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ABSTRACT
We present a cosmic shear analysis of the 100-deg2 weak-lensing survey, combining

data from the CFHTLS-Wide, RCS, VIRMOS-DESCART and GaBoDS surveys. Spanning

∼100 deg2, with a median source redshift z ∼ 0.78, this combined survey allows us to place tight

joint constraints on the matter density parameter �m, and the amplitude of the matter power

spectrum σ 8, finding σ 8(�m/0.24)0.59 = 0.84 ± 0.05. Tables of the measured shear correlation

function and the calculated covariance matrix for each survey are included as supplementary

material to the online version of this article.

The accuracy of our results is a marked improvement on previous work owing to three impor-

tant differences in our analysis; we correctly account for sample variance errors by including

a non-Gaussian contribution estimated from numerical simulations; we correct the measured

shear for a calibration bias as estimated from simulated data; we model the redshift distribution,

n(z), of each survey from the largest deep photometric redshift catalogue currently available

from the CFHTLS-Deep. This catalogue is randomly sampled to reproduce the magnitude

distribution of each survey with the resulting survey-dependent n(z) parametrized using two

different models. While our results are consistent for the n(z) models tested, we find that our

cosmological parameter constraints depend weakly (at the 5 per cent level) on the inclusion

or exclusion of galaxies with low-confidence photometric redshift estimates (z > 1.5). These

high-redshift galaxies are relatively few in number but contribute a significant weak-lensing

signal. It will therefore be important for future weak-lensing surveys to obtain near-infrared

data to reliably determine the number of high-redshift galaxies in cosmic shear analyses.

Key words: gravitational lensing – cosmological parameters – cosmology: observations –

large-scale structure of Universe.

1 I N T RO D U C T I O N

Weak gravitational lensing of distant galaxies by intervening matter

provides a unique and unbiased tool to study the matter distribution

�Based on observations obtained at the Canada–France–Hawaii Telescope

(CFHT) which is operated by the National Research Council of Canada

(NRCC), the Institut des Sciences de l’Univers (INSU) of the Centre National

de la Recherche Scientifique (CNRS) and the University of Hawaii (UH).

†E-mail: jonben@phas.ubc.ca

of the Universe. A large-scale structure in the Universe induces a

weak-lensing signal, known as cosmic shear. This signal provides

a direct measure of the projected matter power spectrum over a

redshift range determined by the lensed sources and over scales

ranging from the linear to non-linear regime. The unambiguous

interpretation of the weak-lensing signal makes it a powerful tool for

measuring cosmological parameters which complement those from

other probes such as, cosmic microwave background anisotropies

(Spergel et al. 2006) and type Ia supernovae (Astier et al. 2006).

Cosmic shear has only recently become a viable tool for

observational cosmology, with the first measurements reported
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simultaneously in 2000 (Bacon, Refregier & Ellis 2000; Kaiser,

Wilson & Luppino 2000; Van Waerbeke et al. 2000; Wittman et al.

2000). The data these early studies utilized were not optimally suited

for the extraction of a weak-lensing signal. Often having a poor

trade-off between sky coverage and depth, and lacking photome-

try in more than one colour, the ability of these early surveys to

constrain cosmology via weak lensing was limited, but impressive

based on the data at hand. Since these early results several large

dedicated surveys have detected weak lensing by large-scale struc-

ture, placing competitive constraints on cosmological parameters

(Hoekstra, Yee & Gladders 2002b; Bacon et al. 2003; Brown et al.

2003; Hamana et al. 2003; Jarvis et al. 2003; Rhodes et al. 2004;

Massey et al. 2005; Heymans et al. 2005; Van Waerbeke, Mellier

& Hoekstra 2005; Hoekstra et al. 2006; Semboloni et al. 2006;

Schrabback et al. 2007). With the recent first measurements of a

changing lensing signal as a function of redshift (Bacon et al. 2005;

Wittman 2005; Semboloni et al. 2006; Massey et al. 2007b), and

the first weak-lensing constraints on dark energy (Hoekstra et al.

2006; Jarvis et al. 2006; Kitching et al. 2007; Schimd et al. 2007),

the future of lensing is promising.

There are currently several ‘next generation’ surveys being con-

ducted. Their goal is to provide multicolour data and excellent

image quality, over a wide field of view. Such data will enable

weak lensing to place tighter constraints on cosmology, break-

ing the degeneracy between the matter density parameter �m

and the amplitude of the matter power spectrum σ 8 and allow-

ing for competitive constraints on dark energy. In this paper, we

present an analysis of the 100-deg2 weak-lensing survey that com-

bines data from four of the largest surveys analysed to date, in-

cluding the wide component of the Canada–France–Hawaii Tele-

scope Legacy Survey (CFHTLS-Wide, Hoekstra et al. 2006), the

Garching–Bonn Deep Survey (GaBoDS, Hetterscheidt et al. 2007),

the Red-Sequence Cluster Survey (RCS, Hoekstra et al. 2002b) and

the VIRMOS-DESCART survey (VIRMOS, Van Waerbeke et al.

2005). These surveys have a combined sky coverage of 113 deg2

(96.5 deg2, after masking), making this study the largest of its

kind.

Our goal in this paper is to provide the best estimates of cosmol-

ogy currently attainable by weak lensing, through a homogeneous

analysis of the major data sets available. Our analysis is distin-

guished from previous work in three important ways. For the first

time we account for the effects of non-Gaussian contributions to the

analytic estimate of the sample variance – sometimes referred to as

cosmic variance – covariance matrix (Schneider et al. 2002), as de-

scribed in Semboloni et al. (2007). Results from the Shear TEsting

Programme (STEP; see Heymans et al. 2006a; Massey et al. 2007a)

are used to correct for calibration error in our shear measurement

methods, a marginalization over the uncertainty in this correction is

performed. We use the largest deep photometric redshift catalogue

currently available (Ilbert et al. 2006), which provides redshifts for

∼500 000 galaxies in the CFHTLS-Deep. Additionally, we properly

account for sample variance in our calculation of the redshift dis-

tribution, an important source of error discussed in Van Waerbeke

et al. (2006).

This paper is organized as follows. In Section 2, we give a short

overview of cosmic shear theory, and outline the relevant statistics

used in this work. We describe briefly each of the surveys used in

this study in Section 3. We present the measured shear signal in

Section 4. In Section 5, we present the derived redshift distributions

for each survey. We present the results of the combined parameter

estimation in Section 6, closing thoughts and future prospects are

discussed in Section 7.

2 C O S M I C S H E A R T H E O RY

We briefly describe here the notations and statistics used in our

cosmic shear analysis. For detailed reviews of the weak-lensing

theory, the reader is referred to Munshi et al. (2006), Bartelmann &

Schneider (2001) and Schneider et al. (1998). The notations used

in the latter are adopted here. The power spectrum of the projected

density field (convergence κ) can be written as

Pκ (k) = 9 H 4
0 �2

m

4c4

∫ wH

0

dw

a2(w)
P3D

(
k

fK (w)
; w

)
×

[∫ wH

w

dw′n(w′)
fK (w′ − w)

fK (w′)

]2

, (1)

where H0 is the Hubble constant, f K (w) is the comoving angular

diameter distance out to a distance w (wH is the comoving hori-

zontal distance), a(w) is the scalefactor, and n[w(z)] is the redshift

distribution of the sources (see Section 5). P3D is the 3D mass power

spectrum computed from a non-linear estimation of the dark matter

clustering (see e.g. Peacock & Dodds 1996; Smith et al. 2003), and k
is the 2D wavevector perpendicular to the line of sight. P3D evolves

with time, hence its dependence on the comoving radial coordinate

w.

