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a b s t r a c t

Weak gravitational lensing is responsible for the shearing and magnification of the images
of high-redshift sources due to the presence of intervening matter. The distortions are due
to fluctuations in the gravitational potential, and are directly related to the distribution
of matter and to the geometry and dynamics of the Universe. As a consequence, weak
gravitational lensing offers unique possibilities for probing the Dark Matter and Dark
Energy in the Universe. In this review, we summarise the theoretical and observational
state of the subject, focussing on the statistical aspects of weak lensing, and consider the
prospects for weak lensing surveys in the future.

Weak gravitational lensing surveys are complementary to both galaxy surveys and
cosmic microwave background (CMB) observations as they probe the unbiased non-linear
matter power spectrum at modest redshifts. Most of the cosmological parameters are
accurately estimated from CMB and large-scale galaxy surveys, so the focus of attention
is shifting to understanding the nature of Dark Matter and Dark Energy. On the theoretical
side, recent advances in the use of 3D information of the sources fromphotometric redshifts
promise greater statistical power, and these are further enhanced by the use of statistics
beyond two-point quantities such as the power spectrum. The use of 3D information
also alleviates difficulties arising from physical effects such as the intrinsic alignment of
galaxies, which can mimic weak lensing to some extent. On the observational side, in the
next few years weak lensing surveys such as CFHTLS, VST-KIDS and Pan-STARRS, and the
plannedDark Energy Survey, will provide the firstweak lensing surveys covering very large
sky areas and depth. In the long run even more ambitious programmes such as DUNE, the
Supernova Anisotropy Probe (SNAP) and Large-aperture Synoptic Survey Telescope (LSST)
are planned. Weak lensing of diffuse components such as the CMB and 21 cm emission can
also provide valuable cosmological information. Finally, we consider the prospects for joint
analysis with other probes, such as (1) the CMB to probe background cosmology (2) galaxy
surveys to probe large-scale bias and (3) Sunyaev–Zeldovich surveys to study small-scale
baryonic physics, and consider the lensing effect on cosmological supernova observations.
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1. Introduction and notations

Gravitational lensing refers to the deflection of light rays from distant sources by the gravitational force arising from
massive bodies present along the line of sight. Such an effect was already raised by Newton in 1704 and computed by
Cavendish around 1784. As is well known, General Relativity put lensing on a firm theoretical footing, and yields twice
the Newtonian value for the deflection angle [72]. The agreement of this prediction with the deflection of light from distant
stars by the Sunmeasured during the solar eclipse of 1919 [71] was a great success for Einstein’s theory and brought General
Relativity to the general attention. The eclipse was necessary to allow one to detect stars with a line of sight which comes
close to the Sun.

In a similar fashion, light rays emitted by a distant galaxy are deflected by the matter distribution along the line of sight
toward the observer. This creates a distortion of the image of this galaxy,which is both sheared and amplified (or attenuated).
It is possible to distinguish two fields of study which make use of these gravitational lensing effects. First, strong-lensing
studies correspond to strongly non-linear perturbations (which can lead to multiple images of distant objects) produced
by highly non-linear massive objects (e.g. clusters of galaxies). In this case, the analysis of the distortion of the images of
background sources can be used to extract some information on the properties of thewell-identified foreground lens (e.g. its
mass). Second, cosmic shear, or weak gravitational lensing not associated with a particular intervening lens, corresponds
to the small distortion (of the order of 1%) of the images of distant galaxies by all density fluctuations along typical lines
of sight. Then, one does not use gravitational lensing to obtain the characteristics of a single massive object but tries to
derive the statistical properties of the density field as well as the geometrical properties of the Universe (as described by
the cosmological parameters, such as the mean density or the curvature). To this order, one computes the mean shear
over a rather large region on the sky (a few arc min2 or more) from the ellipticities of many galaxies (one hundred or
more). Indeed, since galaxies are not spherical one needs to average over many galaxies and cross-correlate their observed
ellipticity in order to extract a meaningful signal. Putting together many such observations one obtains a large survey (a few
to many thousands of square degrees) which may have an intricate geometry (as observational constraints may produce
many holes). Then, by performing various statistical measures one can derive from such observations some constraints on
the cosmological parameters as well as on the statistical properties of the density field over scales between a few arc min
to one degree, see for instance [203,195,16,224,303,196,249].

Note that in addition to the strong-lensing and weak-lensing effects discussed above, one can also use gravitational
lensing effects in the intermediate regime for astrophysical purposes. For instance, galaxy–galaxy lensing (associated with
the distortion of background galaxies by one or a few nearby foreground galaxies) allows one to probe the galactic dark
matter halos. In this fashion, one can measure the galaxy virial mass as a function of luminosity, as well as possible
dependencies on the environment [93]. Then, such observations can be used to constrain galaxy formation models. In this
review, we shall focus on statistical weak-lensing studies.

Traditionally, the study of large scale structures has been done by analyzing galaxy catalogues. However, this method is
plagued by the problem of the galaxy bias (i.e. the distribution of light may not exactly follow the distribution of mass). The
advantage of weak lensing is its ability to probe directly the matter distribution, through the gravitational potential, which
is much more easily related to theory. In this way, one does not need to involve less well-understood processes like galaxy
or star formation.

In the last few years many studies have managed to detect cosmological shear in random patches of the sky [6,7,39,96,
97,115,114,145,156,187,223,227,301,302,313]. While early studies were primarily concerned with the detection of a non-
zero weak lensing signal, present weak lensing studies are already putting constraints on cosmological parameters such
as the matter density parameter Ωm and the amplitude σ8 of the power-spectrum of matter density fluctuations. These
works also help to lift parameter degeneracies when used along with other cosmological probes such as Cosmic Microwave
Background (CMB) observations. In combination with galaxy redshift surveys they can be used to study the bias associated
with various galaxieswhichwill be useful for galaxy formation scenarios thereby providingmuch needed clues to the galaxy
formation processes. For cosmological purposes, perhaps most exciting is the possibility that weak lensing will determine
the properties of the dominant contributor to the Universe’s energy budget: Dark Energy. Indeed, the recent acceleration of
the Universe detected from the magnitude–redshift relation of supernovae (SNeIa) occurs at too late redshifts to be probed
by the CMB fluctuations. On the other hand, weak lensing surveys offer a detailed probe of the dynamics of the Universe
at low redshifts z < 3. Thus weak lensing is among the best independent techniques to confirm this acceleration and to
analyze in greater details the equation of state of this dark energy component which may open a window on new physics
beyond the standard model (such as extra dimensions).

In this reviewwe describe the recent progress that has been made and various prospects of future weak lensing surveys.
We first describe in Section 2 the basic elements of the deflection of light rays by gravity and the various observables
associated with cosmological weak gravitational lensing. In Section 3 we review the 2-point statistics of these observables
(power-spectra and 2-point correlations) and the problem of mass reconstruction from observed shear maps. Next, we
explain in Section 4 how the knowledge of the redshift of background sources can be used to improve constraints on
theoretical cosmologicalmodels or to perform fully 3-dimensional analysis (3Dweak lensing). Then,we describe in Section 5
how to extract further information from weak lensing surveys by studying higher-order correlations which can tighten
the constraints on cosmological parameters or provide some information on non-Gaussianities associated with non-linear
dynamics or primordial physics. We turn to the determination of weak lensing shear maps from actual observations of
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Table 1
Notation for cosmological variables

Total matter density in units of critical density Ωm
Reduced cosmological constant ΩΛ

Reduced dark energy density Ωde
Mean comoving density of the Universe ρ

Hubble constant at present time H0
Hubble constant at present time in units of 100 km s−1 Mpc−1 h

rms linear density contrast in a sphere of radius 8 h−1 Mpc σ8

Table 2
Notation for coordinates

Metric ds2 = c2dt2−a2(t)[dχ2+D2(dθ2+sin2 θ dϕ2)]
Speed of light c
Scale factor a
Comoving radial coordinate χ, r
Comoving angular diameter distance D

Comoving position in 3D real space x, r, (χ,DEθ)

Comoving wavenumber in 3D Fourier space k, (k‖, Ek⊥), (k‖, È/D)

Bend angle Eα

Deflection angle δEθ

Image position on the sky Eθ

Flat-sky angle (θ1, θ2)
2D angular wavenumber È, (`x, `y), (`1, `2)

Table 3
Notation for fields and weak-lensing variables

Gravitational potential Φ

Lensing potential φ

Shear matrix Ψ

Amplification matrix A
Weak-lensing convergence κ

Complex weak-lensing shear γ = γ1 + i γ2
Shear pseudo-vector Eγ = γ1Eex +γ2Eey
Tangential component of shear γt, γ+
Cross component of shear γ×
Weak-lensing magnification µ

Angular filter radius θs
Smoothed convergence, smoothed shear κ̄, γ̄

Weak-lensing aperture mass Map
3D matter density power spectrum P(k)
2D convergence power spectrum Pκ(`)
2D shear power spectrum Pγ(`)
Two-point correlation ξ

3D density contrast bispectrum B(k1, k2, k3)
2D convergence bispectrum Bκ(`1, `2, `3)
Probability distribution function of the smoothed convergence Pκ(κ̄)

galaxy images and to the correction techniques which have been devised to this order in Section 6. In Section 7 we discuss
the numerical simulations which are essential to compare theoretical predictions with observational data. We describe in
Section 8 how weak lensing surveys can also be performed at other wavelengths than the common optical range, using
for instance the 21 cm emission of first generation protogalaxies as distant sources. We present in greater detail the weak
lensing distortion of the CMB radiation in Section 9. In Section 10 we also discuss how weak lensing can be combined or
cross-correlated with other data sets, such as the CMB or galaxy surveys, to help constrain cosmological models or derive
some information on the matter distribution (e.g. mass-to-light relationships). Finally, we conclude in Section 11. To help
the reader, we also give in Tables 1–3 our notations for most coordinate systems and variables used in this review.

2. Weak lensing theory

2.1. Deflection of light rays

We briefly describe here the basic idea behind weak gravitational lensing as we present a simple heuristic derivation of
the first-order result for the deflection of light rays by gravity. For a rigorous derivation using General Relativity the reader
can consult references [154,16,237,256].
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Fig. 1. Deflection of light rays from a distant source at comoving radial distance χs by a gravitational potential fluctuation Φ at distance χ. For a thin lens
the deflection by the angle α is taken as instantaneous. This changes the observed position of the source by the angle δθ, from the intrinsic source direction
θs to the image direction θI on the sky.

