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AB S TRACT

We combine data from a number of N-body simulations to predict the abundance of dark

haloes in cold dark matter (CDM) universes over more than four orders of magnitude in

mass. A comparison of different simulations suggests that the dominant uncertainty in our

results is systematic and is smaller than 10±30 per cent at all masses, depending on the halo

definition used. In particular, our `Hubble volume' simulations of tCDM and LCDM

cosmologies allow the abundance of massive clusters to be predicted with uncertainties well

below those expected in all currently planned observational surveys. We show that for a

range of CDM cosmologies and for a suitable halo definition, the simulated mass function is

almost independent of epoch, of cosmological parameters and of the initial power spectrum

when expressed in appropriate variables. This universality is of exactly the kind predicted by

the familiar Press±Schechter model, although this model predicts a mass function shape that

differs from our numerical results, overestimating the abundance of `typical' haloes and

underestimating that of massive systems.

Key words: gravitation ± methods: numerical ± cosmology: theory ± dark matter.

1 INTRODUCTION

Accurate theoretical predictions for halo mass functions are

needed for a number of reasons. For example, they are a primary

input for modelling galaxy formation, since current theories

assume galaxies to result from the condensation of gas in halo

cores (White & Rees 1978, and many subsequent papers; see

Somerville & Primack 1999 for a recent overview). The abun-

dance of the most massive haloes is sensitive to the overall

amplitude of mass fluctuations, while the evolution of this

abundance is sensitive to the cosmological density parameter, V0.

As a result, identifying massive haloes with rich galaxy clusters

can provide an estimate both of the amplitude of the primordial

density fluctuations and of the value of V0; recent discussions

include Henry (1997), Eke et al. (1998), Bahcall & Fan (1998),

Blanchard & Bartlett (1998) and the Virgo consortium presenta-

tion of the Hubble volume simulations used below (Evrard et al.

2000). The mass function is also a critical ingredient in the

apparently strong constraints on cosmological parameters (princi-

pally V0 and L) which can be derived from the observed incidence

of strong gravitational lensing (e.g. Bartelmann et al. 1998; Falco,

Kochanek & Munoz 1998).

As the observational data relevant to these issues improve, the

need for accurate theoretical predictions increases. By far the most

widely used analytic formulae for halo mass functions are based

on extensions of the theoretical framework first sketched by Press

& Schechter (1974). Unfortunately, none of these derivations is

sufficiently rigorous that the resulting formulae can be considered

accurate beyond the regime where they have been tested against

N-body simulations. In this paper, we combine mass functions

from simulations of four popular versions of the cold dark matter

(CDM) cosmology to obtain results valid over a wider mass range

and to higher accuracy than has been possible before. These mass

functions show a regularity that allows them all to be fitted by a

single interpolation formula despite the wide range of epochs and

masses that they cover. This formula can be used to obtain

accurate predictions for CDM models with parameters other than

those we have simulated explicitly.

Although the analytical framework of the Press±Schechter (PS)

model has been greatly refined and extended in recent years, in

particular to allow predictions for the merger histories of dark

matter haloes (Bond et al. 1991; Bower 1991; Lacey & Cole

1993), it is well known that the PS mass function, while quali-

tatively correct, disagrees in detail with the results of N-body

simulations. Specifically, the PS formula overestimates the abun-

dance of haloes near the characteristic mass Mp and under-

estimates the abundance in the high-mass tail (Efstathiou & Rees

1988; Efstathiou et al. 1988; White, Efstathiou & Frenk 1993;
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Lacey & Cole 1994; Eke, Cole & Frenk 1996; Gross et al. 1998;

Governato et al. 1999). Recent work has studied whether this

discrepancy can be resolved by replacing the spherical collapse

model of the standard PS analysis by ellipsoidal collapse (e.g.

Monaco 1997a,b; Lee & Shandarin 1998; Sheth, Mo & Tormen

1999). Sheth et al. (1999) were able to show that this replacement

plausibly leads to a mass function almost identical to that which

Sheth & Tormen (1999) had earlier fitted to a subset of the

numerical data we analyse below. Note that at present there is no

good numerical test of analytic predictions for the low-mass tail of

the mass function, and our analysis in this paper does not remedy

this situation.

Several authors have considered halo mass functions in models

with scale-free Gaussian initial fluctuations. The attraction is that

clustering should be self-similar in time in such models when

V � 1: This expectation is easy to test numerically and appears

substantiated by the available simulation data (Efstathiou et al.

1988; Lacey & Cole 1994). Deviations from self-similarity can be

used to isolate numerical artefacts that break the scaling. The

CDM power spectrum is not scale-free although the variation of

the effective spectral index with wavenumber is gentle. Recently, a

number of very large CDM simulations have been performed by

Gross et al. (1998) and Governato et al. (1999). These confirmed

the deviations from the PS prediction found in earlier work and

extended coverage to both higher and lower masses. An interest-

ing question is how the non-power-law nature of the fluctuation

spectrum affects the mass function. PS theory predicts there to be

no effect when the mass function is expressed in suitable vari-

ables. However, Governato et al. (1999) find evidence that the

high-mass deviation from the PS prediction increases with

increasing redshift, although the effect is small.

The essence of group finding is to convert a discrete

representation of a continuous density field into a countable set

of `objects'. In general, this conversion is affected both by the

degree of discreteness in the realization (the particle mass) and by

the detailed characteristics of the object definition algorithm. The

definition of object boundaries is somewhat arbitrary, and one can

expect the characteristics of the object set to vary according to the

specific assumptions adopted. This introduces uncertainties when

comparing simulations and analytic models. We examine here two

of the standard algorithms used in earlier literature, the friends-of-

friends and spherical overdensity group finders (Davis et al. 1985;

Lacey & Cole 1994). Motivated by spherical collapse models,

both attempt to identify virialized regions that are overdense by a

factor ,200 with respect to the global mean. Some comparisons

of these algorithms have already been published by Lacey & Cole

(1994) who found small but measurable differences.

In reality, haloes possess a variety of physical characteristics

that can be employed by observers to form new, and possibly

different, countable sets. For example, the Coma cluster is a single

object to an X-ray observer but contains hundreds of visible

galaxies. Similarly, very high-resolution simulations reveal a

myriad of smaller, self-bound `sub-haloes' within the virial region

of each parent halo (e.g. Moore et al. 1999; Klypin et al. 1999).

The distinction between the larger halo and its substructure is

largely one of density: the sub-haloes are bounded at a much

higher density than the parent object. Such subtleties further

complicate comparisons between theory, experiment and observa-

tion, and in all such analysis it is important to take careful account

of the specific algorithms used to define the objects considered.