In this paper, we focus on the shear correlation function statistic

ξ . For a galaxy pair separation θ , we define

ξ+(θ ) = 〈γt(r )γt(r + θ )〉 + 〈γr(r )γr(r + θ )〉.
ξ−(θ ) = 〈γt(r )γt(r + θ )〉 − 〈γr(r )γr(r + θ )〉, (2)

where the shearγ = (γ t, γ r) is rotated into the local frame of the line

joining the centres of each galaxy pair separated by θ . The tangential

shear is γ t, while γ r is the rotated shear (having an angle of π/4

to the tangential component). The shear correlation function ξ+ is

related to the convergence power spectrum through

ξ+(θ ) = 1

2π

∫ ∞

0

dk k Pκ (k)J0(kθ ), (3)

where J0 is the zeroth-order Bessel function of the first kind. A

quantitative measurement of the lensing amplitude and the system-

atics is obtained by splitting the signal into its curl-free (E-mode)

and curl (B-mode) components, respectively. This method has been

advocated to help the measurement of the intrinsic alignment con-

tamination in the weak-lensing signal (Crittenden et al. 2001, 2002),

but it is also an efficient measure of the residual systematics from

the point spread function (PSF) correction (Pen, Van Waerbeke &

Mellier 2002).

The E and B modes derived from the shape of galaxies are un-

ambiguously defined only for the so-called aperture mass variance

〈M2
ap〉, which is a weighted shear variance within a cell of radius θ c.

The cell itself is defined as a compensated filter (Schneider et al.

1998), such that a constant convergence κ gives Map = 0. 〈M2
ap〉 can

be rewritten as a function of the tangential shear γ t if we express

γ = (γ t, γ r) in the local frame of the line connecting the aperture

centre to the galaxy. 〈M2
ap〉 is given by〈

M2
ap

〉 = 288

πθ4
c

∫ ∞

0

dk

k3
Pκ (k)[J4(kθc)]

2. (4)

The B-mode 〈M2
ap〉⊥ is obtained by replacing γ t with γ r. The aper-

ture mass is insensitive to the mass sheet degeneracy, and therefore

it provides an unambiguous splitting of the E and B modes. The

drawback is that aperture mass is a much better estimate of the

small-scale power than the large-scale power which can be seen

from the function J4(kθ c) in equation (4) which peaks at kθ c ∼ 5.
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Essentially, all scales larger than a fifth of the largest survey scale

remain inaccessible to Map. The large-scale part of the lensing signal

is lost by Map, while the remaining small-scale fraction is difficult to

interpret because the strongly non-linear power is difficult to predict

accurately (Van Waerbeke et al. 2002). It is therefore preferable to

decompose the shear correlation function into its E and B modes,

as it is a much deeper probe of the linear regime.

Following Crittenden et al. (2001, 2002), we define

ξ ′(θ ) = ξ−(θ ) + 4

∫ ∞

θ

dϑ

ϑ
ξ−(ϑ) − 12θ 2

∫ ∞

θ

dϑ

ϑ3
ξ−(ϑ). (5)

The E and B shear correlation functions are then given by

ξE(θ ) = ξ+(θ ) + ξ ′(θ )

2
, ξB(θ ) = ξ+(θ ) − ξ ′(θ )

2
. (6)

In the absence of systematics, ξB = 0 and ξE = ξ+ (equation 3). In

contrast with the Map statistics, the separation of the two modes

depends on the signal integrated out with the scales probed by

all surveys. One option is to calculate equation (6) using a fidu-

cial cosmology to compute ξ− on scales θ → ∞. As shown in

Heymans et al. (2005), changes in the choice of fiducial cosmol-

ogy do not significantly affect the results, allowing this statistic to

be used as a diagnostic tool for the presence of systematics. This

option does however prevent us from using ξE to constrain cosmol-

ogy. As the statistical noise on the measured ξE is ∼√
2 smaller than

the statistical noise on the measured ξ+, there is a more preferable

alternative. If the survey size is sufficiently large in comparison

to the scales probed by ξE, we can consider the unknown inte-

gral to be a constant that can be calibrated using the aperture mass

B-mode statistic 〈M2
ap(
θ )〉⊥. A range 
θ of angular scales where

〈M2
ap(
θ )〉⊥ ∼ 0 ensures that the B mode of the shear correlation

function is zero as well (within the error bars), at angular scales

∼
θ/5. In this analysis we have calibrated ξE,B for our survey

data in this manner. This alternative method has also been verified

by recalculating ξE,B using our final best-fitting cosmology to ex-

trapolate the signal. We find the two methods to be in very close

agreement.

3 DATA D E S C R I P T I O N

In this section we summarize the four weak-lensing surveys that

form the 100-deg2 weak-lensing survey: CFHTLS-Wide (Hoekstra

et al. 2006), GaBoDs (Hetterscheidt et al. 2007), RCS (Hoekstra

et al. 2002b) and VIRMOS-DESCART (Van Waerbeke et al. 2005),

see Table 1 for an overview. Note that we have chosen not to include

the CFHTLS-Deep data (Semboloni et al. 2006) in this analysis since

the effective area of the analysed data is only 2.3 deg2. Given the

Table 1. Summary of the published results from each survey used in this study. The values for σ 8 correspond to �m = 0.24, and are given for the Peacock &

Dodds (1996) method of calculating the non-linear evolution of the matter power spectrum. The statistics listed were used in the previous analyses; the shear

correlation functions ξE,B (equation 6), the aperture mass statistic 〈M2
ap〉 (equation (4)) and the top-hat shear variance 〈γ 2

E,B〉 (see Van Waerbeke et al. 2005).

CFHTLS-Wide GaBoDS RCS VIRMOS-DESCART

Area (deg2) 22.0 13.0 53 8.5

Nfields 2 52 13 4

Magnitude range 21.5 < i′ < 24.5 21.5 < R < 24.5 22 < RC < 24 21 < IAB < 24.5

〈zsource〉 0.81 0.78 0.6 0.92

zmedian 0.71 0.58 0.58 0.84

Previous analysis Hoekstra et al. (2006) Hetterscheidt et al. (2007) Hoekstra et al. (2002b) Van Waerbeke et al. (2005)

σ 8(�m = 0.24) 0.99 ± 0.07 0.92 ± 0.13 0.98 ± 0.16 0.96 ± 0.08

Statistic ξE,B(θ ) 〈M2
ap〉(θ ) 〈M2

ap〉(θ ) 〈γ 2
E,B〉(θ )

breadth of the parameter constraints obtained from this preliminary

data set there is little value to be gained by combining it with four

surveys which are among the largest available.

