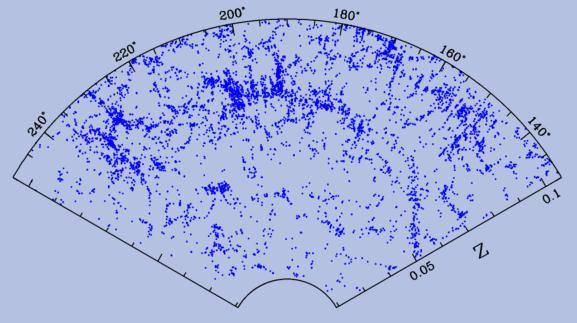
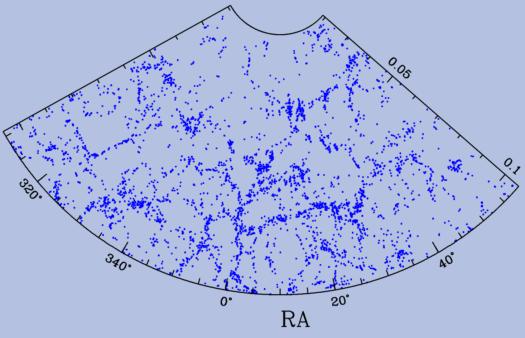
Statistics of the Galaxy Distribution



measure the environment around individual galaxies

or

measure average statistics for a sample of galaxies

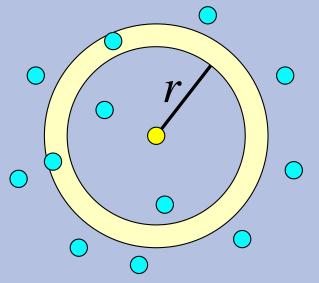


The *excess* probability that two galaxies are separated by a distance r relative to that for a random distribution.

For a random point distribution of number density n, the number of points at a distance between r and r+dr from any one point is:

$$n \cdot dV = n \cdot 4\pi r^2 dr$$

The total number density of pairs at this separation is then:



$$\frac{n}{2} \times n \cdot 4\pi r^2 dr = n^2 2\pi r^2 dr$$

For a point distribution that is not random, the number density of pairs At this separation is:

$$n^2 2\pi r^2 dr \Big[1 + \xi(r) \Big]$$

The correlation function is then equal to:

$$\xi(r) = \frac{n_{\text{pairs, data}}(r)}{n_{\text{pairs, rand}}(r)} - 1$$

$$\xi(r) = \frac{DD(r)}{RR(r)} - 1$$

Complications

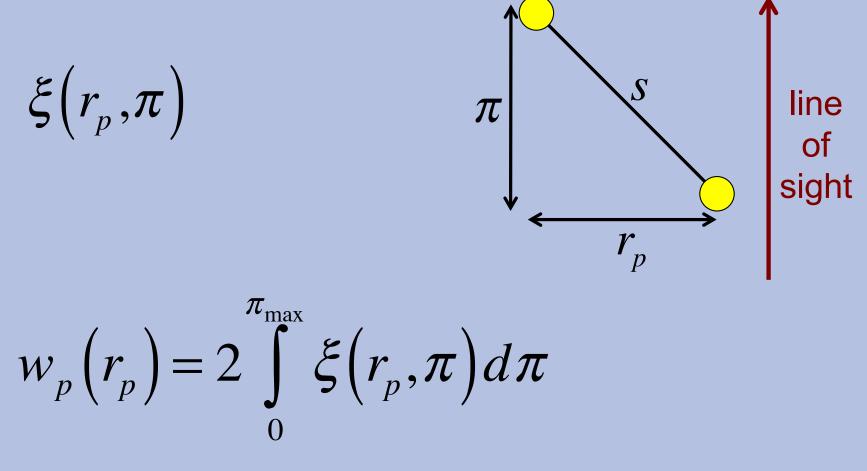
- When the sample volume is complex, calculate number of random pairs using an actual generated random data set that occupies the same volume as the data.
- In practice, we often use other estimators. For example, the most commonly used estimator for galaxy samples is the Landy-Szalay estimator:

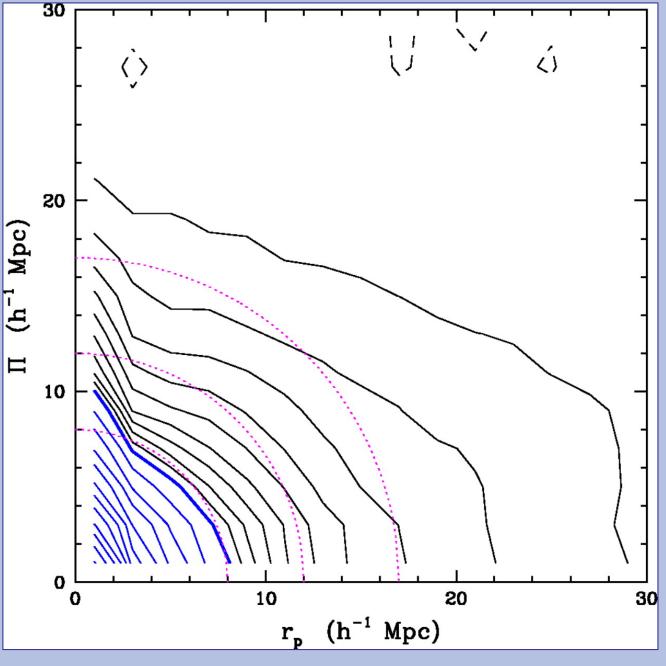
$$\xi(r) = \frac{DD - 2DR + RR}{RR}$$

• Must normalize the DD, DR, and RR terms when the number of data and random points are not the same.

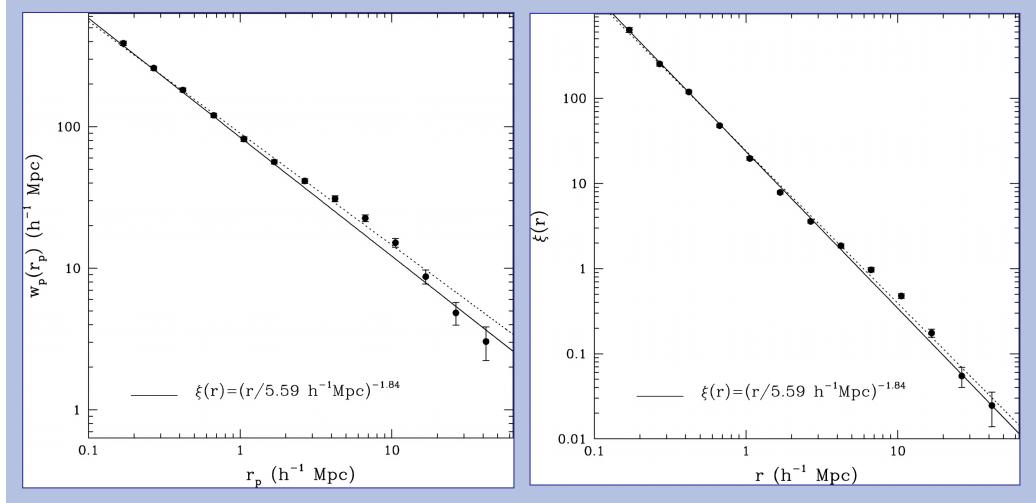
Complications

• To deal with redshift distortions, we usually measure a *projected* correlation function.

