
Probes of the Mass Density Field

z~1000

z~0-1

What about intermediate redshifts?



Lyman Break Galaxies



Lyman Break Galaxies



Lyman Break Galaxies

λmin = 912(1+ z)



Quasars



Active Galactic Nuclei



AGN - Types



AGN - Types



AGN – Unified Model

Hypothesis

All active galactic nuclei are supermassive black holes
at the centers of galaxies being fed by an accretion disk.
Different types are just differences in:

• Black hole mass

• Accretion rate

• Type of galaxy

• Viewing angle 



AGN – Unified Model



Quasars

Ross et al. (2012)



Quasars



The Lyman alpha Forest



The Lyman alpha Forest

z=0 zQSO

Emission wavelength:

Observation wavelength:

λe
λo

λe

= 1+ ze
1+ zo

λo = λe 1+ ze( )



The Lyman alpha Forest

z=0 zQSOzHI

• A Lyman-α photon (1216 Å) emitted by the quasar has 
a longer wavelength by the time it encounters the HI 
cloud and so it will not be absorbed.

• The shorter wavelength photon emitted by the quasar 
that has stretched to 1216 Å by the time it encounters 
the HI cloud can be absorbed.



The Lyman alpha Forest

z=0 zQSOzHI

• In the emitted frame of the quasar, the Ly-α forest lies 
between the wavelengths of 1216/(1+z) and 1216 Å

• In the observed frame, the Ly-α forest lies between the 
wavelengths of 1216 and 1216(1+z) Å

λ



The Lyman alpha Forest

The BOSS spectrograph covers the range 3600-10,400 Å

• The closest gas cloud that it can probe is at

λo = λe 1+ z( )→ z = λo

λe

−1= 3600
1216

−1→ z = 1.96

• The farthest gas cloud that it can probe is at

z = 10,400
1216

−1→ z = 7.55



The Lyman alpha Forest



The Lyman alpha Forest



The Lyman alpha Forest



Statistics of the Galaxy Distribution

measure the environment 
around individual galaxies

or

measure average statistics 
for a sample of galaxies 



The 2-point Correlation Function

The excess probability that two galaxies are separated by
a distance r relative to that for a random distribution.

For a random point distribution of number density n, the number of 
points at a distance between r and r+dr from any one point is:

n ⋅dV = n ⋅4πr2dr r
The total number density of pairs at this 
separation is then:

n
2
× n ⋅4πr2dr = n2 2πr2dr



The 2-point Correlation Function

For a point distribution that is not random, the number density of pairs
At this separation is:

n2 2πr2dr 1+ ξ r( )⎡⎣ ⎤⎦
The correlation function is then equal to:

ξ r( ) = npairs, data r( )
npairs, rand r( ) −1

ξ r( ) = DD r( )
RR r( ) −1



The 2-point Correlation Function

• When the sample volume is complex, calculate number of 
random pairs using an actual generated random data set that 
occupies the same volume as the data.

ξ r( ) = DD − 2DR + RR
RR

Complications

• Must normalize the DD, DR, and RR terms when the number of 
data and random points are not the same.

• In practice, we often use other estimators.  For example, the 
most commonly used estimator for galaxy samples is the 
Landy-Szalay estimator:



The 2-point Correlation Function

• To deal with redshift distortions, we usually measure a projected
correlation function.

ξ rp ,π( )

Complications

sπ

rp

line
of

sight

wp rp( ) = 2 ξ rp,π( )dπ
0

πmax

∫



The 2-point Correlation Function

Zehavi et al. (2005)



The 2-point Correlation Function

Zehavi et al. (2005)



The 2-point Correlation Function

Zehavi et al. (2011)



The 2-point Correlation Function

Zehavi et al. (2011)



Other Correlation Functions

ω θ( )• Angular correlation function

r2r1

r3

• Cross-correlation function

• Higher order: three-point, etc



The 2-point Correlation Function

Masjedi et al. (2006)

\

\
\
\



The 2-point Correlation Function

Galaxy “bias” refers to the amount of galaxy clustering 
relative to the clustering of the underlying dark matter

b =
ξgalaxy
ξmass

This is a function of scale r, but on large scales it becomes 
constant.

For example, the bias of Milky Way – like galaxies is  b ~ 1
the bias of Luminous Red Galaxies is  b ~ 2



Power Spectrum

 
δ x( ) = ρ x( ) − ρ

ρ

Density field



Power Spectrum

⇠(r) =
DD

RR
� 1

DD = ⇢(~x)⇢(~x+ r)

RR = ⇢̄⇢̄



Power Spectrum

⇠(r) =
DD

RR
� 1 DD = ⇢(~x)⇢(~x+ r) RR = ⇢̄⇢̄

⇠(r) = h⇢(~x)
⇢̄

⇢(~x+ r)

⇢̄
i � 1 �(~x) =

⇢(~x)

⇢̄
� 1

= h(�(~x) + 1)(�(~x+ r) + 1)i � 1

= h�(~x)i+ h�(~x+ r)i+ h�(~x)�(~x+ r)i

= h�(~x)�(~x+ r)i



Power Spectrum

 ξ r( ) = δ x( )δ x + r( )
 
δ x( ) = ρ x( ) − ρ

ρ

 
δ k = δ x( )ei


k i
x∫ d 3x

 
P k( ) = δ k

2

 
P k( ) = ξ r( )ei


k i
r∫ d 3x

Density field Correlation function

Fourier density modes Power spectrum



Power Spectrum

 δ

k

Any density field can be decomposed into an infinite 
set of modes (i.e., sine waves)

Each mode has a

• wavelength

• amplitude

• phase

λ   or wavenumber  k = 2π
λ

 
δ k

The power spectrum is the amplitude as a function of k

e− iθ



Power Spectrum



Power Spectrum



Power Spectrum



Power Spectrum



Power Spectrum

 
WR k( ) = WR r( )ei


k i
r∫ d 3r

Window function: filter used to smooth density field

• Gaussian filter of scale R

• Top-hat filter of scale R

WR r( ) = e− r2 2R2

WR r( ) = 1 r < R
0 r > R

⎧
⎨
⎩

In Fourier space:



Power Spectrum



Power Spectrum

Density field, smoothed with window function

δR
x( ) = δ ′x( )WR

′x − x( )∫ d3 ′x

Mean density, smoothed with window function

 δR = δR
x( )

Variance of smoothed density field

σ R
2 = δR

x( )2

σ R
2 = P k( ) WR

2 k( )∫ d3k

= 0  since  δ =
ρ − ρ
ρ



Power Spectrum

R=2 Mpc/h

Top-hat filter



Power Spectrum

R=8 Mpc/h

Top-hat filter



Power Spectrum

R=20 Mpc/h

Top-hat filter



Power Spectrum

The variance is large on small scales and approaches
zero on large scales.

σ R
2 =

1
N

δR − δR( )∑ 2
= δR

2

0



Power Spectrum

Is the variance of the matter density field

It also sets the amplitude of the matter power 
spectrum on scale R

σ R
2

For a power spectrum with a power-law shape P(k)~kn,
defining the variance on one scale sets the amplitude
on all scales.  Also, any window function will do.