We assume in the following that deflections angles are small so that we only consider first-order terms. This is sufficient
for most applications of weak lensing since by definition the latter corresponds to the case of small perturbations of light
rays by the large-scale structures of the universe. Let us consider within Newtonian theory the deflection of a photon with
velocity v that passes through a small region of space where the gravitational potential Φ is non-zero. The acceleration
perpendicular to the unperturbed trajectory, Ėv⊥ = −∇⊥Φ, yields a small transverse velocity Ev⊥ = −

∫
dt∇⊥Φ. This gives

a deflection angle Eα = Ev⊥/c = −
∫
dl∇⊥Φ/c2 for a constant velocity |v| = c. As is well-known, General Relativity simply

yields this Newtonian result multiplied by a factor two. This deflection changes the observed position on the sky of the
radiation source by a small angle δEθ. For an extended source (e.g. a galaxy) this also leads to both amagnification and a shear
of the image of the source from which one can extract some information on the gravitational potential Φ. If the deflection
takes place within a small distance it can be taken as instantaneous which corresponds to the thin lens approximation (as
in geometrical optics) as displayed in Fig. 1. Besides, in cosmology transverse distances are related to angles through the
comoving angular diameter distance D given by:

D(χ) =

c sinK

(
|1 − Ωm − ΩΛ|

1/2H0 χ/c
)

H0|1 − Ωm − ΩΛ|1/2
, (2.1)

where sinK means the hyperbolic sine, sinh, if (1 − Ωm − ΩΛ) > 0, or sine if (1 − Ωm − ΩΛ) < 0; if (1 − Ωm − ΩΛ) = 0, then
D(χ) = χ (case of a flat Universe). The radial comoving distance χmeasured by a light ray which travels from a source at
redshift z to the observer at z = 0 is given by:

χ =
c

H0

∫ z

0

dz′√
ΩΛ + (1 − Ωm − ΩΛ)(1 + z′)2 + Ωm(1 + z′)3

, (2.2)

where z′ is the redshift along the line of sight. Note that χ measures both a spatial coordinate distance and a travel time.
Here we also introduced the Hubble constant H0 and the cosmological parameters Ωm (matter density parameter) and ΩΛ

(dark energy in the form of a cosmological constant). Therefore, the source appears to have moved in the source plane over
a comoving distance D(χs)δEθ = −D(χs − χ)Eα as can be seen from Fig. 1, where Eα and δEθ are 2D vectors in the plane
perpendicular to the unperturbed light ray. Summing up the deflections arising from all potential gradients between the
observer and the source gives the total shift on the sky:

δEθ = EθI − Eθs =
2
c2

∫ χs

0
dχ

D(χs − χ)

D(χs)
∇⊥Φ(χ), (2.3)

where Eθs is the intrinsic position of the source on the sky and EθI is the observed position. However, generally we do not
know the true position of the source but only the position of the observed image. Thus the observable quantities are not
the displacements δEθ themselves but the distortions induced by these deflections. They are given at lowest order by the
symmetric shear matrix Ψij [148,16,138] which we define as:

Ψij =
∂δθi

∂θsj
=

2
c2

∫ χs

0
dχ

D(χ)D(χs − χ)

D(χs)
∇i∇jΦ(χ), (2.4)

Eq. (2.4) follows from Eq. (2.3) if we note that a change of angle dEθ for the unperturbed light ray corresponds to a
transverse distance D(χ)dEθ in the lens plane where the gravitational potential Φ produces the gravitational lensing. The
reasoning presented above clearly shows that Eq. (2.4) uses the weak lensing approximation; the derivatives ∇i∇jΦ(χ) of
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the gravitational potential are computed along the unperturbed trajectory of the photon. This assumes that the components
of the shear tensor are small but the density fluctuations δ can be large [148]. We can also express the shear matrix Ψij in
terms of a lensing potential φ(Eθ;χs) (also called the deflection potential) as:

Ψij = φ,ij with φ(Eθ;χs) =
2
c2

∫ χs

0
dχ

D(χs − χ)

D(χs)D(χ)
Φ(χ,D(χ)Eθ). (2.5)

The expression (2.5) is formally divergent because of the term 1/D(χ) near χ = 0, but this only affects the monopole term
which does not contribute to the shear matrix Ψij (indeed derivatives with respect to angles yield powers of D as in Eq.
(2.4)). Therefore, we may set the constant term to zero so that φ(Eθ) is well defined. Eq. (2.5) clearly shows how the weak
lensing distortions are related to the gravitational potential projected onto the sky and can be fully described at this order
by the 2D lensing potential φ(Eθ). Thus, in this approximation lensing by the 3Dmatter distribution from the observer to the
redshift zs of the source plane is equivalent to a thin lens plane with the same deflection potential φ(Eθ). However, from the
dependence of φ(Eθ;χs) on the redshift zs of the source planewe can recover the 3Dmatter distribution as discussed below in
Section 4. Note that weak lensing effects growwith the redshift of the source as the line of sight is more extended. However,
since distant galaxies are fainter and more difficult to observe weak lensing surveys mainly probe redshifts zs ∼ 1. On the
other hand, this range of redshifts of order unity is of great interest in probing the dark energy component of the Universe.
Next, one can also introduce the amplification matrix A of image flux densities which is simply given by the ratio of image
areas, that is by the Jacobian:

A =
∂Eθs

∂EθI
=
(
δij + Ψij

)−1
=

(
1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)
, (2.6)

which defines the convergence κ and the complex shear γ = γ1 + i γ2. At linear order the convergence gives themagnification
of the source as µ = [det(A)]−1

' 1+ 2κ. The shear describes the area-preserving distortion of amplitude given by |γ| and
of direction given by its phase, see also Section 6.1 and Fig. 15. In general the matrix A also contains an antisymmetric part
associated with a rotation of the image but this term vanishes at linear order as can be seen from Eq. (2.4). From Eq. (2.6)
the convergence κ and the shear components γ1, γ2, can be written at linear order in terms of the shear tensor as:

κ =
Ψ11 + Ψ22

2
, γ = γ1 + i γ2 with γ1 =

Ψ11 − Ψ22

2
, γ2 = Ψ12. (2.7)

On the other hand, the gravitational potential,Φ, is related to the fluctuations of the density contrast, δ, by Poisson’s equation:

∇
2Φ =

3
2
ΩmH

2
0(1 + z) δ with δ(x) =

ρ(x) − ρ

ρ
, (2.8)

whereρ is themean density of the universe. Note that since the convergence κ and the shear components γi can be expressed
in terms of the scalar lensing potential φ they are not independent. For instance, one can check from the first equations
(2.5) and (2.7) that we have κ,1 = γ1,1 + γ2,2 [151]. This allows one to derive consistency relations satisfied by weak
lensing distortions (e.g. [247]) and deviations from these relations in the observed shear fields can be used to estimate
the observational noise or systematics. Of course such relations also imply interrelations between correlation functions,
see [249] and Section 3 below. For a rigorous derivation of Eqs. (2.4)–(2.7) one needs to compute the paths of light rays (null
geodesics) through the perturbedmetric of spacetime using General Relativity [154]. An alternative approach is to follow the
distortion of the cross-section of an infinitesimal light beam [230,31,256,16]. Both methods give back the results (2.4)–(2.7)
obtained in a heuristic manner above.

2.2. Convergence, shear and aperture mass

Thanks to the radial integration over χ in (2.4) gradients of the gravitational potential along the radial direction give
a negligible contribution as compared with transverse fluctuations [148,138,174] since positive and negative fluctuations
cancel along the line of sight. In other words, the radial integration selects Fourier radial modes of order |k‖| ∼ H/c (inverse
of cosmological distances over which the effective lensing weight ŵ(χ) varies, see Eq. (2.10) below) whereas transverse
modes are of order |Ek⊥| ∼ 1/Dθs � |k‖|where θs � 1 is the typical angular scale (a few arcmin) probed by theweak-lensing
observable. Therefore, within this small-angle approximation the 2D Laplacian (2.7) associated with κ can be expressed in
terms of the 3D Laplacian (2.8) at each point along the line of sight. This yields for the convergence along a given line of sight
up to zs:

κ(zs) '

∫ χs

0
dχ w(χ,χs)δ(χ) with w(χ,χs) =

3ΩmH
2
0D(χ)D(χs − χ)

2c2D(χs)
(1 + z). (2.9)

Thus the convergence, κ, can be expressed very simply as a function of the density field; it is merely an average of the local
density contrast along the line of sight. Therefore, weak lensing observations allow one to measure the projected density
field κ on the sky (note that by looking at sources located at different redshifts one may also probe the radial direction). In
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practice the sources have a broad redshift distribution which needs to be taken into account. Thus, the quantity of interest
is actually:

κ =

∫
∞

0
dzs n(zs)κ(zs) =

∫ χmax

0
dχ ŵ(χ)δ(χ) with ŵ(χ) =

∫ zmax

z
dzs n(zs) w(χ,χs), (2.10)

where n(zs) is the mean redshift distribution of the sources (e.g. galaxies) normalized to unity and zmax is the depth of the
survey. Eq. (2.10) neglects the discrete effects due to the finite number of galaxies, which can be obtained by taking into
account the discrete nature of the distribution n(zs). This gives corrections of order 1/N to higher-order moments of weak-
lensing observables, where N is the number of galaxies within the field of interest. In practice N is much larger than unity
(for a circular window of radius 1 arc min we expect N > 100 for the SNAPmission) therefore it is usually sufficient to work
with Eq. (2.10).

In order to measure weak-lensing observables such as κ or the shear γ one measures for instance the brightness or the
shape of galaxies located around a given direction Eθ on the sky. Therefore, one is led to consider weak-lensing quantities
smoothed over a non-zero angular radius θs around the direction Eθ. More generally, one can define any smoothed weak-
lensing quantity X̄(Eθ) from its angular filter UX(∆Eθ) by:

X̄(Eθ) =

∫
dEθ′ UX(Eθ

′
− Eθ)κ(Eθ′) =

∫
dχ ŵ

∫
dEθ′ UX(Eθ

′
− Eθ)δ(χ,DEθ′), (2.11)

where Eθ′ is the angular vector in the plane perpendicular to the line of sight (we restrict ourselves to small angular windows)
and DEθ′ is the two-dimensional vector of transverse coordinates. Thus, it is customary to define the smoothed convergence
by a top-hat Uκ of angular radius θs but this quantity is not very convenient for practical purposes since it is easier to
measure the ellipticity of galaxies (related to the shear γ) than their magnification (related to κ). This leads one to consider
compensated filters UMap with polar symmetry which define the “aperture-mass” Map, that is with

∫
dEθUMap(

Eθ) = 0. Then
Map can be expressed in terms of the tangential component γt of the shear [239] so that it is not necessary to build a full
convergence map from observations:

Map(Eθ) ≡

∫
dEθ′UMap(|

Eθ′
− Eθ|)κ(Eθ′) =

∫
dEθ′QMap(|

Eθ′
− Eθ|)γt(Eθ

′) (2.12)

where we introduce [239]:

QMap(θ) = −UMap(θ) +
2
θ2

∫ θ

0
dθ′ θ′ UMap(θ

′). (2.13)

Besides, the aperture-mass provides a useful separation between E and B modes, as discussed below in Section 3.3. The
aperture mass has the advantage that it can be chosen to have compact support, so it can be calculated from observations
of a finite area. It can also be tuned to remove the strong lensing regime, if desired, by choosing U = constant within some
radius, in which case Q is zero. Finally, U can be chosen to select a fairly narrow range in wavenumber space, which can aid
power spectrum estimation. One can alternatively choose a matched filter to improve signal-to-noise measurements.