3.1 CFHTLS-Wide

The CFHTLS is a joint Canadian–French programme designed to

take advantage of Megaprime, the CFHT wide-field imager. This 36

CCD mosaic camera has a 1 × 1-deg2 field of view and a pixel scale

of 0.187 arcsec per pixel. The CFHTLS has been allocated ∼450

nights over a 5 yr period (starting in 2003), the goal is to complete

three independent survey components; deep, wide and very wide.

The wide component will be imaged with five broad-band filters:

u∗, g′, r′, i′, z′. With the exception of u∗ these filters are designed to

match the Sloan Digital Sky Survey (SDSS) photometric system

(Fukugita et al. 1996). The three wide fields will span a total of 170

deg2 on completion. In this study, as in Hoekstra et al. (2006), we

use data from the W1 and W3 fields that total 22 deg2 after masking,

and reach a depth of i′ = 24.5. For detailed information concerning

data reduction and object analysis the reader is referred to Hoekstra

et al. (2006) and Van Waerbeke et al. (2002).

3.2 GaBoDS

The GaBoDS data set was obtained with the wide field imager (WFI)

of the MPG/ESO 2.2-m telescope on La Silla, Chile. The camera

consists of eight CCDs with a 34 × 33-arcmin2 field of view and

a pixel scale of 0.238 arcsec pixel−1. The total data set consists of

52 statistically independent fields, with a total effective area (after

trimming) of 13 deg2. The magnitude limits of each field ranges

between RVEGA = 25.0 and RVEGA = 26.5 (this corresponds to a 5σ

detection in a 2-arcsec aperture). To obtain a homogeneous depth

across the survey we follow Hetterscheidt et al. (2007) performing

our lensing analysis with only those objects which lie in the complete

magnitude interval R ∈ [21.5, 24.5]. For further details of the data

set, and technical information regarding the reduction pipeline the

reader is referred to Hetterscheidt et al. (2007).

3.3 VIRMOS-DESCART

The DESCART weak-lensing project is a theoretical and obser-

vational programme for cosmological weak-lensing investigations.

The cosmic shear survey carried out by the DESCART team uses

the CFH12k data jointly with the VIRMOS survey to produce a

large homogeneous photometric sample in the BVRI broad-band fil-

ters. CFH12k is a 12 CCD mosaic camera mounted at the CFHT

prime focus, with a 42 × 28-arcmin2 field of view and a pixel scale
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of 0.206 arcsec pixel−1. The VIRMOS-DESCART data consist of

four uncorrelated patches of 2 × 2 deg2 separated by more than

40◦. Here, as in Van Waerbeke et al. (2005), we use IAB-band data

from all four fields, which have an effective area of 8.5 deg2 after

masking, and a limiting magnitude of IAB = 24.5 (this corresponds

to a 5σ detection in a 3-arcsec aperture). Technical details of the

data set are given in Van Waerbeke et al. (2001) and McCracken

et al. (2003), while an overview of the VIRMOS-DESCART survey

is given in Le Fèvre et al. (2004).

3.4 RCS

The RCS is a galaxy cluster survey designed to provide a large sam-

ple of optically selected clusters of galaxies with redshifts between

0.3 and 1.4. The final survey covers 90 deg2 in both RC and z′, spread

over 22 widely separated patches of ∼2.1 × 2.3 deg2. The northern

half of the survey was observed using the CFH12k camera on the

CFHT, and the southern half using the Mosaic II camera mounted

at the Cerro Tololo Inter-American Observatory, Victor M. Blanco

4-m telescope prime focus. This camera has an eight CCD WFI

with a 36 × 36-arcmin2 field of view and a pixel scale of 0.27 arc-

sec pixel−1. The data studied here, as in Hoekstra et al. (2002b),

consist of a total effective area of 53 deg2 of masked imaging data,

spread over 13 patches, with a limiting magnitude of 25.2 (corre-

sponding to a 5σ point source depth) in the RC band. 43 deg2 were

taken with the CFHT, the remaining 10 deg2 were taken with the

Blanco telescope. A detailed description of the data reduction and

object analysis is described in Hoekstra et al. (2002a), to which we

refer for technical details.

Figure 1. E and B modes of the shear correlation function ξ (filled and open points, respectively) as measured for each survey. Note that the 1σ errors on the

E modes include statistical noise, non-Gaussian sample variance (see Section 6) and a systematic error given by the magnitude of the B mode. The 1σ error

on the B modes is statistical only. The results are presented on a log–log scale, despite the existence of negative B modes. We have therefore collapsed the

infinite space between 10−7 and zero, and plotted negative values on a separate log scale mirrored on 10−7. Hence all values on the lower portion of the graph

are negative, their absolute value is given by the scaling of the graph. Note that this choice of scaling exaggerates any discrepancies. The solid lines show the

best-fitting �CDM model for �m = 0.24, h = 0.72, � = h�m, σ 8 given in Table 4, and n(z) given in Table 2. The latter two being chosen for the case of the

high-confidence redshift calibration sample, an n(z) modelled by equation (10), and the non-linear power spectrum estimated by Smith et al. (2003).

4 C O S M I C S H E A R S I G NA L

Lensing shear has been measured for each survey using the com-

mon KSB galaxy shape measurement method (Kaiser, Squires &

Broadhurst 1995; Luppino & Kaiser 1997; Hoekstra et al. 1998).

The practical application of this method to the four surveys differs

slightly, as tested by STEP (Heymans et al. 2006a; Massey et al.

2007a), resulting in a small calibration bias in the measurement of

the shear. Heymans et al. (2006a) define both a calibration bias (m)

and an offset of the shear (c),

γmeas − γtrue = mγtrue + c, (7)

where γ meas is the measured shear, γ true is the true shear signal,

and m and c are determined from an analysis of simulated data. The

value of c is highly dependent on the strength of the PSF distribution,

therefore the value determined through comparisons with simulated

data cannot be easily applied to real data whose PSF strength varies

across the image. Since an offset in the shear will appear as residual

B modes, we take c = 0, and focus on the more significant and oth-

erwise unaccounted for shear bias (m). Equation (7) then simplifies

to

γtrue = γmeas(m + 1)−1. (8)

The calibration bias for the CFHTLS-Wide, RCS and VIRMOS-

DESCART (HH analysis in Massey et al. (2007a)) is m =
−0.0017 ± 0.0088, and m = 0.038 ± 0.026 for GaBoDS (MH

analysis in Massey et al. (2007a)).

We measure the shear correlation functions ξE(θ) and ξB(θ )

(equation 6) for each survey, shown in Fig. 1. As discussed

in Section 2, these statistics are calibrated using the measured
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aperture-mass B-mode 〈M2
ap〉⊥. The 1σ errors on ξE include statis-

tical noise, computed as described in Schneider et al. (2002), non-

Gaussian sample variance (see Section 6 for details), and a system-

atic error added in quadrature. The systematic error for each angular

scale θ is given by the magnitude of ξB(θ ). The 1σ errors on ξB are

statistical only. We correct for the calibration bias by scaling ξE by

(1 + m)−2, the power of negative 2 arising from the fact that ξE is a

second-order shear statistic. When estimating parameter constraints

in Section 6.2 we marginalize over the error on the calibration bias,

which expresses the range of admissible scalings of ξE. Tables con-

taining the measured correlation functions and their corresponding

covariance matrices are included as supplementary material to the

online version of this article.