We choose a top-hat filter of R=8 Mpc/h to describe
the amplitude of P(k)

σ R
2 = δR

x( )2

σ R
2 = P k( ) WR

2 k( )∫ d3k



Cosmological Parameters

Cosmological parameter #1:  the Hubble constant 

h



Cosmological Parameters

Cosmological parameter #2:  the amplitude of the matter
power spectrum 

σ 8



Power Spectrum

Primordial 
power spectrum

P k( )∝ kn
Quantum fluctuations + inflation:



Cosmological Parameters

Cosmological parameter #3:  the power spectrum index 

ns



Power Spectrum

Matter Radiation



Power Spectrum

Matter Radiation



Power Spectrum

Matter Radiation



Power Spectrum

Matter Radiation

 ρ  a
−3 = 1+ z( )3  ρ  a

−4 = 1+ z( )4

a
Matter-radiation equality

aeq ≈ 2.8 ×10
−4

zeq ≈ 3600
teq ≈ 47,000yr

ρ



Power Spectrum

Density fluctuations cannot grow when the universe
is radiation-dominated if their wavelength is smaller
than the size of the horizon.

Radiation dominated Matter dominated

Cannot grow Grow

Grow Grow
 λ  c H0

 λ  c H0



Power Spectrum

k

horizon

Radiation-dominatedP(k)



Power Spectrum

k

horizon

Radiation-dominatedP(k)



Power Spectrum

k

horizon

Radiation-dominatedP(k)



Power Spectrum

k

horizon

Radiation-dominatedP(k)



Power Spectrum

k

horizon

Radiation-dominatedP(k)



Power Spectrum

k

horizon

Matter-dominatedP(k)



Power Spectrum

k

horizon

Matter-dominatedP(k)



Power Spectrum



The Friedmann Equation

R(t)

 
R = −

GM
R2

 
R R = −

GM R
R2

 

d
dt

1
2
R2⎛

⎝⎜
⎞
⎠⎟
=
d
dt

GM
R

⎛
⎝⎜

⎞
⎠⎟

 

1
2
R2 = GM

R
+ K

M

Kinetic + potential energy 
per unit mass = constant



The Friedmann Equation

 

1
2
R2 = GM

R
+ K M = ρ 4

3
πR3

 

1
2
R2 = 4πGρR

2

3
+ K

 

R2

R2
=
8πGρ
3

+
2K
R2

a t( ) = R t( )
R t = 0( ) =

R
R0

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πGρ
3

+
2K
R0
2a2  

!a =
!R
R0



The Friedmann Equation

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3

ρ t( ) + 2K
R0
2

1
a t( )2

Newtonian form of
Friedman equation

General Relativity:

• Replace density with energy density

ρ t( )→ ε t( )
c2

• Constant of integration is curvature of spacetime

2K
R0
2 → −

kc2

R0
2

E = m2c4 + p2c2( )1 2

k =
−1 negative curvature
0 flat space
+1 positive curvature

⎧
⎨
⎪

⎩⎪



The Friedmann Equation

k=0

k=+1

k=-1



The Friedmann Equation

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) − kc
2

R0
2

1
a t( )2  

a
a
≡ H t( )

H t( )2 = 8πG
3c2

ε t( )

εc t( ) = 3c2

8πG
H t( )2 Critical density

εc,0
c2

= 2.8×1011h2MMpc
-3

If k=0



The Friedmann Equation

H t( )2 = H t( )2Ω t( ) − kc
2

R0
2

1
a t( )2

Ω t( ) = ε t( )
εc t( ) Energy density in units of critical density

1− Ω t( ) = −
kc2

R0
2

1
H t( )2 a t( )2

Ω t( )  
< 1 k = −1
= 1 k = 0
> 1 k = +1

⎧
⎨
⎪

⎩⎪
Sign of 1-Ω does not change as 
universe expands.



The Friedmann Equation

At the present epoch: H0
2 1− Ω0( ) = −

kc2

R0
2

Replace curvature constant in Friedman equation:

H t( )2
H0

2 1− Ω t( )⎡⎣ ⎤⎦ =
1− Ω0( )
a t( )2

1− Ω t( ) = H0
2 1− Ω0( )

H t( )2 a t( )2



The Fluid Equation

dQ = dE + PdV 1st law of thermodynamics

E t( ) = ε t( )V t( ) E + P V = 0

 εV + ε V + P V = 0

 

V t( ) = 4
3
πR t( )3 →

V =
4
3
π 3R2 R→

V = V 3
R
R
= V 3

a
a

 
V ε + 3

a
a

ε + P( )⎛
⎝⎜

⎞
⎠⎟
= 0

 
ε + 3

a
a

ε + P( ) = 0



The Acceleration Equation

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) − kc
2

R0
2

1
a t( )2

 
a2 = 8πG

3c2
ε t( )a t( )2 − kc

2

R0
2

 
2 aa = 8πG

3c2
εa2 + 2εa a( )

 

a
a
=
4πG
3c2

ε a
a
+ 2ε⎛

⎝⎜
⎞
⎠⎟

 

ε + 3
a
a

ε + P( ) = 0

ε a
a
= −3 ε + P( )



The Acceleration Equation

 

a
a
=
4πG
3c2

−3 ε + P( ) + 2ε( )

 

a
a
= −

4πG
3c2

ε + 3P( )

The energy density is always positive

• If Pressure is positive then the universe must decelerate.
(e.g., baryonic gas, photons, dark matter)

• If Pressure is negative, the universe can accelerate.
(e.g., dark energy)



The Equations of Motion of the Universe

 

a
a
= −

4πG
3c2

ε + 3P( )

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) − kc
2

R0
2

1
a t( )2

Friedmann Equation

Acceleration Equation

Two equations and three unknowns: a t( ),  ε t( ),  P t( )
Need a third equation: Equation of state P = P ε( )

P = wε



The Equation of State

P = wε

• Non-relativistic particles: matter (Ideal gas law)

P =
ρ
µ
kT =

kT
µc2

ε w =
kT
µc2

≈ 0

• Relativistic particles: radiation

P =
1
3
ε w =

1
3

• Mildly relativistic particles:

0 < w <
1
3



Cosmological Constant / Dark Energy

1915 Einstein’s GR equations predict a dynamic universe.

1917 But Einstein thought the Universe was static, so he introduced 
the “Cosmological Constant”, Λ, to his equations of motion.

1929 When Hubble discovered the expansion of the universe, Einstein
called Λ his “greatest blunder”.

1998 SN results show that the universe is accelerating in its expansion
so scientists revive Λ

The cosmological constant or “Dark Energy” is thought to be the 
energy of a vacuum, predicted by quantum mechanics.



