Statistics of the Galaxy Distribution

measure the environment
around individual galaxies

or

measure average statistics
for a sample of galaxies




The 2-point Correlation Function

The excess probability that two galaxies are separated by
a distance r relative to that for a random distribution.

For a random point distribution of number density n, the number of
points at a distance between r and r+dr from any one point is:

n-dvV =n-4nridr

The total number density of pairs at this
separation is then:

g Xn-4xridr =n*2nridr



The 2-point Correlation Function

For a point distribution that is not random, the number density of pairs
At this separation is:

n227tr2dr[1 +& (r)]

The correlation function is then equal to:

5(1’) _ s airs, data (7”) |

n pairs, rand ( r )




The 2-point Correlation Function

Complications

*  When the sample volume is complex, calculate number of
random pairs using an actual generated random data set that
occupies the same volume as the data.

* In practice, we often use other estimators. For example, the
most commonly used estimator for galaxy samples is the
Landy-Szalay estimator:

_ DD-2DR+RR

£(r) = 2220

 Must normalize the DD, DR, and RR terms when the number of
data and random points are not the same.



The 2-point Correlation Function

Complications

« To deal with redshift distortions, we usually measure a projected
correlation function.

A A
5 (I”p ,71') T S line
of
J sight
<€ >
T




The 2-point Correlation Function
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The 2-point Correlation Function
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The 2-point Correlation Function
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The 2-point Correlation Function
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Other Correlation Functions

« Angular correlation function 60(9)

 Cross-correlation function

« Higher order: three-point, etc

e same 2PCF but very different distributions




The 2-point Correlation Function
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The 2-point Correlation Function

Galaxy “bias” refers to the amount of galaxy clustering
relative to the clustering of the underlying dark matter

b _ ggalaxy
\ S

This is a function of scale r, but on large scales it becomes
constant.

For example, the bias of Milky Way — like galaxiesis b ~ 1
the bias of Luminous Red Galaxiesis b~ 2



Power Spectrum

N Density field
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Power Spectrum




Power Spectrum

§r)= %= —1 DD = p(@)p(7 +7) RR = pp




Power Spectrum

Density field Correlation function
5(%) = P(’%"_’ E(r)=(8(%)8(5 +7))
Fourier density modes Power spectrum

5. = [8(%)e™ a5 P(k)=([5]")




Power Spectrum

Any density field can be decomposed into an infinite

set of modes (i.e., sine waves) 0,

Each mode has a

2T
- wavelength A or wavenumber k = —

« amplitude ‘5,—{»‘

_'9
» phase e’

The power spectrum is the amplitude as a function of k



Power Spectrum

P(k)=k!

# of modes=20 -1 . _

random seed=1001




Power Spectrum

# of modes=20
random seed=1001




Power Spectrum

# of modes=50
random seed=19




Power Spectrum

Wavelength A [h~! Mpc]
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Power Spectrum

Window function: filter used to smooth density field

» Gaussian filter of scale R~ W, (r) = o 2R

1 r<R
- Top-hat filter of scale R~ W, (r) =<

O r>R

.

In Fourier space: W, (k)= J.WR (r)e"’_"°7d3r



Power Spectrum




Power Spectrum

Density field, smoothed with window function
=[S (%)W, (% - X[}’

Mean density, smoothed with window function

5R=<5R(5c’)> =0 since 5:'0:’5
D

Variance of smoothed density field

;—<6 (x>2>
2= | P(k)Wg (k)dk
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Power Spectrum
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R=8 Mpc/h

Top-hat filter



Power Spectrum

Nale

R=20 Mpc/h

Top-hat filter



o=y 2o -§) =(5)

0

The variance is large on small scales and approaches
zero on large scales.



Power Spectrum

Gi Is the variance of the matter density field

It also sets the amplitude of the matter power
spectrum on scale R
7 =0

oy = | P(k)W; (k)

For a power spectrum with a power-law shape P(k)~k",
defining the variance on one scale sets the amplitude
on all scales. Also, any window function will do.

We choose a top-hat filter of R=8 Mpc/h to describe
the amplitude of P(k)



