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The Growth of Structure

CMB: 5~107"

Superclusters: 6 ~ 10

Clusters: S ~10°
Galaxies: o ~10*
Stars: 5 ~107
People: S5~10"

Stellar black hole: & ~10%



The Growth of Structure

Assume small spherical overdensity
In a static universe.

= G
G(4mr ._
= — R’pS
R2(3 p)
§:_4nGp5(t)
R 3

Two unknowns: R(t) and 5(t)



The Growth of Structure

Conservation of mass

M =—=R(: ) pl1+6(1)]
3IM 1/3
R(r)= [ij s ()]
R, (3—M_j = const
47p



The Growth of Structure

| |
R=~—-—R0O~—-—R0
3 3
R 1.
—~—25
R 3

Combine with:

R 47rG/35(t)

R 3 6 =4nGpd




The Growth of Structure

6 =4nGpd

General solution:

5(1) = Ae"™ + Aye

wher
e

_ —\~1/2 After a few dynamical times, only
Ly (47ZGP) the growing mode is significant




The Growth of Structure

6(t)~ ¢

In reality, density perturbations do not grow this fast

In the universe because:

* there is some pressure support

* the universe is not static, but expanding

dyn

3¢’
8t

€ =

-(Gp) " =(¢*/cE)"

H> > H' ~(*/Gg)"



The Growth of Structure
Re-do, but now mean density evolves
" GM G(4r
R=——1=- 2( pR3)
R R

:—%GﬁR—%G(ﬁS)R

Mass conservation:

M =—R(t) p(2)[1+6(t)]= const



The Growth of Structure

e Uy 2o :—%Gﬁ—%{Gﬁ5



The Growth of Structure

With 0~0, this reduces to:

Subtract this from previous equation:

g 25 4mos
3 3a 3

5 + 2H6 — 47TG[_)5 Has extra term that acts to slow

collapse in an expanding universe.




The Growth of Structure

(_j + er uUu=0 Continuity (mass)
U\ (- v\~ Eul t
e +(u-Vr)u=—V P uler (momentum)

V:®=4rGp Poisson (gravity)

Transform to comoving coordinates

—

|
1
N

o —>

r=a

<
1

+V



The Growth of Structure

Add a small perturbation
p(x.1)=p(1)+8(x.1)p(r)

Linear approximation: keep first order terms in d and v
Rearrange equations to get rid of v

Subtract off equation for unperturbed case to get 0

0+2HS =4nGpd




The Growth of Structure

.. . A4A1G _ O is the density of matter only
0+2HO = 2 8m5 E —E
C i
8I’I’l

e 8nGe
Q,=-t=""rt

g 3c’H

3

5+2H5—5H2§2m5 =0

The solution to this equation depends on Q_



The Growth of Structure

» Radiation-dominated phase in early universe Q <1

H=— 5+;8:O

Solution: 5(t) =~ B, + B, Int

Perturbations grow at a logarithmic rate.



The Growth of Structure

 Lambda-dominated phase in late universe Qm <1

H = H, = const S+2HA8:0

Solution: 5(t) = C1 + Cze_ZHAt

Perturbations reach a constant amplitude.



The Growth of Structure

. 4. 2
3t 3t 3t

Guess: 6(t)=Dt" — S=nDt""' S=n(n-1)Dt"">

4 2
n(n — I)Dt”_2 +—nDt""" — — Dt" =0
3t 3t
4 2
n(n—1)Dr"” + gnDt"_2 —EDt”‘z =0 1
n =
4 2 1 2 {2/3
n(n—1)+—n—_:n2 +_pn—2=2-=0
3 3 3 3



The Growth of Structure

. 4 . 2
H== S§+—5-—8=0
3t 3¢ 3¢

Solution: 5(t) = Dlt2/3 + th_l

1

When growing mode dominates, o o< t2/3 oc (1 o< 1—
+ Z



The Growth of Structure

d(z)/d(today)

10.0 1.0 0.1




The Growth of Structure

5+2H5—§H2£2m5 =0

None of the terms or derivatives depend on location x

The solution may thus be written as:

5(%,t)=D(1)5(F)

D(t ) is called the “growth factor” and it satisfies the
above differential equation. It is also normalized to be
equal to unity at t = today.



The Growth of Structure

Since the growth function is normalized to be unity today,

~

6(X) must be the density at t = today assuming linear

theory. ltis the linearly extrapolated density fluctuation.