Cosmological Constant / Dark Energy

 

a
a
= −

4πG
3c2

ε + 3P( ) + Λ
3

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) − kc
2

R0
2

1
a t( )2

+
Λ
3

Friedman Equation

Acceleration Equation

 
ε + 3

a
a

ε + P( ) = 0 Fluid Equation:

If the energy density of Dark Energy is constant with time

 
ε = −3

a
a

ε + P( ) = 0→ P = −ε → w = −1



Cosmological Constant / Dark Energy

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) − kc
2

R0
2

1
a t( )2

+
Λ
3

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

ε t( ) + 8πG
3c2

c2Λ
8πG

⎛
⎝⎜

⎞
⎠⎟
−
kc2

R0
2

1
a t( )2

 

a
a

⎛
⎝⎜

⎞
⎠⎟
2

=
8πG
3c2

εm + εΛ( ) − kc
2

R0
2

1
a t( )2

H t( )2 1− Ωm − ΩΛ( ) = −
kc2

R0
2

1
a t( )2



Cosmological Parameters

Cosmological parameter #4:  the matter density 

Ωm



Cosmological Parameters

Cosmological parameter #5:  the baryon density 

Ωb



Cosmological Parameters

Cosmological parameter #6:  the dark energy density 

ΩΛ



Cosmological Parameters

Cosmological parameter #7:  the radiation density 

Ωγ

Ωγ ≈ 5 ×10
−5

Ων

Ων ≈ 3.4 ×10
−5



Cosmological Parameters



The Evolution of Energy Density

 
ε + 3

a
a

ε + P( ) = 0 P = wε

 
ε + 3

a
a
1+ w( )ε = 0

dε
dt

= −
da
dt
3
a
1+ w( )ε

dε
ε

= −
da
a
3 1+ w( )

lnε = lnε0 − 3 1+ w( ) lna

ε = ε0a
−3 1+w( )

If w is constant with a:



The Evolution of Energy Density

ε = ε0a
−3 1+w( )

• Non-relativistic particles (baryons, dark matter)

w = 0     →

• Relativistic particles (photons, neutrinos)

w = 1
3

 →

• Dark energy

w = −1   →

ε = ε0a
−3 = ε0 1+ z( )3

ε = ε0a
−4 = ε0 1+ z( )4

ε = ε0



The Friedmann Equation

H t( )2
H0

2 =
H t( )2
H0

2 Ω t( ) + 1− Ω0( )
a t( )2

εc =
3c2

8πG
H 2

H 2

H0
2
ε
εc

= εc
εc,0

ε
εc

= ε
εc,0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪H 2

H0
2 =

ε
εc,0

+
1− Ω0( )
a2

ε = εm + εr + εΛ =
εm,0
a3

+
εr ,0
a4

+ εΛ,0



The Friedmann Equation

H 2

H0
2 =

1
εc,0

εm,0
a3

+
εr ,0
a4

+ εΛ,0
⎛
⎝⎜

⎞
⎠⎟
+
1− Ω0( )
a2

H 2

H0
2 =

Ωm,0

a3
+
Ωr ,0

a4
+ΩΛ,0 +

1− Ω0

a2

Ω0 = Ωm,0 +Ωr ,0 +ΩΛ,0

1− Ω0 = Ωk ,0

Ωm,0 +Ωr ,0 +ΩΛ,0 +Ωk ,0 = 1



Cosmological Parameters

Cosmological parameter #8:  the spatial curvature 

Ωk

Ωk = −0.002 ± 0.004



Cosmological Parameters

Cosmological parameter #9:  the equation of state of dark
energy 

w



The Friedmann Equation

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

Ωm z( ) = εm
εc

=
εm,0
a3εc

=
εm,0
a3εc,0

εc,0
εc

=
Ωm,0

a3
H0

2

H 2

Ωr z( ) = Ωr ,0

a4
H0

2

H 2

ΩΛ z( ) = ΩΛ,0

a3 1+w( )
H0

2

H 2



The Friedmann Equation



The Friedmann Equation

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

Solving this equation gives expansion history a(t)
(which also specifies the age of the universe t0)



Solving the Friedmann Equation

H 2

H0
2 =

1
a2

Special case #1: empty universe Ωk ,0 = 1

→ H = H0
1
a  → a = H0 → d ′a

0

a

∫ = H0d ′t
0

t

∫

a t( ) = H0t

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

0 0 0

t0 =
1
H0



Solving the Friedmann Equation

H 2

H0
2 =

1
a4

Special case #2: radiation dominated universe Ωr ,0 = 1

→ H = H0
1
a2  

→ a = H0
1
a

→ ′a d ′a
0

a

∫ = H0d ′t
0

t

∫

a t( ) = 2H0t( )1 2

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

00 0

t0 =
1
2H0



Solving the Friedmann Equation

H 2

H0
2 =

1
a3

Special case #3: matter dominated universe Ωm,0 = 1

→ H = H0
1
a3 2  

→ a = H0
1
a
→ ′a d ′a

0

a

∫ = H0d ′t
0

t

∫

a t( ) = 3
2
H0t

⎛
⎝⎜

⎞
⎠⎟
2 3

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

00 0

t0 =
2
3H0



Solving the Friedmann Equation

H 2

H0
2 = 1

Special case #4: dark energy dominated universe ΩΛ,0 = 1

→ H = H0  → a = H0a →
d ′a
′aa

1

∫ = H0d ′t
t

t0

∫

a t( ) = eH0 t− t0( )

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+ΩΛ,0

000

t0 = ∞



Solving the Friedmann Equation



Solving the Friedmann Equation

Knop et al. (2003)



Distance Measures in Cosmology

tH ≡
1
H0

= 9.78h−1Gyr

Hubble time:  Time it took the universe to reach its present size if
expansion rate has always been the same.

DH ≡
c
H0

= 3000h−1Mpc

Hubble distance:  Distance light travels in a Hubble time.

Proper distance:  Distance measured in rulers between two points.

DP



Distance Measures in Cosmology

 
dDP = c ×

da
a

• Proper distance between point at a and a+da:

 

= c
da

a
a
a

⎛
⎝⎜

⎞
⎠⎟
= c

da
aH

=
c
H0

da
a

H
H0

⎛
⎝⎜

⎞
⎠⎟

−1

= DH
dz

1+ z( )E z( )

• Integrating: DP = DH
d ′z

1+ ′z( )E ′z( )0

z

∫



The Friedmann Equation

H 2

H0
2 =

Ωr ,0

a4
+
Ωm,0

a3
+
Ωk ,0

a2
+

ΩΛ,0

a3 1+w( )

H
H0

= Ωm,0 1+ z( )3 +Ωk ,0 1+ z( )2 +ΩΛ,0 1+ z( )3 1+w( ) = E z( )

0



Distance Measures in Cosmology

Comoving distance:  Distance between points that remains constant
if both points move with the hubble flow.

DC ≡
DP

a
= DP 1+ z( )

DC = DH
d ′z
E ′z( )0

z

∫



Distance Measures in Cosmology

Comoving distance (line-of-sight)

DC = DH
d ′z
E ′z( )0

z

∫

DC

Comoving distance (transverse)

DM =

DH
1
Ωk

sinh Ωk DC DH( ) for Ωk > 0

DC for Ωk = 0

DH
1
Ωk

sin Ωk DC DH( ) for Ωk < 0

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

DM



Distance Measures in Cosmology

Angular diameter distance: Ratio of object’s physical size to angular 
size.

DA =
DM

1+ z( )

DA

Rθ DA =
R
θ



Distance Measures in Cosmology

Luminosity distance: Distance that defines the relationship between
luminosity and flux.

DL = 1+ z( )DM = 1+ z( )2 DA

DL =
L
4πF



Distance Measures in Cosmology

Comoving volume: Volume in which densities of non-evolving objects
are constant with redshift.