In Section 2, we describe the simulations and the two halo

finders that we employ when determining halo mass functions. In

Section 3, we investigate the consistency of the mass functions

derived from different simulations of the tCDM and LCDM

cosmologies. In Section 4, we present our results for the tCDM

and LCDM models and compare them with PS theory and with

the Sheth±Tormen fitting formula. In Section 5, we examine the

evolution of the high-mass end of the mass function with redshift.

Using the insight that this provides, we generalize our results and

show that, if a single linking length is used to define haloes, then a

single fitting formula, very close to that proposed by Sheth &

Tormen, accurately describes the mass functions in tCDM,

LCDM, SCDM and OCDM models over a wide range of redshifts.

We present and discuss our conclusions in Section 6, where we

also explain how to obtain some of the simulation data and the

analysis software used in our study. Appendix A tests the influ-

ence of numerical parameters on our measured mass functions,

while Appendix B gives `best-fitting' analytic representations of a

number of our mass functions.

2 S IMULATION DETAILS

2.1 The simulations

For the main analysis of this paper we measure halo mass

functions in a number of N-body simulations carried out by the

Virgo consortium for two cosmological models, tCDM and

LCDM, as introduced by Jenkins et al. (1998). The simulation

parameters are listed in Table 1. The largest calculations are the

two `Hubble volume' simulations, each with 109 particles in boxes

Table 1. N-body simulation parameters.

Run V0 L0 G s8 Npart Lbox (h
21Mpc) mpart (h

21M() rsoft (h
21 kpc)

tCDM-gif 1.0 0.0 0.21 0.60 16 777 216 84.5 1.00� 1010 30
tCDM-int 1.0 0.0 0.21 0.60 16 777 216 160.3 6.82� 1010 10
tCDM-512 1.0 0.0 0.21 0.51 134 217 728 320.7 6.82� 1010 30
tCDM-virgo 1.0 0.0 0.21 0.60 16 777 216 239.5 2.27� 1011 30
tCDM-hub 1.0 0.0 0.21 0.60 1000 000 000 2000.0 2.22� 1012 100

LCDM-gif 0.3 0.7 0.21 0.90 16 777 216 141.3 1.40� 1010 25
LCDM-512 0.3 0.7 0.21 0.90 134 217 728 479.0 6.82� 1010 30
LCDM-hub 0.3 0.7 0.21 0.90 1000 000 000 3000.0 2.25� 1012 100

tCDM-test1 1.0 0.0 0.21 0.60 1000 000 200.0 2.22� 1012 100
tCDM-test2 1.0 0.0 0.21 0.60 1000 000 200.0 2.22� 1012 30
tCDM-test3 1.0 0.0 0.21 0.60 8000 000 200.0 2.77� 1011 100
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of volume 8 and 27 h23Gpc3 respectively. [We express the Hubble

constant as H0 � 100 h km s21 Mpc21:� These simulations allow

the mass function to be determined for very massive clusters

(.1015 h21M() with relatively small Poisson errors. In addition,

we have analysed several simulations of smaller volumes, but with

better mass resolution, from which the mass function can be

determined reliably down to masses of a few times 1011M(. In

Section 5 we also include data from the large SCDM simulations

carried out by Governato et al. (1999) and from the simulations of

SCDM and OCDM discussed in Jenkins et al. (1998).

The models listed in Table 1 are all normalized so as to be

consistent with the observed local abundance of rich galaxy

clusters (White et al. 1993; Eke et al. 1996; Viana & Liddle 1996)

and are also consistent with the standard COBE normalization

(e.g. Ratra et al. 1997). However, for the most part, the precise

normalization is unimportant for the purposes of this paper. The

power spectrum of the initial conditions of all the simulations

except LCDM-hub and LCDM-512 was set up using the transfer

function given by Bond & Efstathiou (1984),

T�k� �
1

{11 �aq1 �bq�3=2 1 �cq�2�n}1=n
; �1�

where q � k=G; a � 6:4 h21 Mpc; b � 3 h21 Mpc; c � 1:7 h21

Mpc and n � 1:13: For the LCDM-hub and LCDM-512

simulations, the transfer function was computed using cmbfast

(Seljak & Zaldarriaga 1996), assuming h � 0:7 and Vbaryonh
2 �

0:0196 (Burles & Tytler 1998). In all models, the slope of the

primordial power spectrum was taken to be unity. Full details of

how the simulations were set up are given in Jenkins et al. (1998),

for simulations ending in -gif, -int, -virgo and -test, and in Evrard

et al. (2000), for simulations ending in -hub. More recently, we

have completed 5123-particle simulations of the tCDM and

LCDM models using essentially the same code that we used for

the Hubble volume calculations.

Each simulation yields a determination of the mass function

over a mass range dictated by the particle mass and the number of

particles in the simulation. To aid understanding, we have per-

formed a set of smaller test simulations (see bottom of Table 1),

designed to investigate the sensitivity of the mass function to

changes in a single numerical parameter at a time. The parameters

that we vary are the particle mass, the gravitational softening and

the starting redshift. These checks (discussed in Appendix A) also

give an indication of the number of particles required to determine

the mass function satisfactorily using different halo finders.

2.2 Halo finders

We use two different algorithms to identify dark matter haloes: the

friends-of-friends (FOF) algorithm of Davis et al. (1985), and the

spherical overdensity (SO) finder described by Lacey & Cole

(1994).

The FOF halo finder depends on just one parameter, b, which

defines the linking length as bn21/3 where n is the mean particle

density. An attractive feature of the FOF method is that it does not

impose any fixed shape on the haloes. A disadvantage is that it

may occasionally link two haloes accidentally through a chance

bridge of particles. In the limit of very large numbers of particles

per object, FOF approximately selects the matter enclosed by an

isodensity contour a1/b3.

In the SO algorithm, the mass of a halo is evaluated in a

spherical region. There is one free parameter, the mean overdensity,

k , of the haloes. There are many possible ways of centring the

spherical region. In our case, the centre is determined iteratively,

after making an initial guess based on an estimate of the local

density for each particle, recentring on the centre of mass, growing

a sphere outwards about the new centre until it reaches the desired

mean overdensity, and recomputing the centre of mass. After

several iterations, the motion of the centre becomes small. An

alternative method consists of centring the sphere on the local

maximum enclosed mass at fixed overdensity, but this is more

computationally intensive ± a strong disincentive when identify-

ing SO groups in the Hubble volume simulations.