5 R E D S H I F T D I S T R I BU T I O N

The measured weak-lensing signal depends on the redshift dis-

tribution of the sources, as seen from equation (1). Past weak-

lensing studies (e.g. Massey et al. 2005; Van Waerbeke et al. 2005;

Hoekstra et al. 2006; Semboloni et al. 2006) have used the Hubble
Deep Field (HDF) photometric redshifts to estimate the shape of the

redshift distribution. Spanning only 5.3 arcmin2, the HDF suffers

from sample variance as described in Van Waerbeke et al. (2006),

where it is also suggested that the HDF fields may be subject to a

selection bias. This sample variance of the measured redshift distri-

bution adds an additional error to the weak-lensing analysis that is

not typically accounted for.

In this study we use the largest deep photometric redshift cat-

alogue in existence, from Ilbert et al. (2006), who have estimated

redshifts on the four Deep fields of the T0003 CFHTLS release. The

redshift catalogue is publicly available at terapix.iap.fr. The full pho-

tometric catalogue contains 522 286 objects, covering an effective

area of 3.2 deg2. A set of 3241 spectroscopic redshifts with 0 � z � 5

from the VIRMOS VLT Deep Survey were used as a calibration and

training set for the photometric redshifts. The resulting photometric

redshifts have an accuracy of σ(zphot−zspec)/(1+zspec) = 0.043 for i′AB =
22.5−24, with a fraction of catastrophic errors of 5.4 per cent. Ilbert

et al. (2006) demonstrate that their derived redshifts work best in

the range 0.2 � z � 1.5, having a fraction of catastrophic errors of

∼5 per cent in this range. The fraction of catastrophic errors in-

creases dramatically at z < 0.2 and 1.5 < z < 3 reaching ∼40 and

∼70 per cent, respectively. This is explained by a degeneracy be-

tween galaxies at zspec < 0.4 and 1.5 < zphot < 3 due to a mismatch

between the Balmer break and the intergalactic Lyman α forest

depression.

Van Waerbeke et al. (2006) estimate the expected sampling error

on the average redshift for such a photometric redshift sample to be

∼3 per cent/
√

4 = 1.5 per cent, where the factor of
√

4 comes from

the four independent CFHTLS-Deep fields, a great improvement

over the ∼10 per cent error expected for the HDF sample.

5.1 Magnitude conversions

In order to estimate the redshift distributions of the surveys, we cal-

ibrate the magnitude distribution of the photometric redshift sample

(henceforth the zp sample) to that of a given survey by converting

the CFHTLS filter set u∗g′ r′ i′ z′ to IAB magnitudes for VIRMOS-

DESCART and RVEGA magnitudes for RCS and GaBoDS. We em-

ploy the linear relationships between different filter bands given by

Blanton & Roweis (2007):

IAB = i ′ − 0.0647 − 0.7177[(i ′ − z′) − 0.2083],

RVEGA = r ′ − 0.0576 − 0.3718[(r ′ − i ′) − 0.2589] − 0.21. (9)

These conversions were estimated by fitting spectral energy distri-

bution templates to data from the SDSS. They are considered to be

accurate to 0.05 mag or better, resulting in an error on our estimated

median redshifts of at most 1 per cent, which is small compared to

the total error budget on the estimated cosmological parameters.

5.2 Modelling the redshift distribution n(z)

The galaxy weights used in each survey’s lensing analysis result in a

weighted source redshift distribution. To estimate the effective n(z)

of each survey we draw galaxies at random from the zp sample, using

the method described in section 6.5.1 of Wall & Jenkins (2003) to

reproduce the shape of the weighted magnitude distribution of each

survey. A Monte Carlo (bootstrap) approach is taken to account

for the errors in the photometric redshifts, as well as the statisti-

cal variations expected from drawing a random sample of galaxies

from the zp sample to create the redshift distribution. The process

of randomly selecting galaxies from the zp sample, and therefore

estimating the redshift distribution of the survey, is repeated 1000

times. Each redshift that is selected is drawn from its probability

distribution defined by the ±1 and ±3σ errors (since these are the

error bounds given in the catalogue of Ilbert et al. (2006)). The sam-

pling of each redshift is done such that a uniformly random value

within the 1σ error is selected 68 per cent of the time, and a uni-

formly random value within the three sigma error (but exterior to

the 1σ error) is selected 32 per cent of the time. The redshift distri-

bution is then defined as the average of the 1000 constructions, and

an average covariance matrix of the redshift bins is calculated.

At this point sample variance and Poisson noise are added to

the diagonal elements of the covariance matrix, following Van

Waerbeke et al. (2006). They provide a scaling relation between cos-

mic (sample) variance noise and Poisson noise where σ sample/σ Poisson

is given as a function of redshift for different-sized calibration sam-

ples. We take the curve for a 1-deg2 survey, the size of a single

CFHTLS-Deep field, and divide by
√

4 since there are four inde-

pendent 1-deg2 patches of sky in the photometric redshift sample.

Based on the photometric redshift sample of Ilbert et al. (2006)

we consider two redshift ranges, the full range of redshifts in the

photometric catalogues 0.0 � z � 4.0, and the high-confidence

range 0.2 � z � 1.5. The goal is to assess to what extent this will

affect the redshift distribution, and – in turn – the derived parameter

constraints.

The shape of the normalized redshift distribution is often assumed

to take the following form:

n(z) = β

z0 �((1 + α)/β)

(
z

z0

)α

exp

[
−

(
z

z0

)β
]
, (10)

whereα,β and z0 are free parameters. If the full range of photometric

redshifts is used the shape of the redshift distribution is poorly fitted

by equation (10), this is a result of the function’s exponential drop

off which cannot accommodate the number of high-redshift galax-

ies in the tail of the distribution (see Fig. 2). We therefore adopt

a new function in an attempt to better fit the normalized redshift

distribution,

n(z) = N
za

zb + c
, (11)
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Figure 2. Normalized redshift distribution for the CFHTLS-Wide survey, given by the histogram, where the error bars include Poisson noise and sample

variance of the photometric redshift sample. The dashed curve shows the best fit for equation (10), and the solid curve for equation (11). Left-hand panel:

Distribution obtained if all photometric redshifts are used, that is, 0.0 � z � 4.0, and χ2 is calculated in the range 0.0 � z � 2.5. Right-hand panel: Distribution

obtained if only the high-confidence redshifts are used, that is, 0.2 � z � 1.5, and χ2 is calculated over this range. The existence of counts for z > 1.5 is a

result of drawing the redshifts from their full probability distributions.

where a, b and c are free parameters, and N is a normalizing factor,

N =
(∫ ∞

0

dz′ z′a

z′b + c

)−1

. (12)

The best-fitting model is determined by minimizing the general-

ized χ 2 statistic:

χ 2 = (di − mi )C
−1(di − mi )

T, (13)

where C is the covariance matrix of the binned redshift distribution

as determined from the 1000 Monte Carlo constructions, di is the

number count of galaxies in the ith bin from the average of the 1000

distributions, and mi is the number count of galaxies at the centre

of the ith bin for a given model distribution. For each survey we

determine the best fit for both equations (10) and (11). In either case

we consider both the full range of redshifts and the high-confidence

range, the results are presented in Table 2.