VC =
4π
3
DM

3    for  Ωk = 0

dVC = DH
1+ z( )2 DA

2

E z( ) dΩdz



Distance Measures in Cosmology

Lookback time: Difference between age of universe now and age of
universe at the time photons were emitted from object.

tL = tH
d ′z

1+ ′z( )E ′z( )0

z

∫

Age of the universe at redshift z:  t0 − tL z( )

t0

tL

t = 0 t z( )



Constraining Cosmological Parameters

Dunkley et al. (2009)



Constraining Cosmological Parameters

Ωk = 0Ωk > 0 Ωk < 0



Constraining Cosmological Parameters

DA =
λ
θ
=

l
2π

λ

DA =
c

H0 1+ z( )
d ′z
E ′z( )0

z

∫

Measurement

Physics

E z( ) = Ωm,0 1+ z( )3 +Ωk ,0 1+ z( )2 +ΩΛ,0 1+ z( )3 1+w( )

Cosmological parameters



Constraining Cosmological Parameters

Dunkley et al. (2009)



Constraining Cosmological Parameters

Komatsu et al. (2009)



Constraining Cosmological Parameters

Hinshaw et al. (2013)

w = w0 +waa



Constraining Cosmological Parameters

Hinshaw et al. (2013)

WMAP
SPT
ACT



The Growth of Structure



The Growth of Structure

δ ≡
ρ − ρ
ρ

CMB:  δ  10
−4

Superclusters:  δ  10

Clusters:  δ  10
2

Galaxies: δ 104

Stars:  δ  10
29

People:  δ  10
30

Stellar black hole: δ 1045



The Growth of Structure

ρ = ρ 1+ δ( )

R t( )

Assume small spherical overdensity
in a static universe.

 
R = −

G ΔM( )
R2

= −
G
R2

4π
3
R3ρδ⎛

⎝⎜
⎞
⎠⎟

 

R
R
= −

4πGρ
3

δ t( )

Two unknowns: R t( )   and  δ t( )



The Growth of Structure

ρ = ρ 1+ δ( )

R t( )

Conservation of mass

M = 4π
3
R t( )3 ρ 1+δ t( )⎡⎣ ⎤⎦

R t( ) = 3M
4πρ

⎛
⎝⎜

⎞
⎠⎟

1 3

1+δ t( )⎡⎣ ⎤⎦
−1 3

R0 =
3M
4πρ

⎛
⎝⎜

⎞
⎠⎟

1 3

= const

 
δ ≪1  →   R t( ) ≈ R0 1− 1

3
δ t( )⎡

⎣⎢
⎤
⎦⎥



The Growth of Structure

ρ = ρ 1+ δ( )

R t( )

 
δ = 4πGρδ

 
R ≈ −

1
3
R0 δ ≈ −

1
3
Rδ

 

R
R
≈ −

1
3
δ

 

R
R
= −

4πGρ
3

δ t( )

Combine with:



The Growth of Structure

ρ = ρ 1+ δ( )

R t( )
 
δ = 4πGρδ

δ t( ) = A1et tdyn + A2e− t tdyn

General solution:

tdyn = 4πGρ( )−1 2
where

After a few dynamical times, only 
the growing mode is significant



The Growth of Structure

 δ t( )  et

In reality, density perturbations do not grow this fast
in the universe because:

• there is some pressure support

• the universe is not static, but expanding

 tdyn  Gρ( )−1 2 = c2 Gε( )1 2

 
ε =

3c2

8πG
H 2 → H −1  c2 Gε( )1 2



The Growth of Structure

 
R = −

GM
R2

= −
G
R2

4π
3

ρR3⎛
⎝⎜

⎞
⎠⎟

ρ = ρ 1+ δ( )

R t( )

= −
4π
3
GρR −

4π
3
G ρδ( )R

 

R
R
= −

4π
3
Gρ −

4π
3
Gρδ

M =
4π
3
R t( )3 ρ t( ) 1+ δ t( )⎡⎣ ⎤⎦ = const

Mass conservation:

Re-do, but now mean density evolves 



The Growth of Structure

ρ = ρ 1+ δ( )

R t( )

 

R
R
=
a
a
−
1
3
δ −

2
3
a
a
δ

R t( )∝ ρ t( )−1 3 1+ δ t( )⎡⎣ ⎤⎦
−1 3

ρ ∝ a−3

R t( )∝ a t( ) 1+ δ t( )⎡⎣ ⎤⎦
−1 3

An overdense region will grow slightly less rapidly than the scale factor.

≈ a t( ) 1− 1
3
δ t( )⎡

⎣⎢
⎤
⎦⎥

= − 4π
3
Gρ − 4π

3
Gρδ



The Growth of Structure

ρ = ρ 1+ δ( )

R t( )
 

a
a
= −

4π
3
Gρ

With δ~0, this reduces to:

 
−
1
3
δ −

2
3
a
a
δ = −

4π
3
Gρδ

 
δ + 2H δ = 4πGρδ

Subtract this from previous equation:

Has extra term that acts to slow 
collapse in an expanding universe.



The Growth of Structure

Continuity (mass)

Euler (momentum)

Poisson (gravity) 

∂ρ
∂t

⎛
⎝⎜

⎞
⎠⎟ r

+ ρ∇r ⋅
u = 0

∂u
∂t

⎛
⎝⎜

⎞
⎠⎟ r

+ u ⋅∇r( ) u = −∇rΦ

∇r
2Φ = 4πGρ

Transform to comoving coordinates

 

r = ax
u = r = ax + v



The Growth of Structure

• Add a small perturbation

 ρ
x,t( ) = ρ t( ) +δ x,t( )ρ t( )

• Linear approximation: keep first order terms in δ and v

• Rearrange equations to get rid of v

• Subtract off equation for unperturbed case to get δ

 
δ + 2H δ = 4πGρδ



The Growth of Structure

 
δ + 2H δ =

4πG
c2

εmδ
δ is the density of matter only

δ =
εm − εm
εm

Ωm =
εm
εc

=
8πGεm
3c2H 2

 
δ + 2H δ −

3
2
H 2Ωmδ = 0

The solution to this equation depends on Ωm



The Growth of Structure

 Ωm 1• Radiation-dominated phase in early universe 

H =
1
2t  

δ +
1
t
δ = 0

δ t( ) ≈ B1 + B2 ln tSolution:

Perturbations grow at a logarithmic rate.



The Growth of Structure

 Ωm 1• Lambda-dominated phase in late universe 

H = HΛ = const

δ t( ) ≈ C1 + C2e
−2HΛ tSolution:

Perturbations reach a constant amplitude.