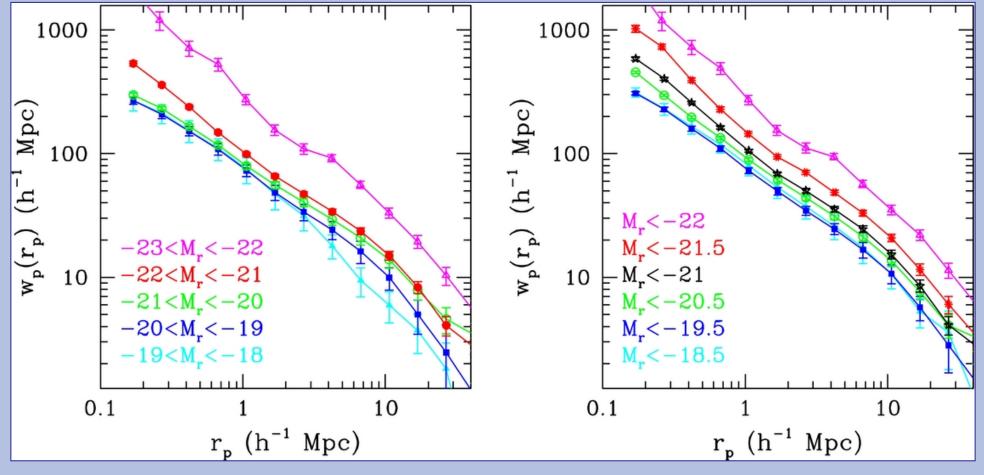




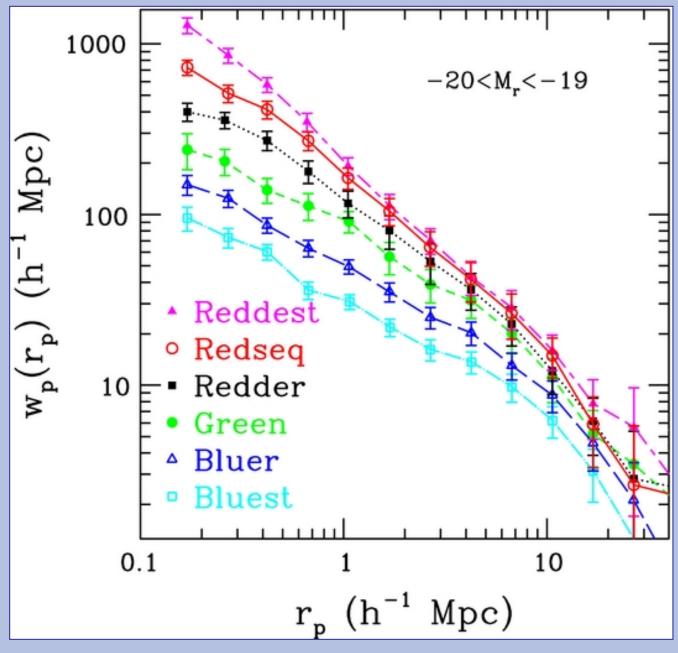
Zehavi et al. (2005)



Zehavi et al. (2005)



Zehavi et al. (2011)

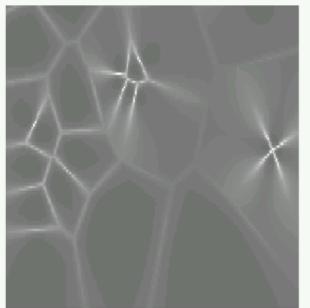


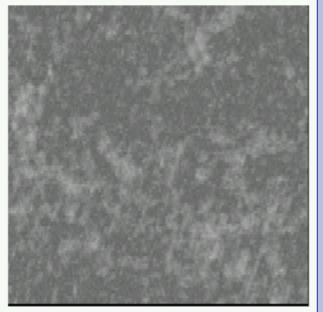
Zehavi et al. (2011)

Other Correlation Functions

- Angular correlation function $\,\,\omega(heta)$
- Cross-correlation function
- Higher order: three-point, etc