Fig. 2 shows the best-fitting models to the CFHTLS-Wide survey,

when the full range of photometric redshifts is considered (left-hand

panel), equation (11) clearly fits the distribution better than equa-

tion (10), having reduced χ2 statistics of 2.41 and 8.94, respectively.

When we consider only the high-confidence redshifts (right-hand

panel of Fig. 2) both functions fit equally well having reduced χ2

statistics of 1.65 and 1.63 for equation (11) and equation (10), re-

spectively. Note that the redshift distribution as determined from

the data (histograms in Fig. 2) is non-zero at z > 1.5 for the high-

confidence photometric redshifts (0.2 � zp � 1.5) because of the

Monte Carlo sampling of the redshifts from their probability distri-

butions.

Table 2. The best-fitting model parameters for the redshift distribution, given by either equation (10) or equation (11). Models are fitted using the full calibration

sample of Ilbert et al. (2006) 0.0 � zp � 4.0, and using only the high-confidence region 0.2 � zp � 1.5. χ2
ν is the reduced χ2 statistic; 〈z〉 and zm are the

average and median redshift, respectively, calculated from the model on the range 0.0 � z � 4.0.

Equation (10) Equation (11)

α β z0 〈z〉 zm χ2
ν a b c N 〈z〉 zm χ2

ν

CFHTLS-Wide 0.836 3.425 1.171 0.802 0.788 1.63 0.723 6.772 2.282 2.860 0.848 0.812 1.65

GaBoDS 0.700 3.186 1.170 0.784 0.760 1.96 0.571 6.429 2.273 2.645 0.827 0.784 2.80
0.2 � zp � 1.5

RCS 0.787 3.436 1.157 0.781 0.764 1.41 0.674 6.800 2.095 2.642 0.823 0.788 1.60

VIRMOS-DESCART 0.637 4.505 1.322 0.823 0.820 1.48 0.566 7.920 6.107 6.266 0.859 0.844 2.06

CFHTLS-Wide 1.197 1.193 0.555 0.894 0.788 8.94 0.740 4.563 1.089 1.440 0.945 0.828 2.41

GaBoDS 1.360 0.937 0.347 0.938 0.800 7.65 0.748 3.932 0.800 1.116 0.993 0.832 2.40
0.0 � zp � 4.0

RCS 1.423 1.032 0.391 0.888 0.772 5.67 0.819 4.418 0.800 1.201 0.939 0.808 1.84

VIRMOS-DESCART 1.045 1.445 0.767 0.909 0.816 9.95 0.703 5.000 1.763 2.042 0.960 0.864 2.40

6 PA R A M E T E R E S T I M AT I O N

6.1 Maximum likelihood method

We investigate a 6D parameter space consisting of the mean matter

density �m, the normalization of the matter power spectrum σ 8, the

Hubble parameter h and n(z) the redshift distribution parametrized

by either α, β and z0 (equation 10) or a, b and c (equation 11). A flat

cosmology (�m + �� = 1) is assumed throughout, and the shape

parameter is given by � =�mh. The default priors are taken to be �m

∈ [0.1, 1], σ 8 ∈ [0.5, 1.2] and h ∈ [0.64, 0.8] with the latter in agree-

ment with the findings of the Hubble Space Telescope key project

(Freedman et al. 2001). The priors on the redshift distribution were

arrived at using a Monte Carlo technique. This is necessary since the

three parameters of either equation (10) or equation (11) are very

degenerate, hence simply finding the 2 or 3σ levels of one parameter

while keeping the other two fixed at their best-fitting values does

not fairly represent the probability distribution of the redshift pa-

rameters. The method used ensures a sampling of parameter triplets

whose number count follow the 3D probability distribution; that is

68 per cent lie within the 1σ volume, 97 per cent within the 2σ

volume, etc. We find 100 such parameter trios and use them as the

prior on the redshift distribution, therefore this is a Gaussian prior

on n(z).

Given the data vector ξ, which is the shear correlation function

(ξE of equation 6) as a function of scale, and the model prediction

m (�m, σ 8, h, n(z)) the likelihood function of the data is given by

L = 1√
(2π)n|C| exp

[
−1

2
(ξ − m)C−1(ξ − m)T

]
, (14)
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Table 3. Data used for each survey to calculate the Gaussian contribution

to the sample variance covariance matrix. Aeff is the effective area, neff the

effective galaxy number density and σ e the intrinsic ellipticity dispersion.

Aeff neff σ e

(deg2) (arcmin−2)

CFHTLS-Wide 22 12 0.47

RCS 53 8 0.44

VIRMOS-DESCART 8.5 15 0.44

GaBoDS 13 12.5 0.50

where n is the number of angular scale bins and C is the n × n
covariance matrix. The shear covariance matrix can be expressed as

Ci j = 〈(ξi − μi )(ξ j − μ j )〉, (15)

where μi is the mean of the shear ξi at scale i, and angular brackets

denote the average over many independent patches of sky. To obtain

a reasonable estimate of the covariance matrix for a given set of data

one needs many independent fields, this is not the case for either the

CFHTLS-Wide or the VIRMOS-DESCART surveys.

We opt to take a consistent approach for all four data sets by

decomposing the shear covariance matrix as C = Cn +CB +Cs,

where Cn is the statistical noise, CB is the absolute value of the

residual B mode and Cs is the sample variance covariance matrix. Cn

can be measured directly from the data, it represents the statistical

noise inherent in a finite data set. CB is diagonal and represents

the addition of the B mode in quadrature to the uncertainty, this

provides a conservative limit to how well the lensing signal can be

determined.

For Gaussian sample variance the matrix Cs can be computed ac-

cording to Schneider et al. (2002), assuming an effective survey area

Aeff, an effective number density of galaxies neff and an intrinsic ellip-

ticity dispersion σ e (see Table 3). However, Schneider et al. (2002)

assume Gaussian statistics for the fourth-order moment of the shear

correlation function – a necessary simplification to achieve an ana-

lytic form for the sample variance covariance matrix. We use the cal-

ibration presented by Semboloni et al. (2007), estimated from ray-

tracing simulations, to account for non-Gaussianities. Their work

focuses on the following quantity:

F (ϑ1, ϑ2) = Cmeas
s (ξ+; ϑ1, ϑ2)

CGaus
s (ξ+; ϑ1, ϑ2)

, (16)

where F (ϑ1, ϑ2) is the ratio of the sample variance covariance

measured from N-body simulations [Cmeas
s (ξ+; ϑ1, ϑ2)] to that ex-

pected from Gaussian effects alone [CGaus
s (ξ+; ϑ1, ϑ2)]. It is found

that F (ϑ1, ϑ2) increases significantly above unity at scales smaller

than ∼10 arcmin, increasing with decreasing scale, it reaches an or-

der of magnitude by ∼2 arcmin. The parametrized fit as a function

of mean source redshift is given by

F (ϑ1, ϑ2) = p1(z)[
ϑ2

1 ϑ2
2

]p2(z)
,

p1(z) = 16.9

z0.95
− 2.19,

p2(z) = 1.62 z−0.68 exp(−z−0.68) − 0.03. (17)

A fiducial model is required to calculate the Gaussian covariance

matrix, it is taken as �m = 0.3, � = 0.7, σ 8 = 0.8, h = 0.72 and

the best-fitting n(z) model (see Table 2). We then use the above

prescription to account for non-Gaussianities, increasing Cs every-

where F is above unity. For each survey the total covariance matrix

(C =Cn +Cs +CB) is included as supplementary material to the

online version of this article.