The conventional choices for V � 1 cosmologies are FOF

(b� 0.2) and SO(k � 180) (Davis et al. 1985; Lacey & Cole

1994). For models where V ± 1; the choice is less obvious. At

late times, groups stop growing and the appropriate linking length

or bounding density should plausibly become constant in physical

coordinates. At early times V . 1; and it is the corresponding

comoving quantities that are most naturally kept fixed. One needs

to decide how to make the transition between these two regimes.

Lacey & Cole (1994) and Eke et al. (1996) have done this using

the spherical top-hat collapse model. We adopt their approach

for the analysis in Section 4, taking FOF�b � 0:164� and

SO(k � 32) for LCDM at z � 0: This choice cannot be rigorously
justified, however, and we find in Section 5 that simpler results are

obtained by using the conventional Einstein±de Sitter parameters

also for this cosmology and for OCDM.

3 CONSISTENCY CHECKS

It is important to check the reliability of mass functions

determined from simulations. From a formal point of view this

is impossible, since there is no known analytic solution for any

realistic halo definition. It is, however, possible to check for

consistency between different simulations and different halo

definitions. The mass ranges covered by the different simulations

in each of our sets overlap considerably. As we show below, the

agreement in these overlap regions is far from perfect. One source

of difference is just the Poisson error due to the finite number of

clusters in each simulation. In the following we will only use

numerical data for which such Poisson errors are below 10 per

cent and are negligible compared to systematic errors. These, we

attribute to weak dependences of the measured mass functions on

some of the numerical parameters of our simulations. Such

systematics appear to be smaller than about 10 per cent for the

FOF halo finder and about 30 per cent for the SO halo finder, and

are therefore too small to be a major concern. It seems unlikely

that observational determinations of halo mass functions will

reduce systematic uncertainties to such small levels in the

foreseeable future.

Defining n(M) to be the number of haloes with mass less than

M, we plot the differential mass functions, dn=d lnM for all

tCDM simulations in Table 1 with s8 � 0:6 and for all LCDM

simulations with s8 � 0:9; excluding the last three test simula-

tions. The mass functions for the test simulations are plotted in

Appendix A and compared with other simulations to show how

much the mass function can vary as a result of changes in the

particle mass, gravitational softening and starting redshift.

The FOF mass functions for our two cosmologies are displayed

in Fig. 1. The numerical data have been smoothed with a kernel

that is Gaussian in log10(M) with rms width 0.08. This smoothing

erases high-frequency Poisson noise and provides a continuous
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curve for comparison with analytic predictions. Using a `bin'

shape without sharp edges also reduces fluctuations at the low-

mass end where the halo masses are integer multiples of

the particle mass. For a power-law mass function, F ;

dn=d log10M / M2a; such smoothing raises the amplitude by

approximately exp�a2=59�: For the tCDM mass function, this

factor is about 1.03 at 1014 h21M(, 1.14 at 10
15 h21M( and 1.7 at

the highest masses we plot; similar numbers apply to LCDM.

Poisson statistics lead to rms uncertainties in the smoothed curves

which are

dFrms

F
. 1:88 V sim

dn

d log10 M

� �

21=2

exp�2a2=79�; �2�

where Vsim is the volume of the simulation considered and errors

are correlated over a distance comparable to the smoothing length-

scale. As noted above, we only plot curves for which this

uncertainty is below 10 per cent and is small compared to other

sources of error.

As can be seen in Fig. 1, FOF mass functions for different

simulations match well even when the number of particles per

halo is small. The linking parameter was taken to be b � 0:2 for

tCDM and b � 0:164 for LCDM. For the smaller boxes, Poisson

fluctuations are clearly visible at the high-mass end of the plotted

curves. Such fluctuations are much less pronounced in the curves

derived from the Hubble volume simulations, because the mass

function is then much steeper at the point where discreteness noise

becomes appreciable and our smoothing erases features more

efficiently.

Fig. 2 shows a similar comparison of mass functions obtained

using the SO halo finder. The mean overdensity was set to 180 and

324 in the tCDM and LCDM cases respectively. Here we see a

systematic effect: the abundance at given halo mass in a simu-

lation with large particle mass is always lower than that found in a

simulation with smaller particle mass. The difference is par-

ticularly pronounced between the Hubble volume simulations and

the others, but this merely continues a trend of increasing dis-

crepancy as the halo mass at the matching point becomes larger.

The tests carried out in Appendix A show that these mismatches

result from resolution effects on halo structure, which particularly

Figure 2. Spherical overdensity differential mass function for dark haloes

in the tCDM and LCDM simulations. Halo masses were defined at mean

interior overdensities of 180 and 324 respectively. The different curves

correspond to the various simulations detailed in Table 1 and are truncated

as in Fig. 1. The simulations do not match up as well here as in Fig. 1.

Simulations with coarse mass resolution seem to underestimate the halo

abundance near their lower mass limit. See the text for further details.

Figure 1. Friends-of-friends differential mass functions for dark matter

haloes in the tCDM and LCDM simulations. Haloes were identified using

linking lengths of 0.2 and 0.164 respectively. The different curves

correspond to the various simulations detailed in Table 1. The mass

resolution in the simulations varies by more than two orders of magnitude

and the volume surveyed by more than four orders of magnitude. In all

cases, the mass functions are truncated at the low-mass end at the mass

corresponding to 20 particles, and at the high-mass end at the point where

the predicted Poisson abundance errors reach 10 per cent. The simulations

match up very well.
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affect haloes identified with the SO algorithm. Robust results

require a minimum of about 100 particles per SO halo, but only a

minimum of about 20 particles per FOF halo.

4 COMPARISON WITH ANALYTIC MODELS

In this section, we compare some popular analytic models to the

mass functions constructed above. It proves convenient to use the

quantity lns21(M, z) as the mass variable instead of M, where

s2(M,z) is the variance of the linear density field, extrapolated to

the redshift z at which haloes are identified, after smoothing with a

spherical top-hat filter which encloses mass M in the mean. This

variance can be expressed in terms of the power spectrum P(k) of

the linear density field extrapolated to redshift zero as:

s2�M; z� �
b2�z�

2p2

�

1

0

k2P�k�W2�k;M� dk; �3�

where b(z) is the growth factor of linear perturbations normalized

so that b � 1 at z � 0; and W(k;M) is the Fourier-space

representation of a real-space top-hat filter enclosing mass M at

the mean density of the universe.

We define the mass function f(s ,z;X) through:

f �s; z;X� ;
M

r0

dnX�M; z�

d lns21
; �4�

where X is a label identifying the cosmological model and halo

finder under consideration, n(M, z) is the abundance of haloes with

mass less than M at redshift z, and r0(z) is the mean density of the

universe at that time.