For analytical and data analysis purposes it is often useful to work in Fourier space. Thus, we write for the 3D matter
density contrast δ(x) and the 2D lensing potential φ(Eθ):

δ(x) =

∫ dk
(2π)3

e−ik.x δ(k) and φ(Eθ) =

∫ dÈ

(2π)2
e−iÈ.Eθ φ(È), (2.14)

where we use a flat-sky approximation for 2D fields. This is sufficient for most weak lensing purposes where we consider
angular scales of the order of 1–10 arc min, but we shall describe in Section 4.5 the more general expansion over spherical
harmonics. From Eq. (2.5) and Poisson’s equation (2.8) we obtain:

φ(È) = −2
∫

dχ ŵ(χ)

∫ dk‖

2π
e−ik‖χ 1

k2D(χ)4
δ

(
k‖,

È

D(χ)
;χ

)
, (2.15)

where k‖ is the component parallel to the line of sight of the 3D wavenumber k = (k‖, Ek⊥), with Ek⊥ = È/D , and δ(k;χ) is
thematter density contrast in Fourier space at redshift z(χ). The weight ŵ(χ) along the line of sight was defined in Eqs. (2.9)
and (2.10). Then, from Eq. (2.7) we obtain for the convergence κ:

κ(È) = −
1
2
(`2x + `2y)φ(

È) '

∫
dχ

ŵ(χ)

D2

∫ dk‖

2π
e−ik‖χ δ

(
k‖,

È

D(χ)
;χ

)
. (2.16)

In the last expression we used as for Eq. (2.9) Limber’s approximation k2 ' k2
⊥
as the integration along the line of sight

associated with the projection on the sky suppresses radial modes as compared with transverse wavenumbers (i.e. |k‖| �

k⊥). In a similar fashion, we obtain from Eq. (2.7) for the complex shear γ:

γ(È) = −
1
2
(`x + i`y)2 φ(È) =

`2x − `2y + 2i`x`y
`2x + `2y

κ(È) = ei2α κ(È), (2.17)
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where α is the polar angle of the wavenumber È = (`x, `y). This expression clearly shows that the complex shear γ is a spin-
2 field: it transforms as γ → γ e−i2ψ under a rotation of transverse coordinates axis of angle ψ. This comes from the fact
that an ellipse transforms into itself through a rotation of 180◦ and so does the shear which measures the area-preserving
distortion, see Fig. 15.

For smoothed weak-lensing observables X̄ as defined in Eq. (2.11) we obtain:

X̄(È) = WX(−Èθs)κ(È) with WX(Èθs) =

∫
dEθ eiÈ.EθUX(Eθ), (2.18)

where we introduced the Fourier transform WX of the real-space filter UX of angular scale θs. This gives for the convergence
and the shear smoothed with a top-hat of angular radius θs:

Wκ(Èθs) =
2J1(`θs)
`θs

, Wγ(Èθs) = Wκ(`θs) ei2α, (2.19)

where J1 is the Bessel function of the first kind of order 1. In real space this gives back (with θ = |Eθ|):

Uκ(Eθ) =
Θ(θs − θ)

πθ2s
, Uγ(Eθ) = −

Θ(θ− θs)

πθ2
ei2β, (2.20)

where Θ is the Heaviside function and β is the polar angle of the angular vector Eθ. Note that Eq. (2.20) clearly shows that the
smoothed convergence is an average of the density contrast over the cone of angular radius θs whereas the smoothed shear
can be written as an average of the density contrast outside of this cone.

One drawback of the shear components is that they are even quantities (their sign can be changed through a rotation of
axis, see Eq. (2.17)), hence their third-ordermoment vanishes by symmetry and onemustmeasure the fourth-ordermoment
〈γ̄4

i 〉 (i.e. the kurtosis) in order to probe the deviations fromGaussianity. Therefore it is more convenient to use the aperture-
mass defined in Eq. (2.12) which can be derived from the shear but is not even, so that deviations from Gaussianity can be
detected through the third-order moment 〈M3

ap〉. A simple example is provided by the pair of filters [239]:

UMap(
Eθ) =

Θ(θs − θ)

πθ2s
9
(
1 −

θ2

θ2s

)(
1
3

−
θ2

θ2s

)
, (2.21)

and:

WMap(
Èθs) =

24J4(`θs)
(`θs)2

. (2.22)

An alternative approach was taken by [63], who chose a filter matched to the expected profile of galaxy clusters, to
improve the signal-to-noise.

2.3. Approximations

The derivation of Eq. (2.4) does not assume that the density fluctuations δ are small but it assumes that deflection angles
δEθ are small so that the relative deflection Ψij of neighboring light rays can be computed from the gravitational potential
gradients along the unperturbed trajectory (Born approximation). This may not be a good approximation for individual light
beams, but in cosmological weak-lensing studies considered in this review one is only interested in the statistical properties
of the gravitational lensing distortions. Since the statistical properties of the tidal fieldΦij are, to an excellent approximation,
identical along the perturbed and unperturbed paths, the use of Eq. (2.4) is well-justified to compute statistical quantities
such as the correlation functions of the shear field [148,21].

Apart from the higher-order corrections to the Born approximation discussed above (multiple lens couplings), other
higher-order terms are produced by the observational procedure. Indeed, in Eq. (2.10) we neglected the fluctuations of the
galaxy distribution n(zs) which can be coupled to the matter density fluctuations along the line of sight. This source–lens
correlation effect is more important as the overlapping area between the distributions of sources and lenses increases. On
the other hand, source density fluctuations themselves can lead to spurious small-scale power (as the average distance to
the sources can vary with the direction on the sky). Using analytical methods Ref. [23] found that both these effects are
negligible for the skewness and kurtosis of the convergence provided the source redshift dispersion is less than about 0.15.
These source clustering effects were further discussed in [95] who found that numerical simulations agree well with semi-
analytical estimates and that the amplitude of such effects strongly depends on the redshift distribution of the sources. A
recent study of the source–lens clustering [75], using numerical simulations coupled to realistic semi-analytical models for
the distribution of galaxies, finds that this effect can bias the estimation of σ8 by 2%–5%. Therefore, accurate photometric
redshifts will be needed for future missions such as SNAP or LSST to handle this effect.
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3. Statistics of 2D cosmic shear

For statistical analysis of cosmic shear, it is most common to use 2-point quantities, i.e. those which are quadratic in the
shear, and calculated either in real or harmonic space. For this section, we will restrict the discussion to 2D fields, where
we consider the statistics of the shear pattern on the sky only, and not in 3D. The shear field will be treated as a 3D field in
Section 4. Examples of real-space 2-point statistics are the average shear variance and various shear correlation functions. In
general there are advantages for cosmological parameter estimation in using harmonic-space statistics, as their correlation
properties are more convenient, but for surveys with complicated geometry, such as happens with removal of bright stars
and artifacts, there can be practical advantages to using real-spacemeasures, as they can be easier to estimate. All the 2-point
statistics can be related to the underlying 3D matter power spectrum via the (2D) convergence power spectrum Pκ(`), and
inspection of the relationship between the two point statistic and Pκ(`) can be instructive, as it shows which wavenumbers
are picked out by each statistic. In general, a narrow window in ` space may be desirable if the power spectrum is to be
estimated.

3.1. Convergence and shear power spectra

We define the power spectra P(k) of the 3D matter density contrast and Pκ(`) of the 2D convergence as:

〈δ(k1)δ(k2)〉 = (2π)3δD(k1 + k2)P(k1) (3.1)

and:

〈κ(È1)κ(È2)〉 = (2π)2δD(È1 + È2)Pκ(`1). (3.2)

The Dirac functions δD express statistical homogeneity whereas statistical isotropy implies that P(k) and Pκ(È) only depend
on k = |k| and ` = |È|. In Eq. (3.2) we used a flat-sky approximation which is sufficient for most weak-lensing purposes. We
shall discuss in Section 4 the expansion over spherical harmonics (instead of plane waves as in Eq. (3.2)) which is necessary
for instance for full-sky studies. Then, from Eqs. (2.16) and (2.17) we obtain:

Pκ(`) = Pγ(`) =
1
4
`4 Pφ(`) (3.3)

and:

Pκ(`) =

∫ χ

0
dχ′

ŵ2(χ′)

D2(χ′)
P
(

`

D(χ′)
;χ′

)
. (3.4)

Thus this expression gives the 2D convergence power spectrum in terms of the 3Dmatter power spectrum P(k;χ) integrated
along the line of sight, using Limber’s approximation.

3.2. 2-point statistics in real space

As an example of a real-space 2-point statistic, consider the shear variance, defined as the variance of the average shear γ̄
evaluated in circular patches of varying radius θs. The averaging is a convolution, so the power is multiplied (see Eqs. (2.18)
and (2.19)):

〈|γ̄|2〉 =

∫ d`
2π
`Pκ(`)

4J21(`θs)
(`θs)2

, (3.5)

where Jn is a Bessel function of order n.
The shear correlation functions can either be defined with reference to the coordinate axes,

ξij(θ) ≡ 〈γi(Eθ
′)γj(Eθ

′
+ Eθ)〉 (3.6)

where i, j = 1, 2 and the averaging is done over pairs of galaxies separated by angle θ = |Eθ|. By parity ξ12 = 0, and by
isotropy ξ11 and ξ22 are functions only of |Eθ|. The correlation function of the complex shear is

〈γγ∗
〉θ =

∫ d2`

(2π)2
Pγ(`) ei

È.Eθ

=

∫
`d`

(2π)2
Pκ(`)ei`θ cosϕdϕ

=

∫ d`
2π
`Pκ(`)J0(`θ). (3.7)

Alternatively, the shears may be referred to axes oriented tangentially (t) and at 45◦ to the radius (×), defined with respect
to each pair of galaxies used in the averaging. The rotations γ → γ ′

= γ e−2iψ, whereψ is the position angle of the pair, give
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Fig. 2. Kernel functions for the two-point statistics discussed in this section. z = `θs . The thin solid line peaking at z = 0 corresponds with the shear
variance, the thick solid line is the aperture mass, with filter given in Eq. (2.21), the short dashed line is the kernel for ξ+ and the long dashed to ξ− .

tangential and cross components of the rotated shear as γ ′
= −γt − iγ×, where the components have correlation functions

ξtt and ξ×× respectively. It is common to define a pair of correlations

ξ±(θ) = ξtt ± ξ××, (3.8)

which can be related to the convergence power spectrum by (see [148])

ξ+(θ) =

∫
∞

0

d`
2π
`Pκ(`)J0(`θ)

ξ−(θ) =

∫
∞

0

d`
2π
`Pκ(`)J4(`θ).