 
δ + 2HΛ

δ = 0



The Growth of Structure

Ωm ≈ 1• Matter-dominated phase in recent universe 

H =
2
3t  

δ +
4
3t
δ −

2
3t 2

δ = 0

Guess: δ t( ) ≈ Dtn  →  δ = nDtn−1
 
δ = n n −1( )Dtn−2

n n −1( )Dtn−2 + 4
3t
nDtn−1 − 2

3t 2
Dtn = 0

n n −1( )Dtn−2 + 4
3
nDtn−2 − 2

3
Dtn−2 = 0

n n −1( )+ 4
3
n − 2

3
= n2 + 1

3
n − 2

3
= 0

n =
−1
2 3

⎧
⎨
⎩



The Growth of Structure

Ωm ≈ 1• Matter-dominated phase in recent universe 

H =
2
3t  

δ +
4
3t
δ −

2
3t 2

δ = 0

δ t( ) ≈ D1t 2 3 + D2t
−1Solution:

When growing mode dominates, δ ∝ t 2 3 ∝ a ∝ 1
1+ z



The Growth of Structure



The Growth of Structure

 δ
x,t( ) = D t( ) δ x( )

 
δ + 2H δ −

3
2
H 2Ωmδ = 0

None of the terms or derivatives depend on location 

The solution may thus be written as:

 
x

D t( ) is called the “growth factor” and it satisfies the
above differential equation.  It is also normalized to be 
equal to unity at t = today.



The Growth of Structure

Since the growth function is normalized to be unity today,

must be the density at t = today assuming linear

theory.  It is the linearly extrapolated density fluctuation.

 
δ x( )

D t( ) = t
t0

⎛
⎝⎜

⎞
⎠⎟

2 3

e.g., in a matter dominated universe:



Large Scale Velocity Field

According to linear theory, the peculiar velocity is:

 

v x( ) = f Ωm( )
4π

δm ′x( )∫
′x − x( )
′x − x 3 d

3 ′x

where:

f Ωm( ) ≈ Ωm
0.6

The differential form of this equation is:

 

∇⋅ v x( ) = − f Ωm( )δm

x( )



Large Scale Velocity Field

We can measure the radial peculiar velocity of a galaxy 
by measuring its redshift and a redshift-independent 
distance.

vr = cz − H0d

By comparing the observed velocity field to the observed 
density field, we can constrain Ω.  There are two main 
approaches that have been used:

•velocity-velocity comparison

•density-density comparison



Large Scale Velocity Field

Velocity-Velocity

•Measure the density field from a galaxy redshift survey, 
smoothing on some (small) scale.

•Use linear theory to predict the full 3D velocity field.

•Predict radial velocities for all the galaxies.

•Compare these predictions to the actual measured galaxy 
velocities.

•The slope of the predicted vs. observed relation gives us 
f(Ωm).



Large Scale Velocity Field

Density-Density

•Measure the radial velocity field from a galaxy redshift 
survey, smoothing on some (large) scale.

•Integrate this radially to get the potential field and 
compute the gradient of the potential field to get the full 3D 
velocity field.  Then use linear theory to predict the density 
field.

•Compare this prediction to the actual measured galaxy 
density field.

•The slope of the predicted vs. observed relation gives us 
f(Ωm).



Large Scale Velocity Field

Density-Density

 
Φ r( ) = − vr ′r ,θ ,ϕ( )

0

r

∫ d ′r

 
v r( ) = −∇rΦ

r( )

 δm
r( ) = − f Ωm( )−1∇r ⋅

v r( )



Large Scale Velocity Field

We only actually measure the galaxy density field, which 
on large scales is related to the mass density via a linear 
bias factor:

δ g = bδm

So these methods actually constrain the quantity:

β =
f Ωm( )
b

≈ Ωm
0.6

b



Large Scale Velocity Field

Dekel et al. (1999)



Large Scale Velocity Field

Dekel et al. (1999)



Large Scale Velocity Field

Sigad et al. (1998)



Large Scale Velocity Field

Many systematic errors!

For example, homogeneous and inhomogeneous Malmquist 
bias, which is caused by anisotropic scattering of galaxy 
positions due to large distance errors.

vr = cz − H0d

cz
H0d H0 ′d



The Spherical Collapse model

Reminder: these solutions are for linear theory only!

Once δ grows to ~1, they do not apply.

We need different solutions to describe the collapse
of density fluctuations.

Hubble expansion wins Collapse of density region



The Spherical Collapse model

The Friedmann equation applies to a small density
perturbation, in addition to the whole universe.

In a matter-dominated universe,
has a parametric solution:  

R = −
GM
R2

R = A 1− cos θ( )⎡⎣ ⎤⎦  

 t = B θ − sin θ( )⎡⎣ ⎤⎦
(the “cycloid” solution)

Where, A3 = GMB3



The Spherical Collapse model

θ = π θ = 2π

turnaround

collapse



The Spherical Collapse model

Expand and only keep low order terms:

R = A 1− cos θ( )⎡⎣ ⎤⎦  

 t = B θ − sin θ( )⎡⎣ ⎤⎦

cos θ( ) ≈ 1− θ 2

2
+
θ 4

24
− ...

sin θ( ) ≈θ −
θ 3

6
+ ...

R ≈ A θ 2

2
−
θ 4

24
⎡

⎣
⎢

⎤

⎦
⎥

 t ≈ B θ 3

6
⎡

⎣
⎢

⎤

⎦
⎥ →  θ ≈

6t
B

⎛
⎝⎜

⎞
⎠⎟

1 3

→  R ≈
A
2

6t
B

⎛
⎝⎜

⎞
⎠⎟

2 3

1− 1
12

6t
B

⎛
⎝⎜

⎞
⎠⎟

2 3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
A
2
θ 2 1− θ 2

12
⎡

⎣
⎢

⎤

⎦
⎥



The Spherical Collapse model

R t( ) ≈ A
2
6t
B

⎛
⎝⎜

⎞
⎠⎟
2 3

1− 1
12

6t
B

⎛
⎝⎜

⎞
⎠⎟
2 3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Compare this to our previous linear theory result:

R t( ) ≈ a t( ) 1− 1
3
δ t( )⎡

⎣⎢
⎤
⎦⎥

a t( ) = 3
2
H0t

⎛
⎝⎜

⎞
⎠⎟
2 3

where:

δ t( )∝ t 2 3and:

The cycloid solution at small t agrees with linear theory.



The Spherical Collapse model

Turnaround

Collapse

Virialization

The sphere breaks away from general expansion and reaches 
a maximum radius at θ=π.  At this point, linear theory predicts
that the density contrast is δlin=1.06

The sphere collapses to a singularity at θ=2π.  This occurs 
when δlin=1.69

Complete collapse never occurs in practice because the kinetic 
energy of collapse is converted into random motions.  When the 
sphere has collapsed to half its maximum size, its kinetic energy
is K=-0.5U, where U is the potential energy.  This is the condition
for equilibrium according to the virial theorem.  This occurs at θ=3π/2
when the density contrast is δlin=1.58



The Spherical Collapse model

1+ δvir ≡ Δvir =
ρ
ρ
≈ 147If virialization occurs at 3π/2:

If virialization occurs at 2π:

Δvir ≈ 178Ωm
−0.7More generally:

Δvir ≈ 18π 2 + 82 Ωm −1( ) − 39 Ωm −1( )2⎡
⎣

⎤
⎦Ωm

−1

Even more generally (for flat matter + dark energy models):

1+ δvir ≡ Δvir =
ρ
ρ
≈ 178

Bryan & Norman (1998)



N-body Simulations



N-body Simulations



N-body Simulations

Initial conditions:
• What kind of Dark Matter?
• How much Dark Matter?
• Initial density fluctuations P(k)

GRAVITY

Final distribution of dark matter.



