

Cosmic Microwave Background (WMAP experiment)

Temperature = 2.72 Kelvin

Temperature = 2.721 - 2.729 Kelvin

Temperature = 2.7249 – 2.7251 Kelvin

But the universe today (13.7 billion years old) doesn't look like that at all!

It contains structure on all scales.

- Small scales: planets, stars, solar systems... (less than one light year)
- Intermediate scales: galaxies (1 – million light years)
- Large scales: clusters of galaxies, super-clusters... (million – billion light years)

Spiral Galaxy NGC 1376

NASA, ESA, and the Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope ACS

3 million light years (1 Mpc)

How did structure in the universe grow?

Galaxies

Dark Matter

Aims of the course

- How do we measure galaxy properties?
- Galaxy surveys
- What statistics are used to quantify structure and how are they measured?
- Brief review of homogeneous universe
- How did the universe form structure on all scales?
- What models are used to connect observations to theory?
- What observational probes are used to constrain cosmology?
- How do galaxies form?

Radio Sky

- Atomic gas
- Molecular gas
- Radio galaxies
- SN remnants
- Pulsars

Microwave Sky

Far Infrared Sky

• Dust

2MASS

Optical Sky

Stars

Ultraviolet Sky

- Massive stars
- Ionized gas

Fermi

Milky Way

The CMB temperature map corresponds to a density map at the epoch of recombination: 300,000 years after the Big Bang

But the exact physics is complicated!

Basic picture:

- As the universe expands, the photon-baryon plasma in it cools.
- When the temperature drops below about 3000°K, electrons recombine with protons and photons can move freely.
- In some regions of the universe, the photon-baryon plasma is compressed and slightly hotter than average.

Comoving coordinates

Comoving coordinates

The region of space we see with the CMB is like the surface of an orange.

Primary fluctuations (at origin):

- Standard fluctuations: high density regions appear hot
- Acoustic oscillations of baryon-photon plasma

- Gravitational redshift: high density regions appear cold (Sachs-Wolfe)
- Doppler effect: photons scattered by moving plasma

- CMB photons traverse changing gravitational field (Reese-Sciama, Integrated Sachs-Wolfe)
- CMB photons scatter off hot plasma in clusters (Sunyaev-Zel'dovich)
- CMB photons are gravitationally lensed

+ many more effects

The CMB: COBE (1989-1993)

The CMB: WMAP (2001-2010)

WMAP

Planck

planck

The CMB: How the Planck map is made

The CMB: The Planck power spectrum

The CMB: How the Planck power spectrum is made

The CMB: Why are there wiggles in the power spectrum?

- Before recombination, photons and baryons were tightly coupled.
- Gravity and pressure competed to cause oscillating density waves.
- At maximum compression or rarefaction, density fluctuations are strongest.
- The frequency of oscillation depends on the fluctuation size.
- Specific fluctuation sizes reach maximum compression at recombination.

The CMB tells us what the universe is made of

The CMB power spectrum: before WMAP (2003)

The CMB power spectrum: WMAP (2007)

The CMB power spectrum: Planck (2013)

The CMB tells us what the universe is made of

Before Planck

After Planck