(3.9)

Finally, let us consider the class of statistics referred to as aperture masses associated with compensated filters, which we
defined in Eq. (2.12). This allows Map to be related to the tangential shear [239] as in Eq. (2.12). Several forms of UMap have
been suggested, which trade locality in real space with locality in ` space. Ref. [242] considers the filter UMap of Eq. (2.21)
which cuts off at some scale, θs. From Eq. (2.22) this gives a two-point statistic

〈M2
ap(θs)〉 =

∫ d`
2π
`Pκ(`)

576J24(`θs)
(`θs)4

. (3.10)

Other forms have been suggested [60], which are broader in real space, but pick up a narrower range of ` power for a given
θ. As we have seen, all of these two-point statistics can be written as integrals over ` of the convergence power spectrum
Pκ(`) multiplied by some kernel function, since weak-lensing distortions can be expressed in terms of the lensing potential
φ, see Eqs. (2.5) and (2.16).

If one wants to estimate thematter power spectrum, then there are some advantages in having a narrow kernel function,
but the uncertainty principle then demands that the filtering is broad on the sky. This can lead to practical difficulties in
dealing with holes, edges etc. Filter functions for the 2-point statistics mentioned here are shown in Fig. 2.

3.3. E/B decomposition

Weak gravitational lensing does not produce the full range of locally linear distortions possible. These are characterised
by translation, rotation, dilation and shear,with six free parameters. Translation is not readily observable, butweak lensing is
specified by three parameters rather than the four remaining degrees of freedom permitted by local affine transformations.
This restriction is manifested in a number of ways: for example, the transformation of angles involves a 2× 2 matrix which
is symmetric, so not completely general, see Eq. (2.6). Alternatively, a general spin-weight 2 field can be written in terms of
second derivatives of a complex potential, whereas the lensing potential is real. As noticed below Eq. (2.8) and in Eq. (3.25),
this also implies that there aremany other consistency relationswhich have to hold if lensing is responsible for the observed
shear field. In practice the observed ellipticity fieldmay not satisfy the expected relations, if it is contaminated by distortions
not associated with weak lensing. The most obvious of these is optical distortions of the telescope system, but could also
involve physical effects such as intrinsic alignment of galaxy ellipticities, which we will consider in Section 4.

A convenient way to characterise the distortions is via E/B decomposition, where the shear field is described in terms
of an ‘E-mode’, which is allowed by weak lensing, and a ‘B-mode’, which is not. These terms are borrowed from similar
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Fig. 3. Illustrative E and B modes: the E modes show what is expected around overdensities (left) and underdensities (right). The B mode patterns should
not be seen (from van Waerbeke and Mellier [303]).

Fig. 4. Compilation of most of the shear measurements listed in Table 4. The vertical axis is the shear top-hat variance multiplied by the angular scale in
arcminutes. The horizontal axis is the radius of the smoothing window in arcminutes. The positioning along the y-axis is only approximate given that the
different surveys have a slightly different source redshift distribution. The RCS result (mean source redshift of 0.6) was rescaled to a mean source redshift
of one.

decompositions in polarisation fields. In fact weak lensing can generate B-modes, but they are expected to be very
small [245], so the existence of a significant B-mode in the observed shear pattern is indicative of some non-lensing
contamination. Illustrative examples of E- and B-modes are shown in Fig. 3 (from [303]). The easiest way to introduce a
B-mode mathematically is to make the lensing potential complex:

φ = φE + iφB. (3.11)

There are variousways to determinewhether a B-mode is present. A neatway is to generalise the aperturemass to a complex
M = Map + iM⊥, where the real part picks up the E modes, and the imaginary part the B modes. Alternatively, the ξ± can be
used [60,246]:

Pκ±(`) = π

∫
∞

0
dθ θ [J0(`θ)ξ+(θ) ± J4(`θ)ξ−(θ)], (3.12)

where the ± power spectra refer to E and B mode powers. In principle this requires the correlation functions to be known
over all scales from 0 to ∞. Variants of this [60] allow the E/B-mode correlation functions to be written in terms of integrals
of ξ± over a finite range:

ξE(θ) =
1
2
[
ξ−(θ) + ξ′

+
(θ)

]
ξB(θ) = −

1
2
[
ξ−(θ) − ξ′

+
(θ)

]
,

(3.13)
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where

ξ′
+
(θ) = ξ+(θ) + 4

∫ θ

0

dϑ
ϑ
ξ+(ϑ) − 12θ2

∫ θ

0

dϑ
ϑ3 ξ+(ϑ). (3.14)

This avoids the need to know the correlation functions on large scales, but needs the observed correlation functions to be
extrapolated to small scales; this was one of the approaches taken in the analysis of the CFHTLS data [120]. Difficulties with
estimating the correlation functions on small scales have led others to prefer to extrapolate to large scales, such as in the
analysis of the GEMS [104] and William Herschel data [190]. Note that without full sky coverage, the decomposition into E
and B modes is ambiguous, although for scales much smaller than the survey it is not an issue.

3.4. Estimators and their covariance

The most common estimate of the cosmic shear comes from measuring the ellipticities of individual galaxies. We will
consider the practicalities in Section 6. For weak gravitational lensing, these estimates are very noisy, since the galaxies as a
population have intrinsic ellipticities eS with a dispersion of about 0.4, whereas the typical cosmic shear is around γ ' 0.01.
Therefore, one needs a large number N of galaxies to decrease the noise ∼eS/

√
N associated with these intrinsic ellipticities

(hence one needs to observe the more numerous faint galaxies). The observed ellipticity is related to the shear by [238]

eS =
e − 2g + g2e∗

1 + g2 − 2Re(ge∗)
, (3.15)

where g = γ/(1 − κ) is the reduced shear. Here we defined the ellipticity e such that for an elliptical image of axis ratio
r < 1 we have:

|e| =
1 − r2

1 + r2
. (3.16)

Other definitions are also used in the literature such as |e′
| = (1 − r)/(1 + r), see [249]. To linear order in γ or κ, we obtain

from Eq. (3.15):

e ' eS + 2γ, (3.17)

with a small correction term when averaged. e is therefore dominated by the intrinsic ellipticity, and many source galaxies
are needed to get a robust measurement of cosmic shear. This results in estimators of averaged quantities, such as the
average shear in an aperture, or a weighted average in the case ofMap. Any analysis of these quantities needs to take account
of their noise properties, and more generally in their covariance properties. We will look only at a couple of examples here;
a more detailed discussion of covariance of estimators, including non-linear cumulants, appears in [208].

3.4.1. Linear estimators
Perhaps the simplest average statistic to use is the average (of N) galaxy ellipticities in a 2D aperture on the sky:

γ̄ ≡
1
N

N∑
i=1

ei
2

. (3.18)

The covariance of two of these estimators γ̄α and γ̄∗

β is

〈γ̄αγ̄
∗

β〉 =
1

4NM

N∑
i=1

M∑
j=1

〈(eSi + 2γi)(e∗

Sj + 2γ∗

j )〉, (3.19)

where the apertures have N and M galaxies respectively. If we assume (almost certainly incorrectly; see Section 4.7) that
the source ellipticities are uncorrelated with each other, and with the shear, then for distinct apertures the estimator is an
unbiased estimator of the shear correlation function averaged over the pair separations. If the apertures overlap, then this
is not the case. For example, in the shear variance, the apertures are the same, and

〈|γ̄2
|〉 =

1
N2

N∑
i=1

N∑
j=1

〈
|eSi|2

4
δij + γiγ

∗

j

〉
, (3.20)

which is dominated by the presence of the intrinsic ellipticity variance, σ2
e ≡ 〈|eS|2〉 ' 0.32

− 0.42. The average shear
therefore has a variance of σ2

e /4N. If we use the (quadratic) shear variance itself as a statistic, then it is estimated by omitting
the diagonal terms:

|γ̄2
| =

1
4N(N − 1)

N∑
i=1

∑
j6=i

eie
∗

j . (3.21)
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For aperture masses Eq. (2.12), the intrinsic ellipticity distribution leads to a shot noise term from the finite number of
galaxies. Again we simplify the discussion here by neglecting correlations of source ellipticities. The shot noise can be
calculated by the standard method [217] of dividing the integration solid angle into cells i of size ∆2θi containing ni = 0
or 1 galaxy:

Map '
∑
i

∆2θi ni Q(|Eθi|) (eSi/2 + γi)t. (3.22)

Squaring and taking the ensemble average, noting that 〈eSi,teSj,t〉 = σ2
e δij/2, n2i = ni, and rewriting as a continuous integral

gives

〈M2
ap〉SN =

σ2
e

8

∫
d2θQ2(|Eθ|). (3.23)

Shot noise terms for other statistics are calculated in similar fashion. In addition to the covariance from shot noise, there
can be signal covariance, for example from samples of different depths in the same area of sky; both samples are affected
by the lensing by the common low-redshift foreground structure [209].

3.4.2. Quadratic estimators
We have already seen how to estimate in an unbiased way the shear variance. The shear correlation functions can

similarly be estimated:

ξ̂±(θ) =

∑
ij
wiwj(eitejt ± ei×ej×)

4
∑
ij
wiwj

, (3.24)

where the wi are arbitrary weights, and the sum extends over all pairs of source galaxies with separations close to θ. Only in
the absence of intrinsic correlations, 〈eitejt ± ei×ej×〉 = σ2

e δij + 4ξ±(|Eθi − Eθj|), are these estimators unbiased. The variance of
the shear 〈|γ̄|2〉 and of the aperture-mass 〈M2

ap〉 can also be obtained from the shear correlation functions (as may be seen
for instance from Eq. (3.10)). This avoids the need to place circular apertures on the sky which is hampered by the gaps and
holes encountered in actual weak lensing surveys.

As with any quadratic quantity, the covariance of these estimators depends on the 4-point function of the source
ellipticities and the shear. These expressions can be evaluated if the shear field is assumed to beGaussian, but the expressions
for this (and the squared aperture mass covariance) are too cumbersome to be given here, so the reader is directed to [246].
At small angular scales (below ∼10′), which are sensitive to the non-linear regime of gravitational clustering, the fields can
no longer be approximated as Gaussian and onemust use numerical simulations to calibrate the non-Gaussian contributions
to the covariance, as described in [262].