• same 2PCF but very different distributions

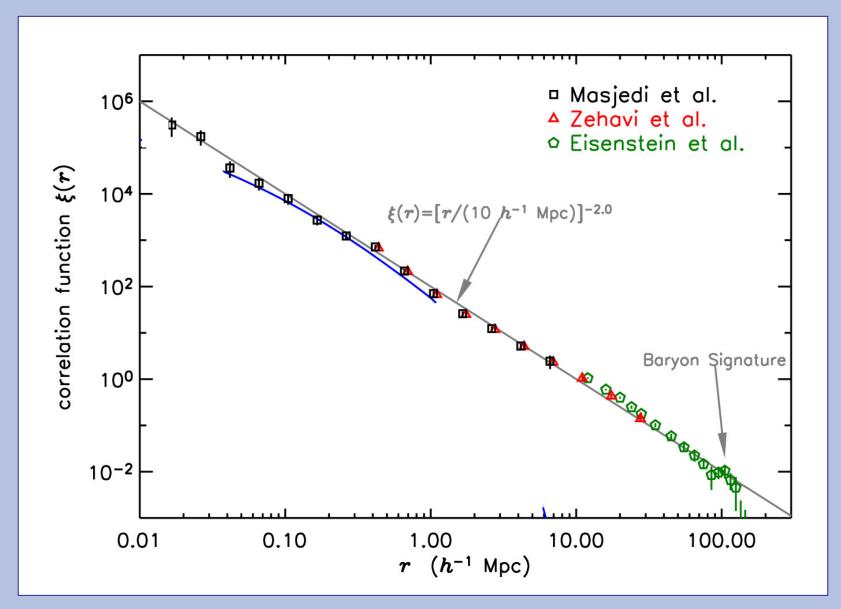




 r_2

 r_1

 r_3



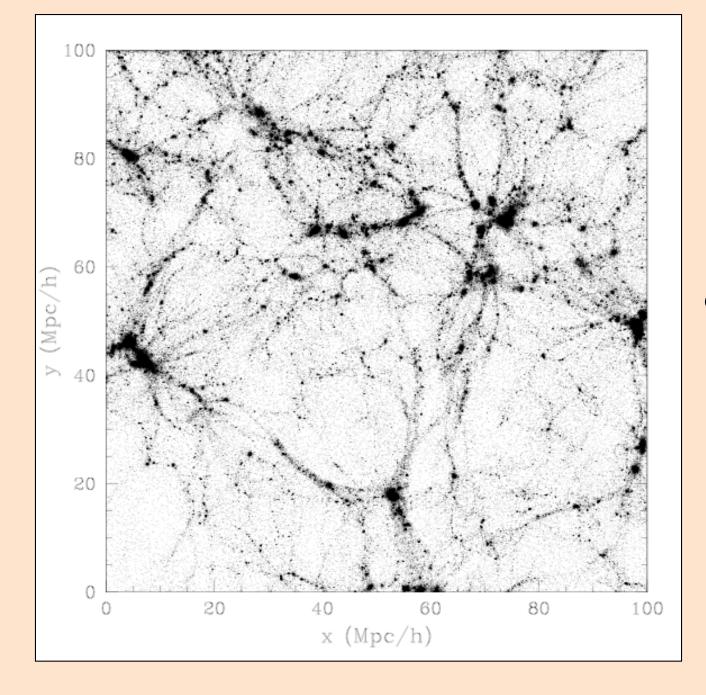
Masjedi et al. (2006)

Galaxy "bias" refers to the amount of galaxy clustering relative to the clustering of the underlying dark matter

$$b = \sqrt{\frac{\xi_{\text{galaxy}}}{\xi_{\text{mass}}}}$$

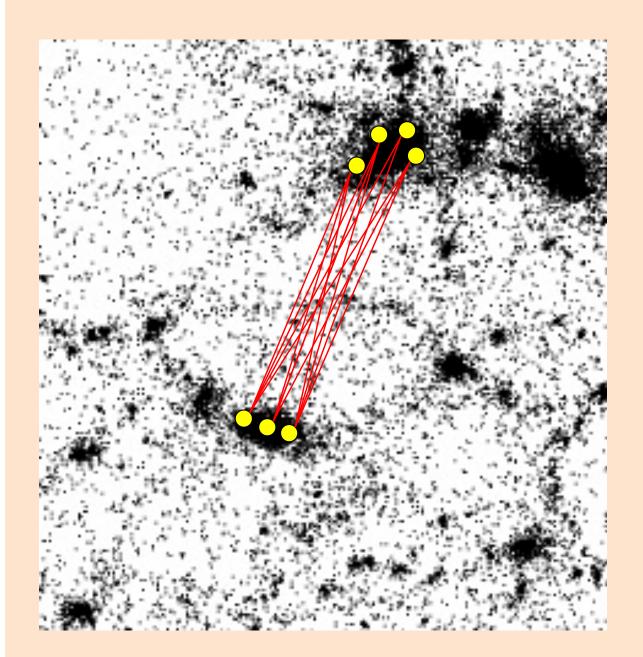
This is a function of scale *r*, but on large scales it becomes constant.

For example, the bias of Milky Way – like galaxies is $b \sim 1$ the bias of Luminous Red Galaxies is $b \sim 2$



Density field

$$\delta(\vec{x}) = \frac{\rho(\vec{x}) - \overline{\rho}}{\overline{\rho}}$$



 $\xi(r) = \frac{DD}{RR} -$

 $DD = \rho(\vec{x})\rho(\vec{x}+r)$

 $RR=\bar{\rho}\bar{\rho}$

$$\xi(r) = \frac{DD}{RR} - 1$$
 $DD = \rho(\vec{x})\rho(\vec{x} + r)$ $RR = \bar{\rho}\bar{\rho}$

$$\xi(r) = \left\langle \frac{\rho(\vec{x})}{\bar{\rho}} \frac{\rho(\vec{x}+r)}{\bar{\rho}} \right\rangle - 1 \qquad \qquad \delta(\vec{x}) = \frac{\rho(\vec{x})}{\bar{\rho}} - 1$$

$$= \langle (\delta(\vec{x}) + 1)(\delta(\vec{x} + r) + 1) \rangle - 1$$

$$= \langle \delta(\vec{x}) \rangle + \langle \delta(\vec{x} + r) \rangle + \langle \delta(\vec{x}) \delta(\vec{x} + r) \rangle$$