The advantage of using lns21 as the mass variable is most

evident when we consider the analytic models to which we

compare. As we will see below, the Press±Schechter model

predicts a simple analytic form for f(s , z) which has no explicit

dependence on redshift, power spectrum or cosmological para-

meters; a single mass function describes structure in all Gaussian

hierarchical clustering models at all times in any cosmology

provided abundances are plotted in the f±ln�dc=s� plane, where d c

is a threshold parameter, possibly dependent on V, which we

discuss later. This very simple structure carries over to extensions

of the Press±Schechter analysis such as that presented by Sheth

et al. (1999). For a power-law linear power spectrum and V � 1;
clustering is expected to be self-similar in time on general grounds

independent of the PS model (e.g. Efstathiou et al. 1988; Lacey &

Cole 1994), implying again that mass functions at different times

should map on to a unique curve in the f±lns21 plane (although

this curve could be a function of the power-law spectral index).

For CDM power spectra, the spectral index varies quite weakly

with scale so one might expect at most a weak dependence on

redshift in this plane. At worst, use of lns21(M) as the `mass'

variable `factors out' most of the difference in the mass functions

between different epochs, cosmologies and power spectra, and so

allows a wider comparison, both among our own simulations and

between these and those by other authors.

In Section 4.1, we describe the two analytic models with which

we compare explicitly our numerical results in Section 4.2.

4.1 Analytic models

The Press±Schechter model (e.g. Press & Schechter 1974;

Bond et al. 1991; Lacey & Cole 1993) predicts a mass function

given by:

f �s; PS� �

����

2

p

r

dc

s
exp 2

d2c
2s2

� �

; �5�

where d c is a threshold parameter usually taken to be the

extrapolated linear overdensity of a spherical perturbation at the

time it collapses. In an Einstein±de Sitter cosmology dc � 1:686:
In other cosmologies d c is sometimes assumed to be a weak

function of V and L (see e.g. Eke et al. 1996). The PS mass

function has the normalization property:

�

1

21

f �s ; PS� d lns21 � 1: �6�

This implies that all of the dark matter is attached to haloes of

some mass.

Sheth & Tormen (1999, hereafter ST) have introduced a new

formula for the mass function (see their equation 10) which, for

empirically determined choices of two parameters, gives a good fit

to the mass functions measured in a subset of the N-body

simulations analysed in this paper (the simulations ending in -gif

in Tables 1 and 2). Their mass function can be expressed as:

f �s; ST� � A

������

2a

p

r

11
s2

ad2c

 !p" #

dc

s
exp 2

ad2c
2s2

� �

; �7�

where A � 0:3222; a � 0:707 and p � 0:3: Sheth et al. (1999,

hereafter SMT) extended the excursion set derivation of the PS

formula developed by Bond et al. (1991) to include an approxi-

mate treatment of ellipsoidal collapse, and showed this to produce

a mass function almost identical in shape to equation (7). Their

derivation forces this mass function to obey the integral relation

of equation (6). Below, we compare their mass function with our

N-body results, including mass-scales, redshifts and cosmologies

other than those it was originally forced to fit. In a separate paper

(Colberg et al. 2000), we compare the clustering of haloes in our

Hubble volume simulations with the predictions of the SMT

model.

Other analytic models for the halo mass function have been

proposed recently by Monaco (1997a,b) and Lee & Shandarin

(1998). These are substantially poorer fits to our data than the

Sheth et al. (1999) model and we do not consider them further in

this paper. Other published discussions of `Press±Schechter'

predictions have made use of filter functions other than the

spherical top-hat, or have treated the threshold d c as an adjustable

parameter. We will not pursue the first of these possibilities at all,

and we only deviate from standard assumptions about d c in

Section 5. There we show that taking dc � 1:686 in all cosmol-

ogies leads to excellent agreement with our numerical data if

haloes are defined at fixed overdensity independent of V, rather

than at an V-dependent overdensity as in the more conventional

approach.

4.2 Comparison to simulated mass functions

In order to make proper comparisons between analytic models and

our simulated halo mass functions, we smooth the analytic

predictions in the same way as we smoothed the simulation results

in Section 3. In practice, this smoothing changes the predictions

very little; the difference is only perceptible at high masses where

the curves are very steep.

Interpolation formulae that accurately represent our (unsmoothed)
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mass functions are given in Appendix B and plotted (after

smoothing) in Figs 3 and 4. Fig. 3 compares the FOF(0.2) halo

mass function in the tCDM simulations with the PS and ST for-

mulae assuming dc � 1:686: At the high-mass end �lns21
. 0�;

the simulation results lie well above the PS prediction. This

discrepancy has been observed by a large number of authors (e.g.

Efstathiou et al. 1988; White et al. 1993; Gross et al. 1998;

Governato et al. 1999). Our simulations confirm that the diver-

gence increases at even larger halo masses than those accessible to

previous simulators. For lns21
, 0:3; the PS curve overestimates

the simulated mass functions, and at the characteristic mass Mp

(where s � dc and so lns21 � 20:52�; the halo abundance is

only 60 per cent of the PS prediction. This conclusion agrees with

the results of Efstathiou et al. (1988) and Gross et al. (1998) who

found a similar discrepancy for a number of different cosmo-

logical models. Adjusting the simulated mass functions by altering

halo finder parameters, or the analytic predictions by altering d c,

tends to shift the relevant curves in the ln f±lns21 plane without

much altering their shape. As a result, it does not significantly

improve the overall agreement between the PS model and the

numerical data.

By contrast, the ST mass functions give an excellent fit to the

N-body results in Fig. 3. Good agreement is to be expected at the

low-mass end since a subset of our simulation data was used by

Sheth & Tormen (1999) to determine the parameters of their

fitting function. This fitting function matches our numerical data

for tCDM-FOF over their entire range, including large masses

which were not considered in the original fit.

Fig. 4 shows the analogous comparison in the case of the

LCDM model. Here, the FOF(0.164) halo mass function in the

simulations is compared to the PS and ST predictions using dc �

1:675 as advocated by Eke et al. (1996) for this cosmology. With

these choices of parameters, the PS curve gives a better fit to the

simulated mass function at high masses than in the tCDM case,

although it still underestimates the abundance of high-mass

clusters and substantially overestimates the abundance near Mp.

The ST model is a poorer fit to the numerical data than for tCDM,

substantially overestimating abundances at high masses. However,

as we will show in the next section, this disagreement is all but

removed by different (and simpler) assumptions about the appro-

priate parameters for halo finders when V , 1:
All the above comparisons refer to haloes identified using the

FOF halo finder with standard parameters. We have checked that

very similar results are obtained if haloes are identified using the

SO halo finder, again with standard parameters. This similarity

was previously noted by Tormen (1998).