How to run a cosmological N-body simulation

Step 1: adopt a cosmological model and calculate
the initial matter power spectrum P(k)

Extensions
Hot dark matter
Warm dark matter
Self interacting dark matter



How to run a cosmological N-body simulation

Step 2: generate initial conditions at starting redshift

• Generate random field that obeys P(k)
• Gaussian or non-Gaussian

• Use perturbation theory to evolve to starting redshift
• zinit = 30-200

• Create grid of particles with initial positions and velocities 



N-body Simulations:  Initial Conditions

 
x = q + D t( ) ψ q( )

 

v = a dD
dt

ψ q( )

 


∇ ⋅

ψ = −

δ q( )
D t( )

Assign initial positions and velocities
using Zel’dovich approximation 

q : initial position
Ψ : dispacement field
D : growth function
δ : initial density field



How to run a cosmological N-body simulation

Step 3: compute gravitational forces on particles in
time steps to evolve particle distribution 

• Very computationally expensive

• Need fast algorithms

• Forces are “softened” at small distances



N-body Simulations:  Force calculations

• Direct particle-particle (N2)

• Particle-Mesh (PM) (NglogNg)

• Particle-particle particle-mesh (P3M) (N2 / NglogNg)

• Tree (NlogN)

• Tree-PM (NlogN / NglogNg)

• Adaptive mesh refinement (AMR)

• Adaptive refinement tree (ART)

• Moving mesh (AREPO)



N-body Simulations:  Direct N-body

N2 calculations



N-body Simulations:  Particle-Mesh

NglogNg calculations
r2� = 4⇡G⇢

�(x) =

Z
�̂(k)eik·xdk

r2�(x) =

Z
�̂(k)(�k2)eik·xdk

⇢(x) =

Z
⇢̂(k)eik·xdk

�̂(k) = �4⇡G
⇢̂(k)

k2



N-body Simulations:  Particle-Particle, Particle-Mesh

N2 / NglogNg calculations



N-body Simulations:  Tree Code

NlogN calculations



N-body Simulations:  Moving Mesh (AREPO)



N-body Simulations:  Code comparisons

Heitmann et al. (2005)









We can constrain cosmological models.
e.g., dark matter models

SDSS observations



We can constrain cosmological models.

van Dalen & Schaefer (1992)



We can constrain cosmological models.

1/21/10 1Fraction of present age:

Flat universe with dark energy

Flat universe with high DM

Different initial P(k)

Open universe with low DM

Ωm = 0.3  ΩΛ = 0.7

Ωm = 1

Ωm = 1

Ωm = 0.3



We can constrain cosmological models.



Virgo Collaboration



What is a dark matter halo?

Dark Matter collapses under 
its own self-gravity into 
“virialized” regions, or “halos”.

Halos are typically defined as 
regions with density of ~200 
times the mean density, but 
there are several halo-finding
algorithms.

Halos come in different sizes,
masses, and shapes.

High mass halo (the kind that 
would host a galaxy cluster)

Intermediate mass halo (the kind 
that would host a galaxy group)

Low mass halo (the kind that 
would host a single galaxy)

Very low mass halo (the kind 
that would host no galaxy at all)



What is a dark matter halo?

• Friends-of-Friends (FoF)

linking length b

• Spherical Overdensity (SO)

choice of center, density threshold Δvir

• Density Maxima (DENMAX, BDM)

choice of center, density threshold Δvir , criteria for unbinding

• Other (e.g., Voronoi tesselation)



What is a dark matter halo?

Bound dense regions within
a larger halo are referred to 
as subhalos, substructure, or 
satellite halos.

Subhalos have a density higher
than ~200 times the mean.

A halo can host a single galaxy,
or a cluster of galaxies.  Within
a cluster, individual galaxies
would sit inside subhalos.

Subhalo / Satellite halo

Host/Parent/Central haloHalo

Kravtsov et al.





Halo properties: Abundance (mass function)

Warren et al. (2006)

We now know the z=0 
mass function to ~5% for
reasonable choices of 
cosmological parameters.
(For one N-body code and 
one halo-finder)

There may be larger
uncertainties for higher
redshifts or more exotic
cosmological models.

M



Halo properties: Abundance (mass function)

Press-Schechter (1974) theory

Halos collapse from regions in the primordial density field that exceed
a threshold density.  One halo forming does not influence the likelihood
of other halos forming nearby.

The halo mass function thus depends on:

• The distribution of initial densities P(k)

• The linear growth of fluctuations D(z)

• The density threshold for collapse δcrit



Halo properties: Abundance (mass function)

�(~x, t) = D(t)�0(~x)

�c = 1.69



Halo properties: Abundance (mass function)

�(~x, t) = D(t)�0(~x)

�c = 1.69



Halo properties: Abundance (mass function)

�(~x, t) = D(t)�0(~x)

�c = 1.69



Halo properties: Abundance (mass function)

�(~x, t) = D(t)�0(~x)

�c = 1.69

halos virializing



Halo properties: Abundance (mass function)

�(~x, t) = D(t)�0(~x)

�c = 1.69

low mass halo massive halo



Halo properties: Abundance (mass function)

Consider a spherical region of mass M.  This region corresponds 
to a scale:

 
σ R

2 = P k( ) WR k( )2∫ d 3k   →   σ M( )

R =
3M
4πρ

⎛
⎝⎜

⎞
⎠⎟

1 3

The density field smoothed on this scale has a variance of:

R
M



Halo properties: Abundance (mass function)

The density field has a Gaussian 
distribution with that variance.

P δ |M( )dδ =
1

2πσ M( )
exp −

δ 2

2σ M( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dδ

The probability of the density having a value between δ and δ+dδ is:

�

2�(M)



Halo properties: Abundance (mass function)

The fractional volume in this smoothed 
density field with δ>δc is:

F > M( ) = P δ |M( )dδ
δc

∞

∫

The fractional volume corresponding to
masses in the range M to M+dM is:

dF > M( )
dM

dM



Halo properties: Abundance (mass function)

The volume of a region that will make 
a single halo of mass M is:

M
ρ

The number of halos of mass in the range M to M+dM is:

fraction of volume ×Vtot

volume of 1 halo
=

ρ
M

dF > M( )
dM

dM ×Vtot

The number density of halos of mass in the range M to M+dM is:

dn
dM

dM =
ρ
M

dF > M( )
dM

dM



Halo properties: Abundance (mass function)

Spherical collapse model

dn
dM

=
2
π

ρ
M 2

δc
σ

d lnσ
d lnM

exp −
δc

2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥

Power spectrum

There are numerous improvements to the Press-Schechter mass function

Linear theory growth rate σ M , z( ) = σ M , z = 0( )D z( )



Halo properties: Abundance (mass function)



Halo properties: Abundance (mass function)



Halo properties: Abundance (mass function)



Halo properties: Abundance (mass function)



Halo properties: Abundance (mass function)

LasDamas



Halo properties: Abundance (mass function)

z>>0 zinit

Zel’dovich

2LPT



Halo properties: Abundance (mass function)

LasDamas



Halo properties: Abundance (mass function)

LasDamas



Halo properties: Clustering (halo bias)

LasDamas



Halo properties: Clustering (halo bias)

LasDamas



Halo properties: Clustering (halo bias)

Seljak & Warren (2005)

Good to ~3% for 
standard cosmology.

bh =
Phh k < 0.1( )
Pmm k < 0.1( )



Halo properties: Clustering (halo bias)

Seljak & Warren (2005)

Good to ~10% across 
different cosmologies.