 $= \langle \delta(\vec{x}) \delta(\vec{x} + r) \rangle$

Density field

$$\delta(\vec{x}) = \frac{\rho(\vec{x}) - \overline{\rho}}{\overline{\rho}}$$

Correlation function

$$\xi(r) = \langle \delta(\vec{x}) \delta(\vec{x}+r) \rangle$$

Fourier density modes

$$\delta_{\vec{k}} = \int \delta(\vec{x}) e^{i\vec{k}\cdot\vec{x}} d^3\vec{x}$$

$$P(k) = \left\langle \left| \delta_{\vec{k}} \right|^2 \right\rangle$$

$$P(k) = \int \xi(r) e^{i\vec{k}\cdot\vec{r}} d^3\vec{x}$$

Any density field can be decomposed into an infinite set of modes (i.e., sine waves) $\delta_{\vec{k}}$

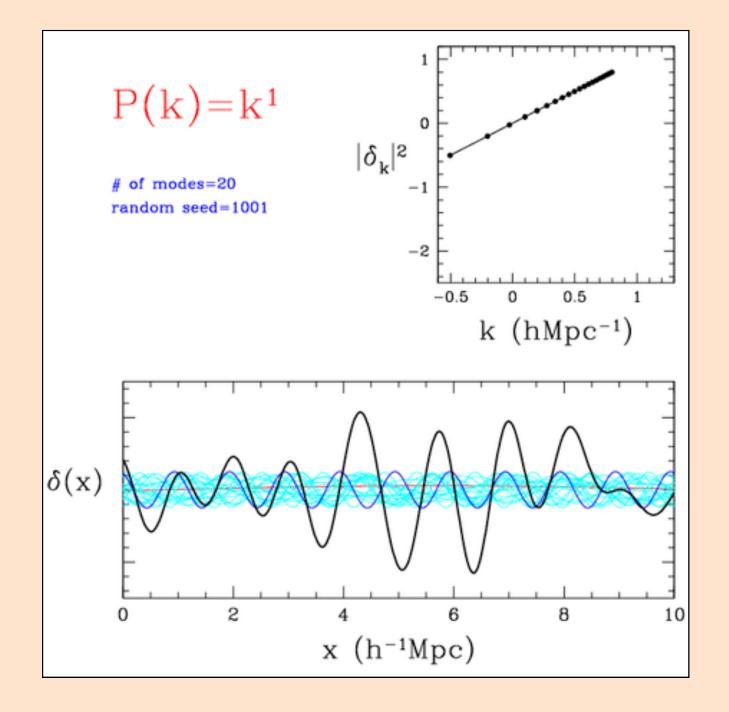
Each mode has a

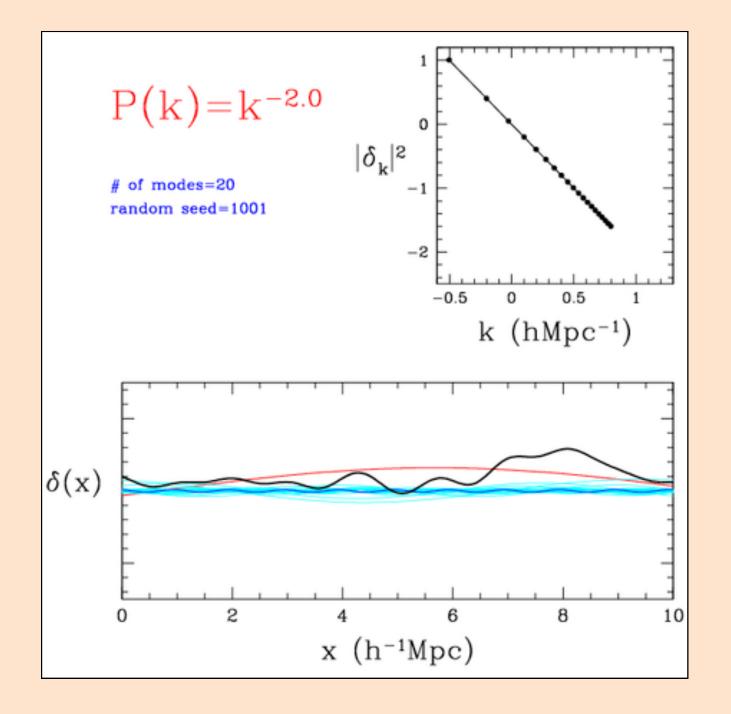
• <u>wavelength</u> λ or wavenumber $k = \frac{2\pi}{\lambda}$