It is interesting to compute the fraction of the total cosmic mass

density that is included in haloes over the full range of validity of

our simulation mass functions (,3 � 1011 to ,5 � 1015 h21 M(�:
Using our fits to the FOF data in Figs 3 and 4, we find this fraction

to be 0.37 both in tCDM and in LCDM. The corresponding

fraction for the PS mass function is 0.50. Where is the remaining

mass? Clearly, higher-resolution simulations will show some

proportion to be in haloes too small to have been resolved by our

current simulations. However, there is no guarantee that such

higher-resolution simulations will produce a total halo mass

fraction that converges to unity. Much of the dark matter may not

lie in haloes identified by an FOF(0.2) (or other) halo finder, but

rather in a smooth, low-density component, perhaps in extensions

of the identified haloes beyond their artificial b � 0:2 boundaries.

This possibility is suggested by the fact that our simulated mass

functions remain low compared to the PS curve at the smallest

Figure 3. A comparison of analytic models with the halo mass function at

z � 0 in our N-body simulations of the tCDM cosmology. Haloes were

found using the FOF algorithm with b � 0:2: The short dashed lines show

results from the individual tCDM simulations used in this paper, the solid

curve is the fit of equation (B1) to the combined results of the simulations,

while the dashed line shows the PS prediction and the dotted line the ST

prediction, both using dc � 1:686: The arrow marks the characteristic

mass-scale, Mp, where s�Mp� � dc; and corresponds to the position of the

peak in the Press±Schechter mass multiplicity function. Note that we use

natural logarithms in this plot.

Figure 4. A comparison of analytic models with the halo mass function at

z � 0 in our N-body simulations of the LCDM cosmology. Haloes were

found using the FOF algorithm with b � 0:164: The short dashed lines

show results from the individual LCDM simulations used in this paper,

the solid curve is the fit of equation (B2) to the combined results of the

simulations, while the long dashed line shows the PS prediction and the dotted

line the ST prediction, both using dc � 1:675: The arrow marks the char-

acteristic mass-scale, M*, where s�M*� � dc; and corresponds to the

position of the peak in the Press±Schechter mass function. Note that we

use natural logarithms in this plot.
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masses for which we can measure them. A straightforward

extrapolation of our FOF(0.2) curves contains only ,70 per cent

of the total mass. Unfortunately, this extrapolation is not unique as

shown by the fact that the ST mass function can fit all our

numerical data and yet is normalized to give a total halo mass

fraction of unity. More numerical data are needed to study the

low-mass behaviour of the mass function in order to resolve this

issue.

5 TOWARDS A GENERAL FITT ING

FORMULA

In this section, we first show that, when expressed in terms of

lns21, the mass functions in our two cosmological models vary

only very little with redshift, or equivalently with the effective

slope of the power spectrum. With our current definition of haloes,

however, the mass functions in the tCDM and LCDM models are

different. In Section 5.2, we show that this difference all but

disappears if, instead of using a FOF linking length that varies

with V, we simply identify clusters with a constant linking length,

b � 0:2; in both cosmologies. A general fitting formula can then

accurately describe the halo mass function in a wide range of

cosmological models.

5.1 Comparison of the mass function at different redshifts

For a scale-free power spectrum, the mass function expressed in

terms of lns21 should be independent of redshift. Any differences

must be due to Poisson sampling or to systematic errors intro-

duced by numerical inaccuracies that break the scaling laws. For a

CDM spectrum, for which the spectral slope is a function of scale,

there could, in principle, be genuine evolution of the mass

function but, if the amount of evolution is small, it may be masked

by numerical effects.

In the tCDM model, a suitable rescaling of the length and mass

units allows the mass function at non-zero redshift to be regarded

as the redshift zero mass function of a simulation with a different

power spectrum but identical normalization. Differences in the

f±lns21 plane between mass functions at different redshifts can

therefore indicate a dependence of the mass function either on the

shape of the power spectrum or on numerical effects. In order to

exploit this regularity, and also to compare our results with those

of Governato et al. (1999), we parametrize each simulation output

by an effective power spectral slope neff,

neff � 6
d lns21

d lnM
2 3; �8�

where we evaluate the derivative at the point where s � 0:5;
corresponding roughly to cluster scales for V � 1 and z � 0:
For a scale-free power spectrum, neff is the power-law index in

P�k� / kn: We have calculated the FOF(0.2) mass function for the

tCDM-hub simulation at redshifts z � 0:0; 0.18, 0.44 and 0.78,

for which neff � 21:39; 21.48, 21.58 and 21.70 respectively.

We can extend this range of spectral slopes by considering, in

addition, the mass functions determined by Governato et al.

(1999). Four outputs of their SCDM model correspond to s8 �

1:0; 0.7, 0.47 and 0.35, for which neff � 20:71;20.90,21.12 and

21.28 respectively. Thus, the two sets of simulations cover the

range 20.71 to 21.7 in spectral slope but do not overlap.

Fig. 5 shows the mass functions determined from these two

simulation sets. We stress that the present comparison supersedes

Figure 5. A comparison of mass functions in different simulations at

different epochs. The full curves show the FOF(0.2) mass functions for the

tCDM-hub simulation at redshifts z � 0; 0.18, 0.44 and 0.78. The dashed

curves show the corresponding functions for the SCDM simulations of

Governato et al. (1999) at four epochs for which s8 � 1:0; 0.7, 0.47 and

0.35 respectively. The heavy dashed curve shows the PS model function.

Both simulation data sets show a weak trend with s8, but the trends are

opposite! See the text for discussion. Note that we use natural logarithms

in this plot.

Figure 6. A comparison of mass functions in different simulations at

different epochs. The full curves show the FOF mass function for the

LCDM-hub simulation at redshifts z � 0; 0.27,0.96 and 1.44. The first

three form a sequence going from bottom to top, while the z � 1:44 output

is slightly lower than z � 0:96: The light dashed curve shows the tCDM-

hub �z � 0� mass function. The heavy dashed curve shows the PS theory

model function. The trend with redshift is in the opposite direction to that

in the tCDM model except at the highest redshift where the trend appears

to reverse. The initial trend reflects the varying linking length used to

define the haloes. For tCDM this choice was independent of redshift. Note

that we use natural logarithms in this plot.
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the preliminary comparison presented by Governato et al. (1999).

