
Statistics of the Galaxy Distribution

measure the environment 
around individual galaxies

or

measure average statistics 
for a sample of galaxies 



The 2-point Correlation Function

The excess probability that two galaxies are separated by
a distance r relative to that for a random distribution.

For a random point distribution of number density n, the number of 
points at a distance between r and r+dr from any one point is:

n ⋅dV = n ⋅4πr2dr r
The total number density of pairs at this 
separation is then:

n
2
× n ⋅4πr2dr = n2 2πr2dr



The 2-point Correlation Function

For a point distribution that is not random, the number density of pairs
At this separation is:

n2 2πr2dr 1+ ξ r( )⎡⎣ ⎤⎦
The correlation function is then equal to:

ξ r( ) = npairs, data r( )
npairs, rand r( ) −1

ξ r( ) = DD r( )
RR r( ) −1



The 2-point Correlation Function

• When the sample volume is complex, calculate number of 
random pairs using an actual generated random data set that 
occupies the same volume as the data.

ξ r( ) = DD − 2DR + RR
RR

Complications

• Must normalize the DD, DR, and RR terms when the number of 
data and random points are not the same.

• In practice, we often use other estimators.  For example, the 
most commonly used estimator for galaxy samples is the 
Landy-Szalay estimator:



The 2-point Correlation Function

• To deal with redshift distortions, we usually measure a projected
correlation function.

ξ rp ,π( )

Complications
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The 2-point Correlation Function

Zehavi et al. (2005)



The 2-point Correlation Function

Zehavi et al. (2005)



The 2-point Correlation Function

Zehavi et al. (2011)



The 2-point Correlation Function

Zehavi et al. (2011)



Other Correlation Functions

ω θ( )• Angular correlation function

r2r1

r3

• Cross-correlation function

• Higher order: three-point, etc



The 2-point Correlation Function

Masjedi et al. (2006)

\

\
\
\



The 2-point Correlation Function

Galaxy “bias” refers to the amount of galaxy clustering 
relative to the clustering of the underlying dark matter

b =
ξgalaxy
ξmass

This is a function of scale r, but on large scales it becomes 
constant.

For example, the bias of Milky Way – like galaxies is  b ~ 1
the bias of Luminous Red Galaxies is  b ~ 2



Power Spectrum

 
δ x( ) = ρ x( ) − ρ

ρ

Density field



Power Spectrum

⇠(r) =
DD

RR
� 1

DD = ⇢(~x)⇢(~x+ r)

RR = ⇢̄⇢̄



Power Spectrum

⇠(r) =
DD

RR
� 1 DD = ⇢(~x)⇢(~x+ r) RR = ⇢̄⇢̄

⇠(r) = h⇢(~x)
⇢̄

⇢(~x+ r)

⇢̄
i � 1 �(~x) =

⇢(~x)

⇢̄
� 1

= h(�(~x) + 1)(�(~x+ r) + 1)i � 1

= h�(~x)i+ h�(~x+ r)i+ h�(~x)�(~x+ r)i

= h�(~x)�(~x+ r)i



Power Spectrum

 ξ r( ) = δ x( )δ x + r( )
 
δ x( ) = ρ x( ) − ρ

ρ

 
δ k = δ x( )ei


k i
x∫ d 3x

 
P k( ) = δ k

2

 
P k( ) = ξ r( )ei


k i
r∫ d 3x

Density field Correlation function

Fourier density modes Power spectrum



Power Spectrum

 δ

k

Any density field can be decomposed into an infinite 
set of modes (i.e., sine waves)

Each mode has a

• wavelength

• amplitude

• phase

λ   or wavenumber  k = 2π
λ

 
δ k

The power spectrum is the amplitude as a function of k

e− iθ



Power Spectrum
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Power Spectrum

 
WR k( ) = WR r( )ei


k i
r∫ d 3r

Window function: filter used to smooth density field

• Gaussian filter of scale R

• Top-hat filter of scale R

WR r( ) = e− r2 2R2

WR r( ) = 1 r < R
0 r > R

⎧
⎨
⎩

In Fourier space:



Power Spectrum



Power Spectrum

Density field, smoothed with window function

δR
x( ) = δ ′x( )WR

′x − x( )∫ d3 ′x

Mean density, smoothed with window function

 δR = δR
x( )

Variance of smoothed density field

σ R
2 = δR

x( )2

σ R
2 = P k( ) WR

2 k( )∫ d3k

= 0  since  δ =
ρ − ρ
ρ



Power Spectrum

R=2 Mpc/h

Top-hat filter



Power Spectrum

R=8 Mpc/h

Top-hat filter



Power Spectrum

R=20 Mpc/h

Top-hat filter



Power Spectrum

The variance is large on small scales and approaches
zero on large scales.

σ R
2 =

1
N

δR − δR( )∑ 2
= δR

2

0



Power Spectrum

Is the variance of the matter density field

It also sets the amplitude of the matter power 
spectrum on scale R

σ R
2

For a power spectrum with a power-law shape P(k)~kn,
defining the variance on one scale sets the amplitude
on all scales.  Also, any window function will do.

We choose a top-hat filter of R=8 Mpc/h to describe
the amplitude of P(k)

σ R
2 = δR

x( )2

σ R
2 = P k( ) WR

2 k( )∫ d3k