Halo properties: Structure (density profile)

r



Halo properties: Structure (density profile)

ρ r( ) = ρs

1+ r rs( )2 r rs( )

Navarro, Frenk & White (NFW)

logr Navarro et al. (2004)



Halo properties: Structure (density profile)

ρ r( ) = ρs

1+ r rs( )2 r rs( )
Navarro, Frenk & White (NFW)

c ≡ Rvir
rs

Mvir =
4
3
πRvir

3 Δvirρ

Mvir = 4πr2ρ r( )dr
0

Rvir

∫



Halo properties: Structure (density profile)

NFW, varying mass



Halo properties: Structure (density profile)

NFW, varying concentration



Halo properties: Structure (density profile)

Mvir

c ≡ Rvir rs

Bullock et al. (2001)

c

concentration – mass relation

c ≈ c*
1+ z( ) M M*( )−0.13



Halo properties: Structure (density profile)

Navarro et al. (2010)

ρ = ρ−2e
−2 αe

r r−2( )α −1⎡
⎣

⎤
⎦

Density profile slope vs. r

Einasto profile



Halo properties: Merger History



Halo properties: History (merger tree)

Wechsler et al. (2002)

• High mass halos have 
accreted more of their 
mass recently relative to 
low mass halos.

a

time M

Assembly History



Halo properties: History (merger tree)

Wechsler et al. (2002)

• Halo concentrations are 
determined by their 
accretion history.



Halo properties: Assembly Bias

Wechsler et al. (2006)



Halo properties: Assembly Bias

Gao & White (2007)

fast spinning

slow spinning



Halo properties: Assembly Bias

Gao & White (2007)

early assembly

late assembly

high concentration

low concentration



Halo properties: Assembly Bias

Gao & White (2007)

high substructure

low substructure



From dark matter to galaxies



Galaxies are assumed
to form in dark matter
halos.



This is what we see!



A dark matter halo forms.  Inside the halo is hot/warm gas.
The gas has some angular momentum.

Galaxy formation theory in a nutshell



Gas cools inside the halo and settles into a
rotating disk.

Galaxy formation theory in a nutshell



Stars form from the cold dense gas.

Galaxy formation theory in a nutshell

SF: ON



Stellar populations grow old and fade, new stars are born.
Gas undergoes heating and cooling.

Galaxy formation theory in a nutshell

SF: ON



Energy feedback due to supernovae or a massive central
black hole can reheat the gas or blow it out of the galaxy.

This can end star formation.

Galaxy formation theory in a nutshell

SF: OFF



The galaxy gets dimmer and redder.

Galaxy formation theory in a nutshell

SF: OFF



If the halo is in a gas-rich environment, more gas can 
fall into the halo from the inter-galactic medium.

Galaxy formation theory in a nutshell

SF: ON



If the halo merges with another halo containing a galaxy, 
the smaller galaxy becomes a satellite.

Galaxy formation theory in a nutshell



Galaxy formation theory in a nutshell

If the halo merges with another halo containing a galaxy, 
the smaller galaxy becomes a satellite.

If the main halo is massive enough, it can contain hot gas that
might ram-pressure strip the gas out of the satellite galaxy,

thereby ending its star formation.

SF: OFF

SF: ON



Galaxy formation theory in a nutshell

Eventually, the subhalo will be destroyed via tidal stripping
and the satellite galaxy will spiral in due to dynamical friction.

SF: OFF

SF: ON



Galaxy formation theory in a nutshell

Eventually, the subhalo will be destroyed via tidal stripping
and the satellite galaxy will spiral in due to dynamical friction.

SF: OFF

SF: ON



Galaxy formation theory in a nutshell

When the two galaxies merge, that can trigger a burst of star
formation that exhausts the gas, thus ending further SF.

Also, the merger can affect the galaxy’s morphology.

SF: OFF



Dynamical Friction

Dynamical friction is a force experienced by a massive 
body moving within a sea of lower mass particles.



Dynamical Friction

Dynamical friction is a force experienced by a massive 
body moving within a sea of lower mass particles.



Dynamical Friction

The body creates a wake of particles behind it, which 
creates a drag force.

Friction is high if mass of body is large and body moves slowly. 



Galaxy formation theory in a nutshell

In high mass halos, halo mergers happen frequently, but
dynamical friction timescales are long, resulting in 

galaxy clusters.

SF: OFF



Galaxy formation theory in a nutshell

Key questions:

•What is the initial distribution of gas within halos and how does it 
cool?(e.g., multiphase medium)

•How do stars form exacty?  (e.g., conditions for star formation, 
dependence of IMF on environment, metallicity)

•How does supernova feedback work? (e.g., thermal vs. kinetic energy 
injection, efficiency)

•How does AGN feedback work?

•How does merging affect galaxies’ star formation and morphology?

•How does fresh gas in the IGM feed galaxies?



Lots of unknowns!

But also lots of data describing the distribution 
of galaxies!



Large surveys: Measurements of Galaxy Clustering

First Moments   

� 

δ(  x )

Blanton et al. (2005)

Luminosity Functions



Large surveys: Measurements of Galaxy Clustering

Second Moments   

� 

δ(  x )δ(  x + r)

Masjedi et al. (2006)

Zehavi et al. (2005)

Correlation Functions

ξgg(r)

wp(rp)



Large surveys: Measurements of Galaxy Clustering

Higher Moments and Other Statistics

Scoccimarro et al. (2006)

Berlind et al. (2006)

BispectrumGroup Multiplicity Function

Q(ϑ)

ngrp(N)
Sheldon et al. (2005)

ξgm(r)

Galaxy-Mass Correlations



Large surveys: Measurements of Galaxy Clustering

High Redshift

Coil et al. (2006) Lee et al. (2006)

Z ~ 1 z ~ 4

GOODS

ω(θ)wp(rp)



How can we extract this information from the data?
e.g., what does a particular shape of ξ(r) for bright red galaxies tell us 
about how these galaxies formed?  Can we use this statistic to constrain 
cosmological parameters?

Galaxy clustering data contains information about cosmology
and galaxy formation/evolution.

Galaxy Formation

Gas cooling, Star formation, 
Feedback, Mergers, etc.

Dark Matter clustering Galaxy clustering

Cosmological Model

Ω, P(k), etc.

bias



Ab-initio 
Predictions

Hydrodynamic Simulations of Dark Matter + Gas

Semi-Analytic Models

Gravity
and 

Hydrodynamics
+

Heating
and

Cooling
+

Prescriptions for
Star Formation

and
Feedback

=

+

Prescriptions for:
Gas distribution, Gas Cooling, 

Star Formation, Feedback,
Galaxy Mergers + more

in DM halos

=

Springel et al.