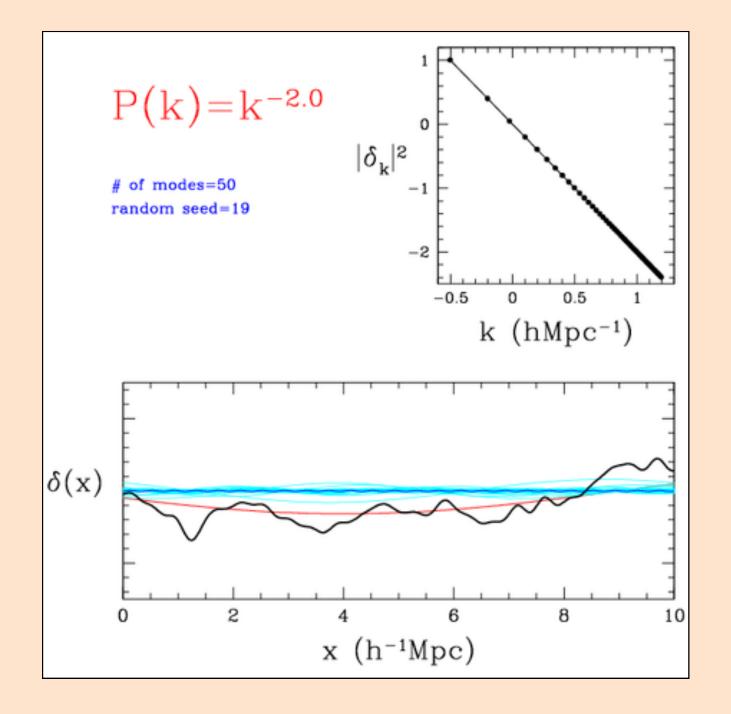
• <u>amplitude</u> $|\delta_{\vec{k}}|$

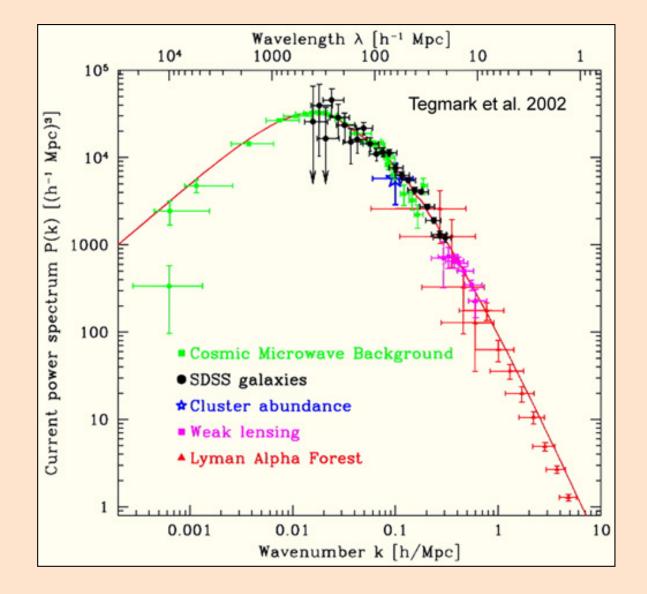
• phase $e^{-i\theta}$

The power spectrum is the amplitude as a function of k









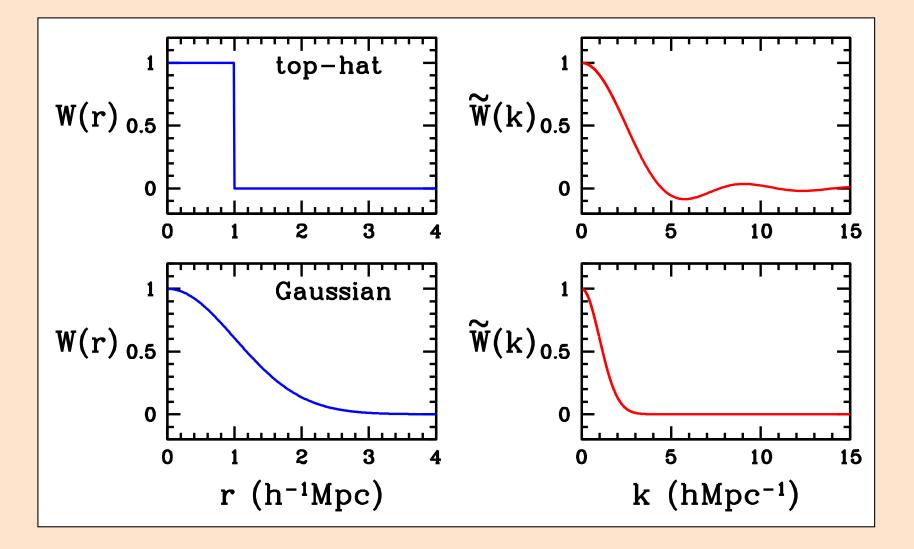
Window function: filter used to smooth density field

- Gaussian filter of scale R $W_R(r) = e^{-r^2/2R^2}$

• Top-hat filter of scale R

$$W_R(r) = \begin{cases} 1 & r < R \\ 0 & r > R \end{cases}$$