In harmonic space, the convergence power spectrum may be estimated from either ξ+ or ξ− (or both), using Eq. (3.9).
From the orthonormality of the Bessel functions,

Pκ(`) =

∫
∞

0
dθ θ ξ±(θ) J0,4(`θ), (3.25)

where the 0, 4 correspond to the +/− cases. In practice, ξ±(θ) is not known for all θ, and the integral is truncated on
both small and large scales. This can lead to inaccuracies in the estimation of Pκ(`) (see [246]). An alternative method is
to parametrise Pκ(`) in band-powers, and to use parameter estimation techniques to estimate it from the shear correlation
functions [124,38].

3.4.3. 2-point statistics measurement
Since the first measurements of weak lensing by large scale structures [299,6,313,156], all ideas discussed above have

been put in practice on real data. Fig. 4 shows the measurement of shear top-hat variance as function of scale. This figure
clearly shows that even early weak lensing measurement succeeded in capturing the non-linear matter clustering at scales
below 10–20 arc min. Some groups performed a E/B separation, which leads to a more accurate measurement of residual
systematics. Table 4 shows all measurements of the mass power spectrum σ8 until 2006. It is interesting to note, except
for COMBO-17 [104], none of the measurements are using a source redshift distribution obtained from the data, they all
use the Hubble Deep Fields with different prescriptions regarding galaxy weighing. Ref. [304] have shown that the Hubble
Deep Field photometric redshift distribution can lead to a source mean redshift error of ∼10% due to sample variance. The
relative tension between different measures of σ8 in Table 4 comes in part from this problem, and also from an uncertainty
regarding how to treat the residual systematics, the B-mode, in the cosmic shear signal. Recently, [134] have released the
largest photometric redshift catalogue, obtained from the CFHTLS-DEEP data. The most recent 2-point statistics analysis
involves the combination of this photometric redshift sample with the largest weak lensing surveys described in Table 4.
One of those analysis combines the largest lensing surveys to date [19] totalling a sky area of 100 deg2, comprising deep and
shallow surveys. The other analysis cover the most recent CFHTLS WIDE survey; it is uniform in depth and gives the first
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Table 4
Reported constraints on the power spectrumnormalization “σ8” forΩm = 0.3 for a flat Universe, obtained fromagiven “statistic” (from [303] and extended)

ID σ8(Ω = 0.3) Statistic Field mlim CosVar E/B zs Γ

Maoli et al. 01 1.03 ± 0.05 〈γ2〉 VLT+ CTIO+WHT+ CFHT – No No – 0.21
Van Waerbeke et al.
01

0.88 ± 0.11 〈γ2〉, ξ(r),
〈M2

ap〉

CFHT 8 deg2 . I = 24.5 No No
(yes)

1.1 0.21

Rhodes et al. 01 0.91+0.25
−0.29 ξ(r) HST 0.05 deg2 I = 26 Yes No 0.9–1.1 0.25

Hoekstra et al. 02
[116]

0.81 ± 0.08 〈γ2〉 CFHT + CTIO 24 deg2 . R = 24 Yes No 0.55 0.21

Bacon et al. 03 0.97 ± 0.13 ξ(r) Keck + WHT 1.6 deg2 R = 25 Yes No 0.7–0.9 0.21
Réfrégier et al. 02 0.94 ± 0.17 〈γ2〉 HST 0.36 deg2 . I = 23.5 Yes No 0.8–1.0 0.21
Van Waerbeke et al.
02

0.94 ± 0.12 〈M2
ap〉 CFHT 12 deg2 . I = 24.5 Yes Yes 0.78–1.08 0.1–0.4

Hoekstra et al. 02 0.91+0.05
−0.12 〈γ2〉, ξ(r),

〈M2
ap〉

CFHT + CTIO 53 deg2 . R = 24 Yes Yes 0.54–0.66 0.05–0.5

Brown et al. 03 0.74 ± 0.09 〈γ2〉, ξ(r) COMBO17 1.25 deg2 . R = 25.5 Yes No
(Yes)

0.8–0.9 –

Hamana et al. 03 (2σ)0.69+0.35
−0.25 〈M2

ap〉, ξ(r) Subaru 2.1 deg2 . R = 26 Yes Yes 0.8–1.4 0.1–0.4
Jarvis et al. 03 (2σ)0.71+0.12

−0.16 〈γ2〉, ξ(r),
〈M2

ap〉

CTIO 75 deg2 . R = 23 Yes Yes 0.66 0.15–0.5

Rhodes et al. 04 1.02 ± 0.16 〈γ2〉, ξ(r) STIS 0.25 deg2 . 〈I〉 = 24.8 Yes No 1.0 ± 0.1 –
Heymans et al. 05 0.68 ± 0.13 〈γ2〉, ξ(r) GEMS 0.3 deg2 . 〈m606〉 =

25.6
Yes No

(Yes)
∼1 –

Massey et al. 05 1.02 ± 0.15 〈γ2〉, ξ(r) WHT 4 deg2 . R = 25.8 Yes Yes ∼0.8 –
Van Waerbeke et al.
05

0.83 ± 0.07 〈γ2〉, ξ(r) CFHT 12 deg2 . I = 24.5 Yes No
(Yes)

0.9 ± 0.1 0.1–0.3

Heitterscheidt et al.
06

0.8 ± 0.1 〈γ2〉, ξ(r) GaBoDS 13 deg2 . R =

[21.5, 24.5]

Yes Yes ∼0.78 h ∈ [0.63, 0.77]

Semboloni et al. 06 0.90 ± 0.14 〈M2
ap〉, ξ(r) CFHTLS-DEEP 2.3 deg2 . i = 25.5 Yes Yes ∼1 Γ = Ωh

Hoekstra et al. 06 0.85 ± 0.06 〈γ2〉, ξ(r),
〈M2

ap〉

CFHTLS-WIDE 22 deg2 . i = 24.5 Yes Yes 0.8 ± 0.1 Γ = Ωh

Benjamin et al. 07 0.74 ± 0.04 ξ(r) Various 100 deg2 Various Yes Yes 0.78 Γ ' Ωh

Fu et al. 08 0.70 ± 0.04 〈γ2〉, ξ(r),
〈M2

ap〉

CFHTLS-WIDE 57 deg2 . i = 24.5 Yes Yes 0.95 Γ ' Ωh

“CosVar” tells us whether or not the cosmic variance has been included, “E/B” tells us whether or not amode decomposition has been used in the likelihood
analysis. zs and Γ are the priors used for the different surveys identified with “ID”.

measurement of cosmic shear at large angular scale (Fu et al. [78]). The former finds σ8
(

Ωm
0.24

)0.59
= 0.84 ± 0.05 and the

latter σ8
(

Ωm
0.25

)0.64
= 0.785± 0.043. The relative tension is gone, as nicely illustrated in Fig. 5 and tends to favor a relatively

low normalisation when combined with the cosmic microwave background WMAP3 data σ8 = 0.77 ± 0.03 (Fu et al. [78]).
One can reasonably argue that themajor uncertainty remains the calibration of the source redshift distribution [19], Fu et al.
[78], which strongly suggests that a photometric redshift measurement of all galaxies used in weak lensing measurements
must be a priority for future surveys. The systematics due to the Point Spread Function correction (see Section 6) seems to
be much better understood than a few years ago, and many promising techniques have been proposed to solve it.

3.5. Mass reconstruction

The problem ofmass reconstruction is a central topic inweak lensing. Historically this is because the earlymeasurements
of weak gravitational lensing were obtained in clusters of galaxies, and this led to the very first maps of dark matter [33,74].
These maps were the very first demonstrations that we could see the dark side of the Universe without any assumption
regarding the light–mass relation, which, of course, was a major breakthrough in our exploration of the Universe.
Reconstructing mass maps is also the only way to perform a complete comparison of the dark matter distribution to the
Universe as seen in otherwavelengths. For these reasons,mass reconstruction is also part of the shearmeasurement process.
A recent example of the power of mass reconstruction is shown by the bullet cluster [47,34], which clearly indicates the
presence of dark matter at a location different from where most of the baryons are. This is a clear demonstration that, at
least for the extreme cases where light and baryons do not trace the mass, weak lensing is the only method that can probe
the matter distribution.

A mass map is a convergence, κmap (projected mass), which can be reconstructed from the shear field γi:

κ =
1
2

(
∂2x + ∂2y

)
φ; γ1 =

1
2

(
∂2x − ∂2y

)
φ; γ2 = ∂x∂yφ, (3.26)

where φ is the projected gravitational potential [148], see Eqs. (2.5)–(2.7). Assuming that the reduced shear and shear are
equal to first approximation, i.e. gi ' γi (which is true only in the weak lensing regime when |γ| � 1 and κ � 1), [149]
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Fig. 5. Left panel: combined Ωm and σ8 constraints from [19] and [78] who have only 30% of data in common (a fraction of CFHTLS wide data); shear
correlation function was used. Right panel: lensing constraints from the aperture mass measurement in [78] combined with WMAP3. Courtesy Liping Fu.

have shown that the Fourier transform of the smoothed convergence κ̄(È) can be obtained from the Fourier transform of the
smoothed shear map γ̄(È):

κ̄(È) =
`2x + `2y

`2x − `2y + 2i`x`y
γ̄(È). (3.27)

This follows from Eq. (2.17) if smoothing is a convolution as in Eq. (2.11) which is expressed in Fourier space as a product,
see Eq. (2.18). This relation explicitly shows that mass reconstruction must be performed with a given smoothing window,
otherwise the variance of themassmap becomes infinite [149]. Indeed, the random galaxy intrinsic ellipticities eSi introduce
a white noise which gives a large-` divergence when we transform back to real space for the variance 〈κ̄2〉c. The Fourier
transform method is a fast N logN process, but the non-linear regions κ ∼ γi ∼ 1 are not accurately reconstructed. A
likelihood reconstruction method works in the intermediate and strong lensing regimes [13]. A χ2 function of the reduced
shear gi is minimised by finding the best gravitational potential φij calculated on a grid ij:

χ2
=
∑
ij

[∣∣∣gobsij − gguessij (φij)
∣∣∣2] . (3.28)

The shot noise of the reconstructed mass map depends on the smoothing window, the intrinsic ellipticity of the galaxies
and the number density of galaxies [298]. The two methods outlined above provide an accurate description of the shot
noise: it was shown [297] that two and three-points statistics can be measured accurately from reconstructed mass
maps using these methods (see Fig. 6). Important for cluster lensing, the non-linear version of [149] has been developed
in [153], and [238] have developed an alternative which also conserves the statistical properties of the noise. The advantage
of a reconstruction method that leaves intact the shot noise is that a statistical analysis of the mass map is relatively
straightforward (e.g. the peak statistics in [139]). Mass reconstruction has proven to be reasonably successful in blind
cluster searches [204,48,80]. A radically different approach inmapmaking consists in reducing the noise in order to identify
the highest signal-to-noise peaks. Such an approach has been developed by [257,36,189]. More recently [273] proposed
a wavelet approach, where the size of the smoothing kernel is optimized as a function of the local noise amplitude. An
application of this method on the COSMOS data for cluster detection is shown in [192].