2/3
[
e.g., in a matter dominated universe: D(t) = —

L



Large Scale Velocity Field

According to linear theory, the peculiar velocity is:

[5,( (x _x)d3x'

‘X — X

i(7)=" (M
where:

Q)=

The differential form of this equation is:

V5(5)=—£(2,)8, (%)



Large Scale Velocity Field

We can measure the radial peculiar velocity of a galaxy
by measuring its redshift and a redshift-independent
distance.

v. =cz—H,d

By comparing the observed velocity field to the observed
density field, we can constrain Q. There are two main
approaches that have been used:

*velocity-velocity comparison

«density-density comparison



Large Scale Velocity Field

Velocity-Velocity

Measure the density field from a galaxy redshift survey,
smoothing on some (small) scale.

*Use linear theory to predict the full 3D velocity field.
*Predict radial velocities for all the galaxies.

Compare these predictions to the actual measured galaxy
velocities.

*The slope of the predicted vs. observed relation gives us
Q).



Large Scale Velocity Field

Density-Density

*Measure the radial velocity field from a galaxy redshift
survey, smoothing on some (large) scale.

Integrate this radially to get the potential field and
compute the gradient of the potential field to get the full 3D
velocity field. Then use linear theory to predict the density
field.

«Compare this prediction to the actual measured galaxy
density field.

*The slope of the predicted vs. observed relation gives us
Q).



Large Scale Velocity Field

Density-Density




Large Scale Velocity Field

We only actually measure the galaxy density field, which
on large scales is related to the mass density via a linear

bias factor:
5,=b3,

So these methods actually constrain the quantity:

(Q,) Q)
b b

,Bzf



Large Scale Velocity Field

Y [h™'Mpc]
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Large Scale Velocity Field
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Large Scale Velocity Field

Many systematic errors!

For example, homogeneous and inhomogeneous Malmquist
bias, which is caused by anisotropic scattering of galaxy
positions due to large distance errors.

v =cz—H,d o ®

o."o
_ ' oo
_ ! o

cz — O o ©

H,d

®—O




The Spherical Collapse model

Reminder: these solutions are for linear theory only!

Once & grows to ~1, they do not apply.

We need different solutions to describe the collapse
of density fluctuations.

o

Hubble expansion wins ' Collapse of density region '




The Spherical Collapse model

The Friedmann equation applies to a small density
perturbation, in addition to the whole universe.

In a matter-dominated universe, R = — Gj\f
has a parametric solution: R

R=A[1-cos(6
L ( )— (the “cycloid” solution)

t=RhB H—Sin(G)

Where, A°> = GMB’



The Spherical Collapse model

O=nr 6=2nm

10 L) ) Ll I ) ) Al I ) ) Ll I )

turnaround
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The Spherical Collapse model

Expand and only keep low order terms:

6> 6°
R=A|1-cos(0) cos(0) ~1- > o4
— - 3
t:B_G—sin(Q)_ sin(@)z@—%+...
[ N2 4 i 2]
R-alL_° _Age -9
2 24 2 | 12




The Spherical Collapse model

A 2/3 1 2/3 ]
wo-4(5) 56
2\ B 12\ B

Compare this to our previous linear theory result:

R(t)za(t)[l—%é‘(t)}

where:

/3
a(t):(gHotj and: 5(t) o< t*?

The cycloid solution at small t agrees with linear theory.



The Spherical Collapse model

Turnaround

The sphere breaks away from general expansion and reaches
a maximum radius at 6=11. At this point, linear theory predicts
that the density contrast is 3,;,=1.06

Collapse

The sphere collapses to a singularity at 6=21r. This occurs
when §;,=1.69

Virialization

Complete collapse never occurs in practice because the kinetic
energy of collapse is converted into random motions. When the
sphere has collapsed to half its maximum size, its kinetic energy

iIs K=-0.5U, where U is the potential energy. This is the condition

for equilibrium according to the virial theorem. This occurs at 8=311/2
when the density contrast is 9,,=1.58



The Spherical Collapse model

If virialization occurs at 311/2: 1+0, =A, = @ = 147
D

If virialization occurs at 2: 1+0, =A, = @ =178
D

More generally: A, =178Q 7

Even more generally (for flat matter + dark energy models):

Ay =| 1877 +82(Q, -1)-39(2, - 1)’ |2,

Bryan & Norman (1998)