In Fourier space:
$$\tilde{W}_R(k) = \int W_R(r) e^{i\vec{k}\cdot\vec{r}} d^3r$$



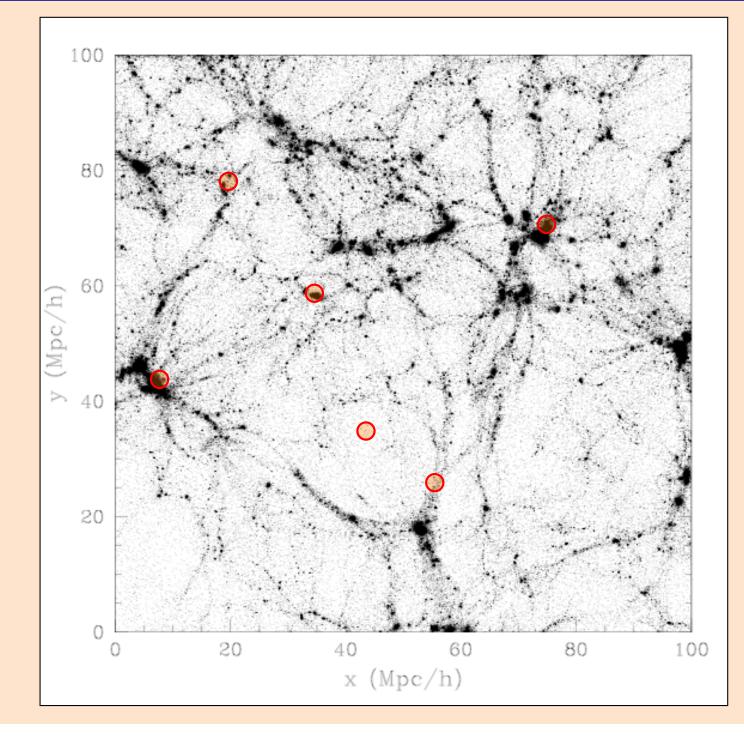
Density field, smoothed with window function $\delta_R(\vec{x}) = \int \delta(\vec{x}') W_R(|\vec{x}' - \vec{x}|) d^3 x'$

Mean density, smoothed with window function

$$\overline{\delta}_R = \langle \delta_R(\vec{x}) \rangle = 0 \text{ since } \delta = \frac{\rho - \rho}{\overline{\rho}}$$