The agreement between the various mass functions is good, with a

variation of only 30 per cent over the range in neff from 20.7 to

21.7. On closer inspection, the curves from the tCDM-hub

simulation form a sequence in which the mass function decreases

with increasing redshift (or with decreasing neff) while the curves

from Governato et al. (1999) also vary systematically, but in the

opposite direction! The reason for these differing weak trends is

unclear. They could reflect the differences in power spectrum

shape between the two simulations, or perhaps small systematic

numerical errors in one or both of them. (Note that, since the

Hubble volume simulation follows a much larger volume than the

simulation of Governato et al., its mass function is much better

determined for large masses.) However, the magnitude of these

trends (a total range below 30 per cent) is sufficiently small as to

be of no real interest.

Fig. 6 shows mass functions at various epochs in the LCDM

model. Here the curves are affected not only by the variation of

spectral shape with redshift (as for tCDM) but also by the

variation in the linking length which defines the simulated haloes.

For this plot we chose to follow the relation proposed by Eke et al.

(1996). The z � 0 mass function (the lowest solid curve in the

figure) is then significantly below the z � 0 tCDM mass function

(the light dashed curve). Furthermore, in contrast to tCDM, the

LCDM mass function initially moves upwards in the f±lns21

plane with increasing redshift. This can be attributed in large part

to the increasing linking length (see below). The upward trend

reverses between z � 0:96 and z � 1:44; perhaps reflecting the

rapid convergence of V and b_=b to the tCDM values. As in the

tCDM case, the differences are all rather small. We conclude that,

although with the halo definition used in this section, the tCDM

and LCDM mass functions are slightly different, there is no

evidence for a significant systematic variation in the high-mass

end of the mass function with redshift, with power spectrum slope

neff, or with V, once it is transformed to the appropriate variables.

5.2 A general fitting formula

The results of the last section suggest that it may be possible to

find a universal formula that provides a reasonably accurate

description of the halo mass function over a wide range of

redshifts and in a wide range of cosmologies. Here, we show that a

formula very similar to that suggested by ST is indeed successful

if haloes are defined at the same overdensity at all times and in all

cosmologies independent of V. We concentrate on haloes defined

using FOF(0.2), but have found very similar results using

SO(180). Table 2 lists the simulation outputs used in this section.

These include the data already analysed from our own simulations

and those of Governato et al. (1999), together with additional data

from the SCDM and OCDM (open with V0 � 0:3� simulations in

Jenkins et al. (1998). Because of the extended range of power

Table 2. Parameters of N-body simulations used in Figs 7, 8 and 9. Columns 2±5 give the
cosmological parameters, and the normalization of the power spectrum at the present epoch.
Columns 6 and 7 give the number of particles and the size of the simulation cubes. Column 8
gives the redshift of the output at which FOF groups were found, and column 9 gives the effective
power spectrum slope at s � 0:5 defined by equation (8).

Simulation V0 L0 G s8 Npart Lbox (h
21Mpc) z neff

tCDM-gif 1.0 0.0 0.21 0.60 16 777 216 84.5 0.00 21.39
tCDM-gif 1.0 0.0 0.21 0.60 16 777 216 84.5 1.94 21.96
tCDM-gif 1.0 0.0 0.21 0.60 16 777 216 84.5 2.97 22.13
tCDM-gif 1.0 0.0 0.21 0.60 16 777 216 84.5 4.04 22.26
tCDM-int 1.0 0.0 0.21 0.60 16 777 216 160.3 0.00 21.39
tCDM-virgo 1.0 0.0 0.21 0.60 16 777 216 239.5 0.00 21.39
tCDM-512 1.0 0.0 0.21 0.51 134 217 728 320.7 0.00 21.48
tCDM-hub 1.0 0.0 0.21 0.60 1000 000 000 2000.0 0.00 21.39
tCDM-hub 1.0 0.0 0.21 0.60 1000 000 000 2000.0 0.18 21.48
tCDM-hub 1.0 0.0 0.21 0.60 1000 000 000 2000.0 0.44 21.58
tCDM-hub 1.0 0.0 0.21 0.60 1000 000 000 2000.0 0.78 21.70

SCDM-gif 1.0 0.0 0.50 0.60 16 777 216 84.5 0.00 20.99
SCDM-virgo 1.0 0.0 0.50 0.60 16 777 216 239.5 0.00 21.08

LCDM-gif 0.3 0.7 0.21 0.90 16 777 216 141.3 0.00 21.17
LCDM-gif 0.3 0.7 0.21 0.90 16 777 216 141.3 0.52 21.32
LCDM-gif 0.3 0.7 0.21 0.90 16 777 216 141.3 2.97 21.72
LCDM-gif 0.3 0.7 0.21 0.90 16 777 216 141.3 5.03 22.00
LCDM-512 1.0 0.0 0.21 0.90 134 217 728 479.0 0.00 21.25
LCDM-512 1.0 0.0 0.21 0.90 134 217 728 479.0 5.00 22.08
LCDM-hub 0.3 0.7 0.21 0.90 1000 000 000 3000.0 0.00 21.25
LCDM-hub 0.3 0.7 0.21 0.90 1000 000 000 3000.0 0.27 21.32
LCDM-hub 0.3 0.7 0.21 0.90 1000 000 000 3000.0 0.96 21.51
LCDM-hub 0.3 0.7 0.21 0.90 1000 000 000 3000.0 1.45 21.62

OCDM-gif 0.3 0.0 0.21 0.85 16 777 216 141.3 0.00 21.20
OCDM-virgo 0.3 0.0 0.21 0.85 16 777 216 239.5 0.00 21.20

SCDM-gov 1.0 0.0 0.5 1.0 46 656 000 500.0 0.00 20.71
SCDM-gov 1.0 0.0 0.5 1.0 46 656 000 500.0 0.43 20.90
SCDM-gov 1.0 0.0 0.5 1.0 46 656 000 500.0 1.13 21.12
SCDM-gov 1.0 0.0 0.5 1.0 46 656 000 500.0 1.85 21.28
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spectral shapes involved, we `deconvolve' the smoothed mass

functions by multiplying by exp�2a2=59�; where a is the local

slope of log10�dn=d log10 M� (see Section 3).

Fig. 7 shows all the data plotted on the f±lns21 plane. As

before, all our curves are truncated at the mass corresponding to

20 particles (50 particles for the Governato et al. data) and where

the Poisson error first exceeds 10 per cent. These curves encom-

pass a wide range not only in lns21 but also in effective power

spectrum slope, neff. Cosmic density ranges over 0:3 < V < 1:0:
Remarkably, all curves lie very close to a single locus in the

f±lns21 plane. The use of a constant linking length has

significantly reduced the amplitude of the redshift trend seen in

the LCDM model in the previous section, and also places the

OCDM outputs on the same locus.