To test this method we compare our analytic covariance matrix

for GaBoDS with that found by measuring it from the data (Hetter-

scheidt et al. 2007). Since GaBoDS images 52 independent fields

it is possible to obtain an estimate of C directly from the data. The

contribution from the B modes (CB) is not added to our analytic

estimate in this case, since its inclusion is meant as a conservative

estimate of the systematic errors. We find a median per cent differ-

ence along the diagonal of ∼15 per cent, which agrees well with the

accuracy obtained for simulated data (Semboloni et al. 2007).

6.2 Joint constraints on σ8 and Ωm

For the combined survey we place joint constraints on σ 8 and �m as

shown in Fig. 3. Fitting to the maximum likelihood region we find

σ 8(�m/0.24)0.59 = 0.84 ± 0.05, where the quoted error is 1σ for

a hard prior of �m = 0.24. This result assumes a flat Lambda cold

dark matter (�CDM) cosmology and adopts the non-linear matter

power spectrum of Smith et al. (2003). The redshift distribution

is estimated from the high-confidence CFHTLS-Deep photomet-

ric redshifts using the standard n(z) model given by equation (10).

Marginalization was performed over h ∈ [0.64, 0.80] with flat pri-

ors, n(z) with Gaussian priors as described in Section 6.1, and a

calibration bias of the shear signal with flat priors as discussed in

Section 4. The corresponding constraints from each survey are pre-

sented in Fig. 4 and tabulated in Table 4. Results in Table 4 are

presented for two methods of calculating the non-linear power spec-

trum; Peacock & Dodds (1996) and Smith et al. (2003). We find a

difference of approximately 3 per cent in the best-fitting σ 8 values,

where results using Smith et al. (2003) are consistently the smaller

Figure 3. Joint constraints on σ 8 and �m from the 100-deg2 weak-lensing

survey assuming a flat �CDM cosmology and adopting the non-linear matter

power spectrum of Smith et al. (2003). The redshift distribution is estimated

from the high-confidence photometric redshift catalogue (Ilbert et al. 2006),

and modelled with the standard functional form given by equation (10).

The contours depict the 0.68, 0.95 and 0.99 per cent confidence levels. The

models are marginalized, over h = 0.72 ± 0.08, shear calibration bias (see

Section 4) with uniform priors and the redshift distribution with Gaussian

priors (see Section 6.1). Similar results are found for all other cases, as listed

in Table 4.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 381, 702–712



100-deg2 weak-lensing survey 709

Figure 4. Joint constraints on σ 8 and �m for each survey assuming a flat

�CDM cosmology and adopting the non-linear matter power spectrum of

Smith et al. (2003). The redshift distribution is estimated from the high-

confidence photometric redshift catalogue (Ilbert et al. 2006), and modelled

with the standard functional form given by equation (10). The contours

depict the 0.68, 0.95 and 0.99 per cent confidence levels. The models are

marginalized, over h = 0.72 ± 0.08, shear calibration bias (see Section 4)

with uniform priors, and the redshift distribution with Gaussian priors (see

Section 6.1). Similar results are found for all other cases, as listed in Table 4.

of the two. The more recent results of Smith et al. (2003) are more

accurate, and should be preferred over those of Peacock & Dodds

(1996).

The contribution to the error budget due to the conservative addi-

tion of the B modes to the covariance matrix is small, amounting to

at most 0.01 in the 1σ error bar for a hard prior of �m = 0.24. The

analysis was also performed having removed all scales where the

B modes are not consistent with zero (see Fig. 1). The resulting

change in the best-fitting cosmology is small, shifting the best-fitting

σ 8 for an �m of 0.24 by at most 0.03 (for CFHTLS-Wide), and on

average by ∼0.01 across all four surveys. These changes are well

within our error budget.

We present a comparison of the measured σ 8 values with those

previously published in Fig. 5. The quoted σ 8 values are for a ver-

Table 4. Joint constraints on the amplitude of the matter power spectrum σ 8, and the matter energy density �m, parametrized as σ 8(�m/0.24)α = β. The

errors are 1σ limits, calculated for a hard prior of �m = 0.24.

0.0 � zp � 4.0 0.2 � zp � 1.5

Equation (10) Equation (11) Equation (10) Equation (11)

β α β α β α β α

CFHTLS-Wide 0.84 ± 0.06 0.55 0.81 ± 0.07 0.54 0.86 ± 0.06 0.56 0.84 ± 0.06 0.55

GaBoDS 0.93 ± 0.08 0.60 0.89 ± 0.09 0.59 1.01 ± 0.09 0.66 0.98 ± 0.10 0.63
Smith et al. (2003)

RCS 0.75 ± 0.07 0.55 0.73 ± 0.08 0.55 0.78 ± 0.07 0.57 0.76 ± 0.07 0.56

VIRMOS-DESCART 0.99 ± 0.08 0.59 0.95 ± 0.07 0.58 1.02 ± 0.07 0.60 1.00 ± 0.08 0.59

Combined 0.80 ± 0.05 0.57 0.77 ± 0.05 0.56 0.84 ± 0.05 0.59 0.82 ± 0.06 0.58

CFHTLS-Wide 0.87 ± 0.07 0.57 0.83 ± 0.06 0.56 0.89 ± 0.06 0.58 0.87 ± 0.06 0.57

GaBoDS 0.96 ± 0.09 0.62 0.93 ± 0.08 0.60 1.04 ± 0.09 0.66 1.01 ± 0.09 0.64
Peacock & Dodds (1996)

RCS 0.77 ± 0.07 0.57 0.74 ± 0.07 0.56 0.81 ± 0.08 0.58 0.79 ± 0.08 0.58

VIRMOS-DESCART 1.02 ± 0.07 0.60 0.98 ± 0.07 0.59 1.05 ± 0.07 0.62 1.03 ± 0.08 0.61

Combined 0.82 ± 0.05 0.58 0.79 ± 0.05 0.57 0.86 ± 0.06 0.60 0.84 ± 0.06 0.59

0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

σ 8

CFHTLS-Wide GaBoDS RCS VIRMOS-Descart
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Figure 5. Values for σ 8 when �m is taken to be 0.24, filled circles (solid)

give our results with 1σ error bars, open circles (dashed) show the re-

sults from previous analyses (Table 1). Our results are given for the high-

confidence photometric redshift catalogue, using the functional form for

n(z) given by equation (10), and the Smith et al. (2003) prescription for the

non-linear power spectrum. The literature values use the Peacock & Dodds

(1996) prescription for non-linear power, and are expected to be ∼3 per cent

higher than would be the case for Smith et al. (2003). The forward slashed

hashed region (enclosed by solid lines) shows the 1σ range allowed by our

combined result, the back-slashed hashed region (enclosed by dashed lines)

shows the 1σ range given by the WMAP 3-yr results.

tical slice through σ 8−�m space at an �m of 0.24, and all error

bars denote the 1σ region from the joint constraint contours. Our

error bars (filled circles) are typically smaller than those from the

literature (open circles) mainly due to the improved estimate of the

redshift distribution. Our updated result for each survey agrees with

the previous analysis within the error bars, this remains true if the

literature values are lowered by ∼3 per cent to account for the dif-

ference in methods used for the non-linear power spectrum. Also

plotted are the 1σ limits for the combined result and Wilkinson Mi-
crowave Anisotropy Probe (WMAP) 3-yr constraints (forward and

back slashed hash regions, respectively), our result is consistent with

WMAP at the 1σ level.