Virgo Consortium

(Sub-grid physics)



RAMSES code (AMR)  - Merger showing stars



RAMSES code (AMR)



GASOLINE code (SPH)  - Merger showing gas and stars



GADGET code (SPH)  - Effect of SMBH feedback



AREPO code (Moving Mesh)  - Gas at z=1



AREPO code (Moving Mesh)  - Gas at z=1



AREPO code (Moving Mesh) – Illustris simulation



AREPO code (Moving Mesh) – Illustris simulation



Nelson et al. (2013)



Moving Mesh vs. SPH  - Gas accretion

Nelson et al. (2013)



Benson, 2010

Stage 1 Stage 2

Stage 3 Stage 4

Stage 5

Stage 6



Benson, 2010



Benson, 2010



Benson, 2010



Benson, 2010



GOAL:

Constrain physical models using 
galaxy clustering on small scales. 

Hydro sims/SAMs contain physics, but they are 

• too computationally expensive

• still in the mode of finding the “best model”

• are not accurate enough to match data within high 
precision of current survey measurements



Dark Halo Population 



Dark Halo Population Galaxy Population 



Galaxy Formation

Gas cooling, Star formation, 
Feedback, Mergers, etc.

Galaxy-Mass correlations

Cosmological Model

Ω, P(k), etc.

Halo Occupation Distribution
P(N|M)

Spatial bias within halos
Velocity bias within halos

Dark Halo Population

n(M), ρ(r|M), ξ(r|M), v(r|M)

Galaxy clustering



The Halo Occupation Distribution

Halo Mass

N
um

be
r o

f g
al

ax
ie

s
σ logM

N = Ncen + Nsat



Assume:

• Central galaxy resides at 
halo center

• Satellite galaxies trace the DM 
density distribution within the halo

The Halo Occupation Distribution



Example: what is σlogM and how does it affect clustering?

Halo mass

Lu
m

in
os

ity

Halo mass

<N
ce

n>

Halo mass

C
lu

st
er

in
g

1



The HOD contains information about physics!

Dynamical friction
Tidal disruptionBaryon/DM fraction

Gas cooling
Star formation efficiency

DM halo merger statistics

σ logM



The Halo Model

Halo mass

C
lu

st
er

in
g

Halo mass

Ab
un

da
nc

e

radius

D
en

si
ty

Halo mass

N
um

be
r

Integrals 
over mass

r

C
or

r f
un

c



The Halo Model

ng = dM dn
dM0

∞

∫ N M

Berlind & Weinberg (2002)

A simple example: the galaxy number density



2-pointCorrelation function Small scales: All pairs come from same halo.
1-halo term

1+ ξg
1h r( ) = 2πr2ng

2( )−1 dM dn
dM0

∞

∫
N N −1( ) M

2
λ r M( )

Large scales: Pairs come from separate halos.
2-halo term

bg = ng
−1 dM dn

dM
N M

0

∞

∫ bh M( )

ξg r( ) = bg2ξm r( )

Berlind & Weinberg (2002)

The Halo Model



2-point correlation function

Characteristic size of halo

1-halo term

2-halo term

Halo model generically predicts
departures from a power law in
the correlation function.

The Halo Model



Measurements of the HOD

Zehavi et al. (2004)

Deviation from power law
detected.  Halo model gives
a good fit to the data.
(χ2/dof = 0.93 vs. 6.12 for plaw)

1-halo term

2-halo term

DM wp



Testing the halo model assumptions

1. All galaxies live in halos.   ✔

2. The statistical content of halos depends only on halo mass.
i.e., P(N|M) is sufficient, as opposed to P(N|M,X)

Recent work shows that halo bias bh(M) depends on halo assembly 
history at fixed mass. If P(N|M) also shows this dependence, then
standard halo model will be incorrect.

Measurements of this are not conclusive. This systematic effect needs to 
be addressed if galaxy clustering is to be used for precision cosmology.

3. The dark halo properties are not affected by baryons

This is almost certainly not true, but the extent of this problem is unclear. 



Populate an N-body simulation with an HOD to compute 
clustering statistics instead of using analytic formulas.

Alternative to the analytic halo model approach



Populate an N-body simulation with an HOD to compute 
clustering statistics instead of using analytic formulas.

Advantages:
• Halo clustering, abundances, and profiles are correct on all scales

above the simulation’s resolution limit.
• Can calculate any clustering statistic.

Disadvantages:
• Not good for very small scale clustering.
• Much more computationally intensive.

Alternative to the analytic halo model approach



Alternatives to the halo model / HOD approach

Use a Conditional Luminosity Function (CLF) to model the
luminosity dependence of clustering.

Advantages:
• Don’t have to assume a form for <N(M)>
• More ambitious: model the luminosity dependence explicitly

Disadvantages:
• Have to assume a form for ϕ(L|M)
• More ambitious: luminosity dependence is model dependent

Methods are very similar and complementary.

N M = dLΦ L M( )
Lmin

∞

∫Φ L( ) = dM dn
dm

Φ L M( )
0

∞

∫



Alternatives to the halo model / HOD approach

Use a high resolution N-body simulation to place galaxies in 
halos + subhalos, assuming relations between galaxy and 
subhalo properties. (i.e., use subhalo distribution instead of HOD)



Galaxy luminosity function Halo mass function
(including subhalos)

Halo/Subhalo Abundance Matching



Halo/Subhalo Abundance Matching

Luminosity
or

Stellar Mass

Halo/Subhalo Mass



Halo/Subhalo Abundance Matching

Conroy et al. (2006)

SDSS
z~0



Halo/Subhalo Abundance Matching

Conroy et al. (2006)

DEEP2
z~1



Halo/Subhalo Abundance Matching

Conroy et al. (2006)

LBGs
z~3



Halo/Subhalo Abundance Matching

Conroy et al. (2006)

Subaru
z~4



Halo/Subhalo Abundance Matching

Conroy et al. (2006)

GOODS
z~4-5



Halo/Subhalo Abundance Matching

What subhalo property should be used?

Macc , Vacc

Mnow , Vnow



Halo/Subhalo Abundance Matching

Conroy et al. (2006)



Halo/Subhalo Abundance Matching

Reddick et al. (2013)



Or do a forward approach
St

el
la

r M
as

s

Halo/Subhalo Mass

Parameterize this

Ab
un

da
nc

e
Stellar Mass

Predict this



Behroozi et al. (2013)

The modeling is getting very ambitious



Behroozi et al. (2013)

Fit model at all redshifts to: 

(1) stellar mass function               (2) star formation rate

The modeling is getting very ambitious



Behroozi et al. (2013)

The modeling is getting very ambitious



Describing vs. Understanding

HOD/HAM/CLF are excellent statistical tools for describing the 
wealth of galaxy clustering data: for translating complicated statistics
into a more physically informative language.

It is still essential that we understand the physics behind the
data: gas cooling, star formation, feedback, etc.  For this we 
need ab-initio models such as hydrodynamic simulations and 
semi-analytic models.

The methods are highly complementary.



SYNOPSIS

• Galaxy properties

• Stellar populations

• Distance measures

• Hubble expansion and 
z-space distortions

• Redshift surveys

• Galaxy environments

• Galaxy groups and clusters

• Galaxy clustering statistics

• Cosmological parameters

• Expansion history of the
universe

• Growth of perturbations

• N-body simulations

• Dark matter halos

• Galaxy formation

• The halo model