Mass maps are essential for some specific cosmological studies such as morphology analysis like Minkowski functionals
and Euler characteristics [233] and for global statistics (probability distribution function of the convergence, e.g. [320]). The
reconstruction processes is non local, and this is why it is difficult to have a perfect control of the error propagation and
systematics in the κmaps. In particular, note that one can only reconstruct the convergence κ up to a constant κ0, since Eq.
(3.27) is undetermined for ` = 0. Indeed, a constantmatter surface density in the lens plane does not create any shear (since
it selects no preferred direction) but it leads to a non-zero constant convergence (whichmay only be eliminated ifwe observe
awide-enough fieldwhere themean convergence should vanish, or use complementary information such as number counts
which are affected by the associated magnification). This is the well-known mass-sheet degeneracy. The aperture mass
statistics Map [150,242] introduced in Eq. (2.12) has been invented to enforce locality of the mass reconstruction, therefore
it might provide an alternative to the inversion problem, although it is not yet clear that it can achieve a signal-to-noise as
good as top-hat or Gaussian smoothing windows.
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Fig. 6. Left: Simulated noise-free κmap. Field-of-view is 49 square degrees in LCDM cosmology. Right: Reconstructed κ field with realistic noise level (give
details). Van Waerbeke et al. [297] have shown that two and three-point statistics can be accurately measured from such mass reconstructions.

The aperture mass statistic can also be used to provide unbiased estimates of the power spectrum [14], galaxy
biasing [296,233], high order statistics [242,300], and peak statistics [102].

4. 3D weak lensing

4.1. What is 3D weak lensing?

The way in which weak lensing surveys have been analysed to date has been to look for correlations of shapes of galaxies
on the sky; this can be done even if there is no distance information available for individual sources. However, as we have
seen, the interpretation of observed correlations depends on where the imaged galaxies are: the more distant they are, the
greater the correlation of the images. One therefore needs to know the statistical distribution of the source galaxies, and
ignorance of this can lead to relatively large errors in recovered parameters. In order to rectify this, most lensing surveys
obtain multi-colour photometry of the sources, from which one can estimate their redshifts. These ‘photometric redshifts’
are not as accurate as spectroscopic redshifts, but the typical depth of survey required by lensing surveysmakes spectroscopy
an impractical option for large numbers of sources. 3D weak lensing uses the distance information of individual sources,
rather than just the distribution of distances. If one has an estimate of the distance to each source galaxy, then one can utilise
this information and investigate lensing in three dimensions. Essentially one has an estimate of the shear field at a number
of discrete locations in 3D.

There are several ways 3D information can be used: one is to reconstruct the 3D gravitational potential or the overdensity
field from 3D lensing data. We will look at this in Section 4.2. The second is to exploit the additional statistical power of
3D information, firstly by dividing the sources into a number of shells based on estimated redshifts. One then essentially
performs a standard lensing analysis on each shell, but exploits the extra information fromcross-correlations between shells.
This sort of analysis is commonly referred to as tomography, and we explore this in Section 4.3, and in Section 4.4, where
one uses ratios of shears behind clusters of galaxies. Finally, one can perform a fully-3D analysis of the estimated shear field.
Each approach has its merits. We cover 3D statistical analysis in Section 4.5. At the end of Section 4.7, we investigate how
photometric redshifts can remove a potentially important physical systematic: the intrinsic alignment of galaxies, which
could be wrongly interpreted as a shear signal. Finally, in Section 4.8, we consider a potentially very important systematic
error arising from a correlation between cosmic shear and the intrinsic alignment of foreground galaxies, which could arise
if the latter responds to the local tidal gravitational field which is partly responsible for the shear.

4.2. 3D potential and mass reconstruction

As we have already seen, it is possible to reconstruct the surface density of a lens system by analysing the shear pattern
of galaxies in the background. An interesting question is then whether the reconstruction can be done in three dimensions,
when distance information is available for the sources. It is probably self-evident that mass distributions can be constrained
by the shear pattern, but the more interesting possibility is that one may be able to determine the 3D mass density in an
essentially non-parametric way from the shear data.

The idea [284] is that the shear pattern is derivable from the lensing potential φ(r), which is dependent on the
gravitational potential Φ(r) through the integral equation

φ(r) =
2
c2

∫ r

0
dr′

( 1
r′

−
1
r

)
Φ(r′), (4.1)
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where the integral is understood to be along a radial path (the Born approximation), and a flat Universe is assumed in Eq.
(4.1). The gravitational potential is related to the density field via Poisson’s Eq. (2.8). There are two problems to solve here;
one is to construct φ from the lensing data, the second is to invert Eq. (4.1). The second problem is straightforward: the
solution is

Φ(r) =
c2

2
∂

∂r

[
r2
∂

∂r
φ(r)

]
. (4.2)

From this and Poisson’s equation ∇
2Φ = (3/2)H2

0Ωmδ/a(t), we can reconstruct the mass overdensity field

δ(r) =
a(t)c2

3H2
0Ωm

∇
2
{
∂

∂r

[
r2
∂

∂r
φ(r)

]}
. (4.3)

The construction of φ is more tricky, as it is not directly observable, but must be estimated from the shear field. This
reconstruction of the lensing potential suffers from a similar ambiguity to the mass-sheet degeneracy for simple lenses.
To see how, we first note that the complex shear field γ is the second derivative of the lensing potential:

γ(r) =

[
1
2

(
∂2

∂x2
−
∂2

∂y2

)
+ i

∂2

∂x∂y

]
φ(r). (4.4)

As a consequence, since the lensing potential is real, its estimate is ambiguous up to the addition of any field f (r) for which

∂2f (r)
∂x2

−
∂2f (r)
∂y2

=
∂2f (r)
∂x∂y

= 0. (4.5)

Since φmust be real, the general solution to this is

f (r) = F(r) + G(r)x + H(r)y + P(r)(x2 + y2), (4.6)

where F, G, H and P are arbitrary functions of r ≡ |r|. Assuming these functions vary smoothly with r, only the last of these
survives at a significant level to the mass density, and corresponds to a sheet of overdensity

δ =
4a(t)c2

3H2
0Ωmr2

∂

∂r

[
r2
∂

∂r
P(r)

]
. (4.7)

There are a couple of ways to deal with this problem. For a reasonably large survey, one can assume that the potential and
its derivatives are zero on average, at each r, or that the overdensity has average value zero. For further details, see [7]. Note
that the relationship between the overdensity field and the lensing potential is a linear one, so if one chooses a discrete
binning of the quantities, one can use standard linear algebra methods to attempt an inversion, subject to some constraints
such as minimising the expected reconstruction errors. With prior knowledge of the signal properties, this is the Wiener
filter. See [129] for further details of this approach.

4.3. Tomography

In the case where one has distance information for individual sources, it makes sense to employ the information for
statistical studies. A natural course of action is to divide the survey into slices at different distances, and perform a study of
the shear pattern on each slice. In order to use the information effectively, it is necessary to look at cross-correlations of the
shear fields in the slices, as well as correlations within each slice [121]. This procedure is usually referred to as tomography,
although the term does not seem entirely appropriate.

We start by considering the average shear in a shell, which is characterised by a probability distribution for the source
redshifts z = z(r), p(z). The shear field is the second edth derivative of the lensing potential, e.g. [41].

γ(r) =
1
2
ð ðφ(r) '

1
2
(∂x + i∂y)2φ(r), (4.8)

where the derivatives are in the angular direction, and the last equality holds in the flat-sky limit. If we average the shear in
a shell, giving equal weight to each galaxy, then the average shear can be written in terms of an effective lensing potential

φeff(θ) =

∫
∞

0
dz p(z)φ(r) (4.9)

where the integral is at fixed θ , and p(z) is zero outside the slice (we ignore errors in distance estimates such as photometric
redshifts; these could be incorporated with a suitable modification to p(z)). In terms of the gravitational potential, the
effective lensing potential is

φeff(θ) =
2
c2

∫
∞

0
drΦ(r)g(r), (4.10)
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Fig. 7. The power spectra of two slices, their cross power spectrum, and their correlation coefficient. From [121].

where reversal of the order of integration gives the lensing efficiency to be

g(r) =

∫
∞

z(r)
dz′ p(z′)

(1
r

−
1
r′

)
, (4.11)

where z′ = z′(r′) andwe assume flat space. If we perform a spherical harmonic transform of the effective potentials for slices
i and j, then the cross power spectrum can be related to the power spectrum of the gravitational potential PΦ(k) via a version
of Limber’s equation:

〈φ
(i)
`mφ

∗(j)
`′m′ 〉 = Cφφ`,ij δ`′`δm′m, (4.12)

where

Cφφ`,ij =

( 2
c2

)2 ∫ ∞

0
dr

g(i)(r)g(j)(r)

r2
PΦ(`/r; r) (4.13)

is the cross power spectrum of the lensing potentials. The last argument in PΦ allows for evolution of the power spectrum
with time, or equivalently distance. The power spectra of the convergence and shear are related to Cφφ`,ij by [122]

Cκκ`,ij =
`2(`+ 1)2

4
Cφφ`,ij

C
γγ
`,ij =

1
4

(`+ 2)!
(`− 2)!

Cφφ`,ij.

(4.14)

The sensitivity of the cross power spectra to cosmological parameters is through various effects, as in 2D lensing: the shape
of the linear gravitational potential power spectrum is dependent on some parameters, as is its nonlinear evolution; in
addition the z(r) relation probes cosmology. The reader is referred to standard cosmological texts for more details of the
dependence of the distance–redshift relation on cosmological parameters.

Ref. [121] illustrates the power and limitation of tomography, with two shells (Fig. 7). As expected, the deeper shell (2)
has a larger lensing power spectrum than the nearby shell (1), but it is no surprise to find that the power spectra from shells
are correlated, since the light from both passes through some common material. Thus one does gain from tomography,
but, depending on what one wants to measure, the gains may or may not be very much. For example, tomography adds
rather little to the accuracy of the amplitude of the power spectrum, but far more to studies of dark energy properties.
One also needs to worry about systematic effects, as leakage of galaxies from one shell to another, through noisy or biased
photometric redshifts, can degrade the accuracy of parameter estimation [133,180].