In addition to our main analysis we have investigated the impact

of using four different models for the redshift distribution. These

models are dependent on which functional form is used (equation 10

or 11) and which range is used for the photometric redshift sample

(0.0 � zp � 4.0 or 0.2 � zp � 1.5). Table 4 gives the best-fitting joint

constraints on σ 8 and �m, for each survey as well as the combined

survey result.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 381, 702–712



710 J. Benjamin et al.

Comparing the best-fitting σ 8 values with the average redshifts

listed in Table 2, we find, as expected, that higher redshift mod-

els result in lower values for σ 8. Attempting to quantify this rela-

tion in terms of mean redshift fails. Changes in mean redshift are

large (∼14 per cent) between the photometric samples, compared to

∼6 per cent between the two n(z) models; however, a ∼5 per cent

change in σ 8 is seen for both. The median redshift is a much better

gauge, changing by ∼4 per cent between both photometric samples

and n(z) models. Precision cosmology at the 1 per cent level will

necessitate roughly the same level of precision of the median red-

shift. Future cosmic shear surveys will require thorough knowledge

of the complete redshift distribution of the sources, in particular to

what extent a high-redshift tail exists.

7 D I S C U S S I O N A N D C O N C L U S I O N

We have performed an analysis of the 100-deg2 weak-lensing survey

that combines four of the largest weak-lensing data sets in existence.

Our results provide the tightest weak-lensing constraints on the am-

plitude of the matter power spectrum σ 8 and matter density �m and

a marked improvement on accuracy compared to previous results.

Using the non-linear prediction of the cosmological power spectra

given in Smith et al. (2003), the high-confidence region of the pho-

tometric redshift calibration sample, and equation (10) to model the

redshift distribution, we find σ8( �m

0.24
)0.59 = 0.84 ± 0.05 for a hard

prior of �m = 0.24.

Our analysis differs from previous weak-lensing analyses in three

important aspects. We correctly account for non-Gaussian sample

variance using the method of Semboloni et al. (2007), thus im-

proving upon the purely Gaussian contribution given by Schneider

et al. (2002). Using the results from STEP (Massey et al. 2007a)

we correct for the shear calibration bias and marginalize over our

uncertainty in this correction. In addition we use the largest deep

photometric redshift catalogue in existence (Ilbert et al. 2006) to

provide accurate models for the redshift distribution of sources; we

also account for the effects of sample variance in these distributions

(Van Waerbeke et al. 2006).

Accounting for the non-Gaussian contribution to the shear covari-

ance matrix, which dominates on small scales, is very important. The

non-Gaussian contribution is about twice that of the Gaussian con-

tribution alone at a scale of 10 arcmin, this discrepancy increases

to about an order of magnitude at 2 arcmin. This increases the er-

rors on the shear correlation function at small scales, leading to

slightly weaker constraints on cosmology. Ideally we would esti-

mate the shear covariance directly from the data, as is done in the

previous analyses for both GaBoDS (Hetterscheidt et al. 2007) and

RCS (Hoekstra et al. 2002b). However, since we cannot accomplish

this for all the surveys in this work, due to a deficit of indepen-

dent fields, we opt for a consistent approach by using the analytic

treatment along with the non-Gaussian calibration as described in

Semboloni et al. (2007).

Accurate determination of the redshift distribution of the sources

is crucial for weak-lensing cosmology since it is strongly degener-

ate with cosmological parameters. Past studies using small external

photometric catalogues (such as the HDF) suffered from sample

variance, a previously unquantified source of error that is taken into

account here using the prescription of Van Waerbeke et al. (2006).

In most cases the revised redshift distributions were in reasonable

agreement with previous results; however, this was not the case for

the RCS survey. We found that the previous estimation was biased

toward low redshift (see Fig. 6), resulting in a significantly larger

estimation of σ 8(0.86+0.04
−0.05 for �m = 0.3) than is presented here
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Figure 6. Redshift distributions for the RCS survey. The solid line shows

the best-fitting n(z) from Hoekstra et al. (2002b), the dashed curve is our

best-fitting n(z), the average redshifts are 0.6 and 0.78, respectively.

(0.69 ± 0.07). This difference is primarily due to a problem in the

filter set conversion, between those used to image HDF (F300W,

F450W, F606W and F814W) and the Cousins RC filter used by

RCS. The less severe changes in σ 8 for the other surveys, shown

in Fig. 5, can also be largely understood from the updated redshift

distributions. Comparing the median redshifts from the previous

results (Table 1) to those presented here (Table 2) there exists a

clear trend associating increases in median redshift to decreases in

estimated σ 8 (see Fig. 5) and vice versa. Our estimate of median

redshift for CFHTLS-Wide increases by ∼10 per cent and a corre-

sponding decrease in σ 8 is seen, a similar correspondence is seen for

VIRMOS-DESCART where the decreased median redshift in this

analysis results in a proportionately larger value of σ 8. The change

in σ 8 for GaBoDS, however, cannot be understood by comparing

median redshifts since the previous results use a piece wise function

to fit the redshift distribution, hence comparing median redshifts is

not meaningful.

Our revised cosmological constraints introduce tension, at the

∼2σ level, between the results from the VIRMOS-DESCART and

RCS survey as shown in Fig. 5. In this analysis we have accounted

for systematic errors associated with shear measurement but have

neglected potential systematics arising from correlations between

galaxy shape and the underlying density field. This is valid in the

case of intrinsic galaxy alignments which are expected to contribute

less than a per cent of the cosmic shear signal for the deep surveys

used in this analysis (Heymans et al. 2006b). What is currently

uncertain however is the level of systematic error that arises from

shear–ellipticity correlations (Hirata & Seljak 2004; Mandelbaum

et al. 2006; Heymans et al. 2006b; Hirata et al. 2007) which could

reduce the amplitude of the measured shear correlation function by

∼10 per cent (Heymans et al. 2006b). It has been found from the

analysis of the SDSS (Mandelbaum et al. 2006; Hirata et al. 2007)

that different morphological galaxy types contribute differently to

this effect. It is therefore possible that the different R-band imaging

of the RCS and the slightly lower median survey redshift make it

more susceptible to this type of systematic error. Without complete

redshift information for each survey, however, it is not possible to

test this hypothesis or to correct for this potential source of error.

In the future deep multicolour data will permit further investigation

and correction for this potential source of systematic error.

