wins Collapse of density region



The Spherical Collapse model

The Friedmann equation applies to a small density
perturbation, in addition to the whole universe.

In a matter-dominated universe,
has a parametric solution:  

R = −
GM
R2

R = A 1− cos θ( )⎡⎣ ⎤⎦  

 t = B θ − sin θ( )⎡⎣ ⎤⎦
(the �cycloid� solution)

Where, A3 = GMB3



The Spherical Collapse model

θ = π θ = 2π

turnaround

collapse



The Spherical Collapse model

Expand and only keep low order terms:

R = A 1− cos θ( )⎡⎣ ⎤⎦  

 t = B θ − sin θ( )⎡⎣ ⎤⎦

cos θ( ) ≈ 1− θ 2

2
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The Spherical Collapse model

R t( ) ≈ A
2
6t
B
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Compare this to our previous linear theory result:

R t( ) ≈ a t( ) 1− 1
3
δ t( )⎡

⎣⎢
⎤
⎦⎥

a t( ) = 3
2
H0t

⎛
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⎞
⎠⎟
2 3

where:

δ t( )∝ t 2 3and:

The cycloid solution at small t agrees with linear theory.



The Spherical Collapse model

Turnaround

Collapse

Virialization

The sphere breaks away from general expansion and reaches 
a maximum radius at θ=π.  At this point, linear theory predicts
that the density contrast is δlin=1.06

The sphere collapses to a singularity at θ=2π.  This occurs 
when δlin=1.69

Complete collapse never occurs in practice because the kinetic 
energy of collapse is converted into random motions.  When the 
sphere has collapsed to half its maximum size, its kinetic energy
is K=-0.5U, where U is the potential energy.  This is the condition
for equilibrium according to the virial theorem.  This occurs at θ=3π/2
when the density contrast is δlin=1.58



The Spherical Collapse model

1+ δvir ≡ Δvir =
ρ
ρ
≈ 147If virialization occurs at 3π/2:

If virialization occurs at 2π:

Δvir ≈ 178Ωm
−0.7More generally:

Δvir ≈ 18π 2 + 82 Ωm −1( ) − 39 Ωm −1( )2⎡
⎣

⎤
⎦Ωm

−1

Even more generally (for flat matter + dark energy models):

1+ δvir ≡ Δvir =
ρ
ρ
≈ 178

Bryan & Norman (1998)