The numerical data in Fig. 7 are well fitted by the following

formula:

f �M� � 0:315 exp�2jlns21
1 0:61j

3:8
�; �9�

valid over the range 21:2 < lns21
< 1:05:

In Fig. 8 we plot the difference between the measured mass

functions and our fitting formula. The fit is good to a fractional

accuracy better than 20 per cent for 21:2 < lns21
< 1: This is a

very significant improvement over the Press±Schechter formula,

which would exceed the vertical limits of the plot! The curves for

the open models with V � 0:3 are slightly high in this plot but

only by ,10 per cent. The spread between the different curves

increases for large lns21. This may simply reflect the fact that the

very steep high-mass end of the mass function is sensitive to

numerical effects which change the masses of clusters in a

systematic way.

As shown in the figure, equation (9) is very close to the formula

proposed by Sheth & Tormen (1999); there is a small difference in

the high-mass tail, for lns21
. 0:9: A non-linear least-squares fit

of equation (7) to the simulation data in Fig. 8 shows that the fit

Figure 7. The FOF(0.2) mass functions of all the simulation outputs listed

in Table 2. Remarkably, when a single linking length is used to identify

haloes at all times and in all cosmologies, the mass function appears to be

invariant in the f±lns21 plane. A single formula (equation 9), shown with

a dotted line, fits all the mass functions with an accuracy of better than

about 20 per cent over the entire range. The dashed curve show the Press±

Schechter mass function for comparison.

Figure 8. The residual between the fitting formula (equation 9) and the FOF(0.2) mass functions for all the simulation outputs listed in Table 2. The lines are

colour codes according to the value of neff. Solid lines correspond to simulations with V � 1; short dashed lines to flat low-V0 models, and long dashed lines

to open models. The heavy dashed line shows the Sheth±Tormen formula (equation 7).
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can be improved by adjusting the parameters A, p and a. If the

normalization constraint, equation (6), is ignored, all three

parameters can be allowed to vary freely. In this case, the best

fit is obtained for A � 0:353; p � 0:175 and a � 0:73 (and 0.84 of
the mass is in haloes). If the normalization constraint is enforced,

then only two parameters can vary; in this case the fit is not as

good as that provided by equation (9).

Fig. 9 shows the area of the lns21±neff parameter space which

is occupied by the data in Fig. 8. The high-mass end has good

coverage in neff with values up to 22.3. In practice this means

that, for currently popular cosmologies, the high-mass tail of the

halo mass function is well determined at all redshifts where

galaxies have so far been observed. The tCDM-gif simulation at

z � 4:04 has neff � 22:26 and agrees well with tCDM-hub,

which determines the high-mass end of the mass function at more

recent epochs. We have checked that the tCDM-gif z � 5 output,

which has neff � 22:35; is also consistent with our fitting

function, although its Poisson errors are slightly too large to

satisfy our 10 per cent criterion for inclusion in Figs 7±9. For low

V our fitting formulae should work to even higher redshift. Since

fluctuations grow more slowly for low V, and the value of s8

required to match current cluster abundances is higher, low-

density cosmologies predict substantially less negative values for

neff at each redshift.

6 CONCLUSIONS

We have derived halo mass functions at z � 0 from simulations of

the tCDM and LCDM cosmologies over more than four orders of

magnitude in mass,,3 � 1011 to,5 � 1015 h21 M(: In particular,

our two Hubble volume simulations provide the best available

predictions for the abundance of the most massive clusters. We

have checked the sensitivity of our mass functions to choice of

group finder, to limiting overdensity and to numerical parameters

such as softening, particle mass and starting redshift (see

Appendix A). Most dependences are weak. In particular, with a

friends-of-friends group finder, the mass function is robustly

determined with systematic uncertainties at or below the 10 per

cent level for groups containing 20 particles or more. Somewhat

higher particle numbers are needed for reliable results with a

spherical overdensity group finder.

The mass functions we find for these two cosmologies, as well

as for additional simulations of the SCDM and OCDM

cosmologies, display the kind of universality predicted by the

Press±Schechter model. When expressed in suitable variables, the

mass function is independent of redshift, power spectrum shape, V

and L. This universality only obtains when we define haloes in our

simulations at fixed overdensity independent of V. When we use

the spherical collapse model to define the appropriate overdensity,

as suggested by Lacey & Cole (1994) and Eke et al. (1996), we

find mass functions for low-density cosmologies which vary

weakly but systematically with redshift. As has been noted before,

the Press±Schechter model overestimates the abundance of Mp

haloes and underestimates the abundance of massive haloes in all

cosmologies. On the other hand, the fitting function proposed by

Sheth & Tormen (1999) is a very good fit to the universal mass

function we find, and is close to the best fit we give as equation

(9). As shown by Sheth et al. (1999), this shape is a plausible

consequence of extending the excursion set derivation of the PS

model to include ellipsoidal collapse.

Our `universal' mass function has considerable generality since

the simulations cover a wide range of parameter space: V in the

range 0.3±1, effective spectral power index in the range 21 to

22.5, and inverse fluctuation amplitude in the range 21:2 <

lns21
< 1:05: For standard cosmologies this corresponds

approximately to the mass range 1011 to 1016 h21M( at z � 0;
and to the high-mass tail of the mass function out to redshift 5 or

more. More work is needed to check the abundances predicted for

low-mass haloes, in particular to see whether all mass is predicted

to be part of some halo, or whether some fraction makes up a truly

diffuse medium.

Data for many of the simulations analysed in this paper, as well

as cluster and galaxy catalogues created as part of other projects,

are available from http://www.mpa-garching.mpg/Virgo.

Software to convert equation (9) into a mass function, for a

given power spectrum is available on request from ARJ

(A.R.Jenkins@durham.ac.uk).
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APPENDIX A: A RESOLUTION STUDY

To investigate the effects of mass resolution, gravitational

softening and starting redshift, we carried out the three test

simulations detailed at the bottom of Table 1. These simulations

are all of an identically sized region, 200 h21Mpc on a side, and

are set up so that corresponding waves have identical phases and

amplitudes in all three cases. Two of the simulations, tCDM-test1

and tCDM-test2, have the same particle mass as the Hubble

volume simulation. The former has essentially identical numerical

parameters to the tCDM-hub simulation, while the latter differs in

having a smaller gravitational softening length. The tCDM-test3

simulation has eight times as many particles as tCDM-test1, but is

otherwise identical. As a check of the effect of the starting redshift

we repeated tCDM-test1 a second time but starting at redshift 14

rather than 29 (as for the other tests and tCDM-hub).