4.4. The shear ratio test

The shear contributed by the general large-scale structure is typically about 1%, but the shear behind a cluster of galaxies
can far exceed this. As always, the shear of a background source is dependent on its redshift, and on cosmology, but also
on the mass distribution in the cluster. This can be difficult to model, so it is attractive to consider methods which are
decoupled from the details of the mass distribution of the cluster. Various methods have been proposed (e.g. [140,29,319]).
The method currently receiving the most attention is simply to take ratios of average tangential shear in different redshift
slices for sources behind the cluster.

The amplitude of the induced tangential shear is dependent on the source redshift z, and on cosmology via the angular
diameter distance–redshift relation Sk[r(z)] by [285]

γt(z) = γt(z = ∞)
Sk[r(z) − r(zl)]

Sk[r(z)]
, (4.15)
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Fig. 8. The accuracy expected from the combination of experiments dedicated to studying dark energy properties. The equation of state of dark energy is
assumed to vary with scale factor a as w(a) = w0 +wa(1− a), and the figures show the 1-sigma, 2-parameter regions for the experiments individually and
in combination. The supernova study fills the plot, the thin diagonal band is Planck, the near-vertical band is BAO, and the ellipse is the 3D lensing power
spectrum method. The small ellipse is the expected accuracy from the combined experiments. From [100].

Fig. 9. As in Fig. 8, but with the shear ratio test as the lensing experiment. Supernovae fill the plot, Planck is the thin diagonal band, BAO the near-vertical
band, and the shear ratio is the remaining 45◦ band. The combination of all experiments is in the centre. From [285].

where γt,∞ is the shear which a galaxy at infinite distance would experience, and which characterises the strength of the
distortions induced by the cluster, at redshift zl. Evidently, we can neatly eliminate the cluster details by taking ratios of
tangential shears, for pairs of shells in source redshift:

Rij ≡
γt,i

γt,j
=

Sk[r(zj)] Sk[r(zi) − r(zl)]

Sk[r(zi)] Sk[r(zj) − r(zl)]
. (4.16)
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In reality, the light from themore distant shell passes through an extra pathlength of clumpymatter, so suffers an additional
source of shear. This can be treated as a noise term [285]. This approach is attractive in that it probes cosmology through the
distance–redshift relation alone, being (at least to good approximation) independent of the growth rate of the fluctuations.
Its dependence on cosmological parameters is therefore rather simpler, asmanyparameters (such as the amplitude ofmatter
fluctuations) do not affect the ratio except throughminor side-effects. More significantly, it can be used in conjunction with
lensing methods which probe both the distance–redshift relation and the growth-rate of structure. Such a dual approach
can in principle distinguish between quintessence-type dark energy models and modifications of Einstein gravity. This
possibility arises because the effect on global properties (e.g. z(r)) is different from the effect on perturbed quantities (e.g. the
growth rate of the power spectrum) in the two cases. Themethod has a signal-to-noisewhich is limited by the finite number
of clusters which are massive enough to have measurable tangential shear. In an all-sky survey, the bulk of the signal would
come from the 105–106 clusters above a mass limit of 1014M�.

4.5. Full 3D analysis of the shear field

An alternative approach to take is to recognise that, with photometric redshift estimates for individual sources, the data
one is working with is a very noisy 3D shear field, which is sampled at a number of discrete locations, and for whom the
locations are somewhat imprecisely known. It makes some sense, therefore, to deal with the data one has, and to compare
the statistics of the discrete 3D fieldwith theoretical predictions. Thiswas the approach of [99,41,100]. It should yield smaller
statistical errors than tomography, as it avoids the binning process which loses information. Typical gains are a factor of 1.3
improvement in parameter errors.

In commonwithmany othermethods, one has tomake a decisionwhether to analyse the data in configuration space or in
the spectral domain. The former, usually studied via correlation functions, is advantageous for complex survey geometries,
where the convolution with a complex window function implicit in spectral methods is avoided. However, the more readily
computed correlation properties of a spectral analysis are a definite advantage for Bayesian parameter estimation, and we
follow that approach here.

The natural expansion of a 3D scalar field (r, θ,φ) which is derived from a potential is in terms of products of spherical
harmonics and spherical Bessel functions, j`(kr)Ym

` (θ). Such products, characterised by 3 spectral parameters (k, `,m), are
eigenfunctions of the Laplace operator, thus making it very easy to relate the expansion coefficients of the density field to
that of the potential (essentially via −k2 from the ∇

2 operator). Similarly, the 3D expansion of the lensing potential,

φ`m(k) ≡

√
2
π

∫
d3rφ(r)kj`(kr)Ym

` (θ), (4.17)

where the prefactor and the factor of k are introduced for convenience. The expansion of the complex shear field is most
naturally made in terms of spin-weight 2 spherical harmonics 2Y

m
` and spherical Bessel functions, since γ =

1
2 ð ðφ, and

ð ð Ym
` ∝ 2Y

m
` :

γ(r) =
√
2π

∑
`m

∫
dk γ`m k j`(kr) 2Y

m
` (θ). (4.18)

The choice of the expansion becomes clear when we see that the coefficients of the shear field are related very simply to
those of the lensing potential:

γ`m(k) =
1
2

√
(`+ 2)!
(`− 2)!

φ`m(k). (4.19)

The relation of the φ`m(k) coefficients to the expansion of the density field is readily computed, but more complicated as the
lensing potential is a weighted integral of the gravitational potential. The details will not be given here, but relevant effects
such as photometric redshift errors, nonlinear evolution of the power spectrum, and the discreteness of the sampling are
easily included. The reader is referred to the original papers for details [99,41,100].

In this way the correlation properties of the γ`m(k) coefficients can be related to an integral over the power spectrum,
involving the z(r) relation, so cosmological parameters can be estimated via standard Bayesian methods from the
coefficients. Clearly, this method probes the dark energy effect on both the growth rate and the z(r) relation.

4.6. Parameter forecasts from 3D lensing methods

In this sectionwe summarise some of the forecasts for cosmological parameter estimation from 3Dweak lensing.Wewill
explore this further in Section 10, but here concentrate on the statistical errors which should be achievable with the shear
ratio test andwith the 3D power spectrum techniques. Tomography should be similar to the latter.We show results from 3D
weak lensing alone, as well as in combinationwith other experiments. These include CMB, supernova and baryon oscillation
studies. The methods generally differ in the parameters which they constrain well, but also in terms of the degeneracies
inherent in the techniques. Usingmore than one technique can be very effective at lifting the degeneracies, and very accurate
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determinations of cosmological parameters, in particular dark energy properties, may be achievable with 3D cosmic shear
surveys covering thousands of square degrees of sky to median source redshifts of order unity.

Figs. 8 and 9 show the accuracy which might be achieved with a number of surveys designed to measure cosmological
parameters. We concentrate here on the capabilities of eachmethod, and themethods in combination, to constrain the dark
energy equation of state, and its evolution, parametrised by [46]

w(a) =
p

ρc2
= w0 + wa(1 − a), (4.20)

where the behaviour as a function of scale factor a is, in the absence of a compelling theory, assumed to have this simple
form. w = −1 would arise if the dark energy behaviour was actually a cosmological constant.

The assumed experiments are: a 5-band 3D weak lensing survey, analysed either with the shear ratio test, or with
the spectral method, covering 10,000 deg2 to a median redshift of 0.7, similar to the capabilities of a groundbased 4 m-
class survey with a several square degree field; the Planck CMB experiment (14-month mission); a spectroscopic survey to
measure baryon oscillations (BAO) in the galaxy matter power spectrum, assuming constant bias, and covering 2000 deg2
to a median depth of unity, and a smaller z = 3 survey of 300 deg2, similar to WFMOS capabilities on Subaru; a survey of
2000 Type Ia supernovae to z = 1.5, similar to SNAP’s design capabilities.

We see that the experiments in combination are much more powerful than individually, as some of the degeneracies
are lifted. Note that the combined experiments appear to have rather smaller error bars than is suggested by the single-
experiment constraints. This is because the combined ellipse is the projection of the product of several multi-dimensional
likelihood surfaces, which intersect in a small volume. (The projection of the intersection of two surfaces is not the same
as the intersection of the projection of two surfaces.) The figures show that errors of a few percent on w0 are potentially
achievable, or, with this parametrisation, an error of w at a ‘pivot’ redshift of z ' 0.4 of under 0.02. This error is essentially
the minor axis of the error ellipses.

4.7. Intrinsic alignments

The main signature of weak lensing is a small alignment of the images, at the level of a correlation of ellipticities of
∼10−4. One might be concerned that physical processes might also induce an alignment of the galaxies themselves. The
possible effect is immediately apparent if one considers that the shear is often estimated from the ellipticity of a galaxy,
which includes the intrinsic ellipticity of the source es:

e ' es + 2γ. (4.21)

A useful statistic to consider is the shear correlation function, which would normally be estimated from the ellipticity
correlation function:

〈ee∗
〉 = 4〈γγ∗

〉 + 〈ese
∗

s 〉 + 4〈γe∗
〉. (4.22)

This equation is schematic, referring either to galaxies separated by some angle on the sky, or by a 3D separation in the
case of a 3D analysis. The first term is the cosmic signal one wishes to use; the second term is the intrinsic alignment signal,
and the third is the shear-intrinsic alignment signal, which we will consider later. Until recently, both these additional terms
were assumed to be zero. The hope was that even galaxies close together on the line of sight would typically be at such
large physical separations that physical processes which could correlate the orientations would be absent. However, the
lensing signal is very small, so the assumption that intrinsic alignment effects are sufficiently small needs to be tested. For
the intrinsic alignment signal, this was first done in a series of papers by a number of groups in 2000–1 (e.g. [98,61,59,42]),
and the answer is that the effect may not be negligible, and is expected to be strongly dependent on the depth of the survey.
This is easy to see, since at fixed angular separation, galaxies in a shallow survey will be physically closer together in space,
and hence more likely to experience tidal interactions which might align the galaxies. In addition to this, the shallower the
survey, the smaller the lensing signal. In a pioneering study, the alignments of nearby galaxies in the SuperCOSMOS survey
were investigated [38]. This survey is so shallow (median redshift ∼0.1) that the expected lensing signal is tiny. A non-
zero alignment was found, which agrees with at least some of the theoretical estimates of the effect. The main exception is
the numerical study of [147], which predicts a contamination so high that it could dominate even deep surveys. For deep
surveys, the consensus is that the effect is expected to be rather small, but if onewants to useweak lensing as a probe of subtle
effects such as the effects of altering the equation of state of dark energy, then one cannot ignore it. There are essentially
two options — either one tries to calculate the intrinsic alignment signal and subtract it, or one tries to remove it altogether.
The former approach is not practical, as, although there is some agreement as to the general level of the contamination, the
details are not accurately enough known. The latter approach is becoming possible, as lensing surveys are now obtaining
estimates of the distance to each galaxy, via photometric redshifts (spectroscopic redshifts are difficult to obtain, because
one needs a rather deep sample, with median redshift at least 0.6 or so, and large numbers, to reduce shot noise due to
the random orientations of ellipticities). With photometric redshifts, one can downweight or completely remove physically
close galaxies from the pair statistics (such as the shear correlation function) [103,161]. Thus one removes a systematic error
in favour of a slightly increased statistical error. The analysis in [104] explicitly removed close pairs and shows that it can
be done very successfully.
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4.8. Shear-intrinsic alignment correlation