In addition to using the best available photometric redshifts, we

marginalize over the redshift distribution by selecting parameter

triplets from their full 3D probability distribution, instead of fixing
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two parameters and varying the third as is often done. Thus the

marginalization is representative of the full range of n(z) shapes,

which are difficult to probe by varying one parameter due to degen-

eracies.

We have conducted our analysis using two different functional

forms for the redshift distribution, the standard form given in equa-

tion (10) and a new form given by equation (11). The new function

is motivated by the presence of a high-z tail when the entire pho-

tometric catalogue (0.0 � zp � 4.0) is used to estimate the redshift

distribution, equation (10) does a poor job of fitting this distribution

(Fig. 2). However, when we restrict the photometric catalogue to

the high-confidence region (0.2 � zp � 1.5) both functions fit well,

and the tendency for equation (11) to exhibit a tail towards high-z
increases the median redshift resulting in a slightly lower estimate

of σ 8. Though the tail of the distribution has only a small fraction

of the total galaxies, they may have a significant lensing signal ow-

ing to their large redshifts. The influences of the different redshift

distributions on cosmology is consistent within our 1σ errors but

as survey sizes grow and statistical noise decreases, such differ-

ences will become significant. As the CFHTLS-Deep will be the

largest deep photometric redshift catalogue for some years to come,

this possesses a serious challenge to future surveys attempting to

do precision cosmology. To assess the extent of any high-redshift

tail, future surveys should strive to include photometric bands in

the near-infrared, allowing for accurate redshift estimations beyond

z = 1.5.

For �m = 0.24, the combined results using equation (10) are

0.80 ± 0.05 and 0.84 ± 0.05 for the unrestricted and high-confidence

photometric redshifts, respectively, using equation (11) we find 0.77

± 0.05 and 0.82 ± 0.06 (these results use the non-linear power spec-

trum given by Smith et al. (2003)). For completeness we provide

results for both the Smith et al. (2003) and Peacock & Dodds (1996)

non-linear power spectra, the resulting σ 8 values differ by ∼3 per

cent of the Smith et al. (2003) value which is consistently the smaller

of the two. The Smith et al. (2003) study is known to provide a more

accurate estimation of the non-linear power than that of Peacock &

Dodds (1996), for this reason we prefer the results obtained using

the Smith et al. (2003) model. However, given the magnitude of vari-

ations resulting from different redshift distributions, this difference

is not an important issue in the current work. Accurately determin-

ing the non-linear matter power spectrum is another challenge for

future lensing surveys intent on precision cosmology. Alternatively,

surveys focusing only on the large-scale measurement of the shear

(Fu et al. 2007) are able to avoid complications arising from the

estimation of non-linear power on small scales.

Surveys of varying depth provide different joint constraints in

the �m−σ 8 plane, thus combining their likelihoods produces some

degeneracy breaking. Taking the preferred prescription for the non-

linear power spectrum, and using equation (10) along with the high-

confidence photometric redshifts to estimate the redshift distribu-

tion, we find an upper limit of �m < ∼0.4 and a lower limit of

σ 8 > ∼0.6 both at the 1σ level (see Fig. 3).

Weak lensing by a large-scale structure is an excellent means

of constraining cosmology. The unambiguous interpretation of the

shear signal allows for a direct measure of the dark matter power

spectrum, allowing for a unique and powerful means of constraining

cosmology. Our analysis has shown that accurately describing the

redshift distribution of the sources is vital to future surveys intent on

precision cosmology. Including near-infrared bands to photometric

redshift estimates will be a crucial step in achieving this goal, al-

lowing for reliable redshift estimates at z > 1.5 and assessing the

extent of a high-z tail.
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A P P E N D I X A : S H E A R C O R R E L AT I O N
F U N C T I O N A N D C OVA R I A N C E M AT R I X
F O R T H E S U RV E Y S

We present both the measured shear correlation function and the

covariance matrix for each survey. The shear correlation function,

given in Tables S1, S2, S3 and S4 for the CFHTLS-Wide, GaBoDS,

RCS and VIRMOS-DESCART surveys, respectively, has been cal-

ibrated on large scales where 〈M2
ap(
θ )〉⊥ is consistent with zero as

described in Section 4.

Tables S5, S6, S7 and S8 for the CFHTLS-Wide, GaBoDS, RCS

and VIRMOS-DESCART surveys, respectively, tabulate the corre-

lation coefficient matrix:

ri j = Ci j〈
ξ 2

i

〉1/2〈
ξ 2

j

〉1/2
, (A1)

where C is the covariance matrix for each survey, as described in

Section 6. We also tabulate 〈ξ 2
i 〉 so that the covariance matrix may

be calculated from the correlation coefficient matrix. Note that 〈ξ 2
i 〉

is the variance of the ith scale, equivalent to Ci i .

Tables S1–S8 are available as supplementary material to the on-

line version of this article.

S U P P L E M E N TA RY M AT E R I A L

The following supplementary material is available for this article:

Table S1. The columns are scale in arcminutes, E and B modes

of the shear correlation function for the CFHTLS-Wide survey and

finally the statistical contribution to the error given as the standard

deviation.

Table S2. The columns are scale in arcminutes, E and B modes of

the shear correlation function for GaBoDS and finally the statistical

contribution to the error given as the standard deviation.

Table S3. The columns are scale in arcminutes, E and B modes of

the shear correlation function for the RCS and finally the statistical

contribution to the error given as the standard deviation.

Table S4. The columns are scale in arcminutes, E and B modes

of the shear correlation function for VIRMOS-DESCART and fi-

nally the statistical contribution to the error given as the standard

deviation.

Table S5. The first column is 〈ξ 2
i 〉 given in units of 10−10, and

can be used to reconstruct the covariance matrix C. The remaining

columns give the correlation coefficient matrix (r) for the CFHTLS-

Wide survey, which is an n × n matrix, where the n scales are given

in the first column of Table S1. Small to large scales are arranged in

ascending order from the top left-hand corner to the bottom right-

hand corner of the matrix.

Table S6. The first column is 〈ξ 2
i 〉 given in units of 10−10, and

can be used to reconstruct the covariance matrix C. The remaining

columns give the correlation coefficient matrix (r) for the GaBoDS

survey, which is an n × n matrix, where the n scales are given in

the first column of Table S2. Small to large scales are arranged in

ascending order from the top left-hand corner to the bottom right-

hand corner of the matrix.

Table S7. The first column is 〈ξ 2
i 〉 given in units of 10−10, and

can be used to reconstruct the covariance matrix C. The remaining

columns give the correlation coefficient matrix (r) for the RCS sur-

vey, which is an n × n matrix, where the n scales are given in the first

column of Table S3. Small to large scales are arranged in ascending

order from the top left-hand corner to the bottom right-hand corner

of the matrix.

Table S8. The first column is 〈ξ 2
i 〉 given in units of 10−10, and

can be used to reconstruct the covariance matrix C. The remaining

columns give the correlation coefficient matrix (r) for the VIRMOS-

DESCART survey, which is an n × n matrix, where the n scales are

given in the first column of Table S4. Small to large scales are

arranged in ascending order from the top left-hand corner to the

bottom right-hand corner of the matrix.

This material is available as part of the online paper

from: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-

2966.2007.12202.x

(this link will take you to the article abstract).
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content or functionality of any supplementary materials supplied
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