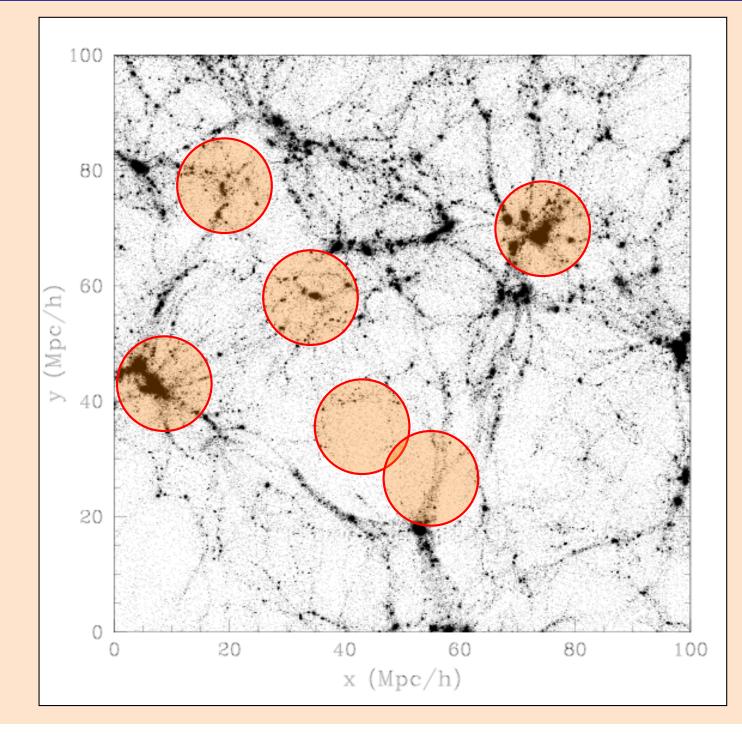
Variance of smoothed density field

$$\sigma_R^2 = \left\langle \delta_R(\vec{x})^2 \right\rangle$$
$$\sigma_R^2 = \int P(k) \tilde{W}_R^2(k) d^3k$$



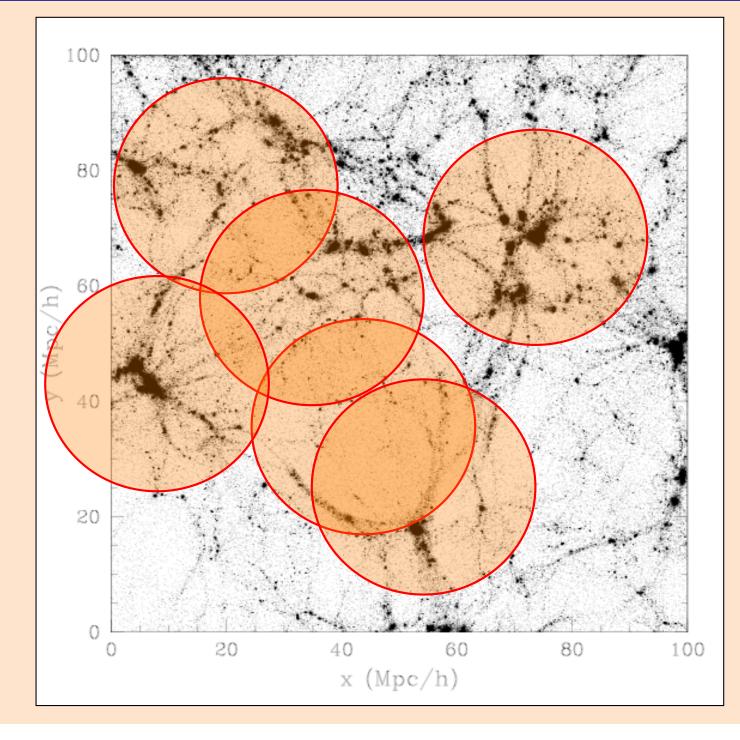
R=2 Mpc/h

Top-hat filter



R=8 Mpc/h

Top-hat filter



R=20 Mpc/h

Top-hat filter

$$\sigma_R^2 = \frac{1}{N} \sum \left(\delta_R - \delta_R \right)^2 = \left\langle \delta_R^2 \right\rangle$$

The variance is large on small scales and approaches zero on large scales.

 σ_R^2 Is the variance of the matter density field

It also sets the amplitude of the matter power spectrum on scale *R*

$$\sigma_R^2 = \left\langle \delta_R(\vec{x})^2 \right\rangle$$
$$\sigma_R^2 = \int P(k) \tilde{W}_R^2(k) d^3k$$

For a power spectrum with a power-law shape $P(k) \sim k^n$, defining the variance on one scale sets the amplitude on all scales. Also, any window function will do.

We choose a top-hat filter of R=8 Mpc/h to describe the amplitude of P(k)