Fig. A1 shows the mass functions for haloes found with the

FOF group finder using three different linking lengths �b � 0:1;
0.15 and 0.2), for tCDM-test1 and tCDM-test3. Consistent with

the results of Section 3, the FOF mass function is only very

weakly dependent on the particle mass. Changing the softening

makes an even smaller difference and we do not plot the curve for

tCDM-test2; the average rms difference between the mass

functions with 30 and 100 h21 kpc gravitational softening is just

0.0135 dex. If the softening were increased significantly beyond

Figure A1. A resolution study of the effect of varying the particle mass on

the mass function of FOF haloes for three values of the linking parameter,

b. The dashed lines show the mass functions obtained from tCDM-test3,

and the solid lines from tCDM-test1. These simulations have the same

phases but differ by a factor of 8 in particle mass. The mass function is

plotted for haloes with 20 particles and above. The filled circles show the

corresponding mass function in tCDM-hub, which has the same particle

mass as tCDM-test1. Defined in this way, the mass function is remarkably

robust.

Figure A2. A resolution study of the effect of varying the particle mass on

the mass function of SO haloes. The dashed line shows the mass function

obtained from tCDM-test3, and the solid line from tCDM-test1. These

simulations have the same phases but differ by a factor of 8 in particle

mass. The mass function is plotted for haloes with 20 particles and above.

The filled circles show the corresponding mass function in tCDM-hub,

which has the same particle mass as tCDM-test1. The dotted line shows

the SO mass function when one-in-eight particles are randomly sampled

from tCDM-test3. This test shows that the SO mass function is sensitive to

the particle mass, unlike the FOF mass function in Fig. A1.
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100 h21 kpc, then we would expect the mass function to decrease

as haloes become more and more diffuse. The mass function for

tCDM-hub is shown also and agrees well with tCDM-test1, as it

should. We conclude that the mass function of FOF haloes is

remarkably robust to the numerical parameters in the simulations.

When haloes are identified using the SO group finder, the

situation is slightly different. As Fig. A2 shows, the SO mass

function from tCDM-test1 agrees well with that in tCDM-hub

over the corresponding range of masses. Changing the softening to

30 h21 kpc in tCDM-test2 does not change the mass function

much. However, changing the mass resolution by a factor of 8, as

in tCDM-test3, leads to a significant change in the mass function

at the low-mass end, which is now much closer to that determined

from tCDM-virgo, a simulation with similar mass resolution.

Resampling the high-mass resolution simulation, tCDM-test3, at

random, at a rate of one-in-eight, does not have any noticeable

effect on the mass function. This suggests that the resolution

dependence of the mass function close to the resolution limit is not

due simply to details of the cluster-finding algorithm (such as the

position of the halo centre). Rather, it suggests that the difference

may reflect genuine differences in the structural properties of

marginally resolved haloes in simulations with different particle

numbers.

The mass function is not very sensitive to the starting redshift

unless this is so low that the neighbouring Zel'dovich displace-

ments are so large as to interfere with the formation of the first

non-linear objects. In practice, all the simulations compiled here

pass this test easily. As a additional check, we repeated tCDM-

test1, starting at z � 14: This made very little difference to the

mass function overall, causing an rms average difference over the

measured mass function of only 0.02 dex.

In summary, our tests indicate that we can derive an accurate

mass function for FOF groups from the Virgo simulations

(including the Hubble volume). The mass functions agree well

in the overlap regions of simulations of different mass resolution

even when haloes with only 20 particles per group are included.

Perhaps surprisingly, the mass functions of SO groups do not

match up nearly as well at such low particle numbers. A minimum

of ,100 particles is required to provide reasonable agreement in

the overlap regions in this case.

APPENDIX B : F ITTING FORMULAE FOR THE

FOF AND SO MASS FUNCTIONS

Here, we give fitting formulae for the (unsmoothed) mass

functions of FOF and SO haloes, using the standard values of

the group-finding parameters given in Section 2. These fits are

plotted in Figs 3 and 4 of Section 4.

1. The friends-of-friends (FOF) group finder:

tCDM=FOF�0:2� :

f �M� � 0:307 exp�2jlns21
1 0:61j

3:82
�; �B1�

in the range 20:9 < lns21
< 1:0:

LCDM=FOF�0:164� :

f �M� � 0:301 exp�2jlns21
1 0:64j

3:88
�; �B2�

in the range 20:96 < lns21
< 1:0: The difference between these

fitting functions and the actual mass functions is typically less

than 10 per cent.

2. The spherical overdensity (SO) group finder:

tCDM=SO�180� :

f �M� � 0:301 exp�2jlns21
1 0:64j

3:82
�; �B3�

in the range 20:5 < lns21
< 1:0:

LCDM=SO�324� :

f �M� � 0:316 exp�2jlns21
1 0:67j

3:82
�; �B4�

in the range 20:7 < lns21
< 1:0: As discussed earlier, the

differences between the SO mass functions are larger than for FOF

haloes. Differences between the fit and the mass functions within

the quoted mass range can be as large as 20 per cent.

Fig. B1 shows the residuals between the four fitting formulae

quoted above and the mass functions in the simulations. Also

shown are the differences between our fitting formulae and both

the PS and ST models. The simulation curves are truncated at

the high-mass end at the point where the fractional rms Poisson

error reaches 10 per cent. The simulation mass functions may be

seen to be consistent with one another at a level of about 10 per

cent. As seen in previous plots, the PS curve is too high at low

masses (low lns21) and too low at high masses. For the fit

proposed by Sheth & Tormen (1999, equation 10) good

agreement is to be expected at the low-mass end since a subset

of the simulation data used here (the -gif simulations) was used

by Sheth & Tormen (1999). Although their mass function is

normalized (so that all the mass is attached to haloes), it does

match our fits for tCDM-FOF rather well over their entire range.

For the other models, the Sheth±Tormen fit overestimates the

number of very massive clusters. Because of the normalization

constraint, the Sheth±Tormen mass function exceeds the PS

predictions for extremely low-mass haloes but this occurs at a

point well beyond what can be tested easily in N-body

simulations. Whether such low-mass behaviour is correct remains

to be determined.
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Figure B1. The residuals between the fitting formulae for the mass function given in Appendix B and (i) the simulations (solid lines) and (ii) the Press±

Schechter and Sheth±Tormen models (dashed lines.) The simulation curves are plotted up to the point where the fractional Poisson error reaches 10 per cent.

The simulations themselves can be seen to be mutually consistent at about the 10 per cent level although the differences are, for the most part, larger than the

Poisson errors. The PS curve shows an excess at low masses and a deficit at high masses. The Sheth±Tormen mass function fits the low-mass end well, but

overestimates the number of high-mass clusters. Note that we use natural logarithms in this plot.
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