The cross term 〈γe∗
〉 was neglected entirely until [111] pointed out that it was not necessarily zero. The idea here is that

the local tidal gravitational field contributes to the shear of background images, and if it also influenced the orientation
of a galaxy locally, then it could induce correlations between foreground galaxies and background galaxies, even though
they may be physically separated by gigaparsecs. This term is more problematic for cosmic shear studies, because it is not
amenable to the simple solutions which work well for the intrinsic alignment signal. It is conceivable that this effect is
the limiting systematic effect in cosmic shear studies, as it seems necessary actually to model it and remove it. Studies
of the SDSS [184] measured a significant signal in a related statistic, for very luminous galaxies, and a study of N-body
simulations supported the view that the effect was likely to be non-negligible, at the level of up to 10% of the cosmic
shear signal. On a more positive note, it seems [111,162,106] that the term scales with source and lens angular diameter
distances in proportion to the lensing efficiency Sk(rl) Sk(rls)/Sk(rs). This is reasonable, and also very useful, as it makes
the parametrisation of the shear-intrinsic alignment much more straightforward. One can either use templates [162] or
parametrise the contamination as a single function of separation, and marginalise over these nuisance parameters in the
estimation of cosmological parameters. See also [37].

4.9. Summary

In this section, we have looked at the possible uses of 3D information to enhance what one can do with cosmic shear. We
found that the 3D gravitational potential can be reconstructed, fromwhich the 3Dmatter density field could be determined.
In addition, statistical tests such as the 3D power spectrum method, or the shear ratio test, can determine cosmological
parameters connectedwith dark energywhich are difficult to estimate using othermethods.We found that the combination
of various different methods can be very powerful, with the equation of state of dark energy able to be determined to
an accuracy of a few percent, in principle. We explored some of the physical systematics which might limit the lensing
approach, in particular intrinsic alignments,whose contamination can be reduced to a negligible level if photometric redshift
information is available. The limiting physical systematic is almost certain to be the shear-intrinsic alignment signal, which
may account for as much as 10% of the cosmic shear signal, and which must be removed. Fortunately the specific redshift
dependence of this term offers realistic prospects of determining it in conjunction with the cosmic shear signal.

5. Non-Gaussianities

The two-point statistics discussed in Section 3 can be used to constrain cosmological parameters. However, since they
can be expressed in terms of the convergence power Pκ(`) they mainly depend on the same combination of parameters.
Thus, from Eq. (2.9) we can expect 〈κ̄2〉 ∼ σ2

8Ω
2
m if we neglect the dependence on cosmology of comoving distances, where

σ8 is the normalization of the linear power-spectrum. A more careful analysis [21] actually gives the scaling of Eq. (10.1).
In order to lift this degeneracy between the parameters Ωm and σ8 one can combine weak lensing observations with other
cosmological probes such as the CMB, as we shall discuss in Section 10, or use 3D information as seen in Section 4 (e.g. Eq.
(4.16)). An alternative procedure is to consider higher-order moments of weak lensing observables. Indeed, even if the
initial conditions are Gaussian, since the dynamics is non-linear non-Gaussianities develop and in the non-linear regime the
density field becomes strongly non-Gaussian (this is an unstable self-gravitating expanding system). This can be seen from
the constraints 〈δ〉 = 0 and δ ≥ −1 (because the matter density ρ = (1 + δ)ρ is positive) which imply that in the highly
non-linear regime (〈δ2〉 � 1) the probability distribution of the density contrast δ must be far from Gaussian. Since weak
gravitational lensing effects arise from thematter distribution (see Eq. (2.4)) high-order correlation functions of both the 3D
density field and weak-lensing observables are non-zero and could be used to extract additional information.

5.1. Bispectrum and three-point functions

The three-point correlation function is the lowest-order statisticswhich can be used to detect non-Gaussianity. In Fourier
space it is called the bispectrum which is defined as:

〈δ(k1)δ(k2)δ(k3)〉 = (2π)3δD(k1 + k2 + k3)B(k1, k2, k3) (5.1)

for the 3D matter density contrast, where the Dirac factor results from statistical homogeneity. Isotropy also implies that
B(k1, k2, k3) only depends on the length of the three wavenumbers k1,k2,k3 or alternatively on two lengths k1, k2 and the
angle α12 between both vectors. A key feature of the bispectrum (5.1) is that in the large-scale limit its dependence on the
normalization of the power-spectrum can be factorized out [21]. Indeed, at large scales where the density contrast is much
smaller than unity and quasi-linear perturbation theory is valid one can expand the density contrast as a perturbative series
of the form:

δ(k, z) = δ(1)(k, z) + δ(2)(k, z) + · · · , (5.2)
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where δ(q) is of order q over the initial density field (δ(1) is simply the linear density contrast δL). Then, substituting into the
three-point function we obtain:

〈δ(k1)δ(k2)δ(k3)〉 = 〈δ(1)(k1)δ
(1)(k2)δ

(1)(k3)〉 + 〈δ(2)(k1)δ
(1)(k2)δ

(1)(k3)〉

+ 〈δ(1)(k1)δ
(2)(k2)δ

(1)(k3)〉 + 〈δ(1)(k1)δ
(1)(k2)δ

(2)(k3)〉 + · · · , (5.3)

where the dots stand for terms of order (δ(1))5 and beyond. For Gaussian initial conditions the first term vanishes whereas
the three other terms are of order (δ(1))4 so that the quantity:

Q(k1, k2, k3) =
B(k1, k2, k3)

P(k2)P(k3) + P(k1)P(k3) + P(k1)P(k2)
(5.4)

is independent of the normalization of the linear density power-spectrum PL(k) at large scales. In this manner one
can separate the dependence on σ8 from the dependence on other cosmological parameters. Using the small-angle
approximation the È-space three-point correlation of the convergence reads [26]:

〈κ(È1)κ(È2)κ(È3)〉 = (2π)2δD(È1 + È2 + È3)Bκ(`1, `2, `3), (5.5)

with:

Bκ(`1, `2, `3) =

∫
dχ

ŵ3

D4 B
(
`1

D
,
`2

D
,
`3

D

)
. (5.6)

Then, as in Eq. (5.4) one can consider ratios such as Bκ(`1, `2, `3)/(Pκ(l2)Pκ(l3) + · · ·) to lift the degeneracy between the
parameters Ωm and σ8 [21]. Using tomography (i.e. redshift binning of the sources) also helps to constrain cosmological
parameters such as the equation of state of the dark energy component, as studied in Ref. [280]. We display their results in
Fig. 10 which shows that bispectrum tomography can improve parameter constraints significantly, typically by a factor of
three, compared to just power spectrum tomography.

In practice, most of the angular range probed by weak lensing surveys is actually in the transition domain from the linear
to highly non-linear regimes (from 10′ down to 1′). Therefore, it is important to have a reliable prediction for these mildly
and highly non-linear scales, once the cosmology and the initial conditions are specified. Since there is no rigorous analytical
framework to fully describe this regime numerical simulations play a key role in obtaining the non-linear evolution of the
matter power spectrum and of higher-order statistics [214,271]. Based on these simulation results and analytical insight it
is possible to build analytical models which can describe the low order moments of weak lensing observables such as the
bispectrum [300]. Using a halo model as described in Appendix A.3, Refs. [278,279] investigated the real-space three-point
correlation of the convergence 〈κ(Eθ1)κ(Eθ2)κ(Eθ3)〉. They studied its dependence on the triangle geometry (Eθ1, Eθ2, Eθ3) and on
the parameters of the halo model [278] and compared these predictions with numerical simulations [279].

As seen earlier it is more convenient for observational purposes to consider the shear rather than the convergence since
it is the former which is directly measured (in fact what is actually measured is the reduced shear γ/(1 − κ) which can be
approximated by γ in the weak-lensing regime, [238]). However, since Eγ is a 2-component field there are many ways to
combine shear triplets. Here we defined the shear spin-2 “vector” as Eγ = γ1Eex + γ2Eey where Eex, Eey are the 2D basis vectors
using the flat sky approximation which is valid for small angles (let us recall that Eγ is not truly a vector since its components
change as cos(2ψ) and sin(2ψ) under a rotation of ψ of coordinate axis, as seen from Eq. (2.17)). Besides, one must take
care not to define statistics which depend on the choice of the coordinate system. A possible approach is to consider scalar
quantities such as the aperture massMap which can be expressed both in terms of the convergence or shear fields. However,
this may not be optimal from a signal-to-noise perspective since the integration over the window radius θs may dilute
the cosmological signal as contributions from triangle configurations where the shear three-point function is positive or
negative can partly cancel out. Moreover, the additional information contained in the detailed angular behavior of the shear
three-point correlation can be useful to constrain cosmology and large-scale structures. Therefore, it is interesting to build
estimators designed for the high-order correlations of the shear field.

One strategy investigated in [26] is to study the mean shear pattern Eγ(Eθ) around a pair of points Eθ1, Eθ2 through the
quantity 〈Eγ3(Eθ)〉 = 〈[Eγ(Eθ1).Eγ(Eθ2)]Eγ(Eθ)〉. This study, based on analytical results (using the behavior of the density three-point
correlation in the quasi-linear regime and its simplest extension to smaller scales) and numerical simulations, shows that
this mean shear is almost uniform, and perpendicular to Eθ12, over an elliptic area that covers the segment Eθ12 which joins
both points. This suggests measuring the average of 〈Eγ3(Eθ)〉 over this ellipse so as to avoid cancellations. In this manner [25]
managed to obtain from the VIRMOS-DESCART Lensing Survey the first detection of non-Gaussianities in a weak lensing
survey. We display their results in Fig. 11 which shows that the amplitude and shape of the signal agree with theoretical
predictions fromnumerical simulations. Although themeasures are still too noisy to provide useful constraints on cosmology
they show such weak-lensing observations to be a very promising tool. On the other hand, [27] also obtained explicit
analytical expressions for the shear three-point correlations from the one-halo term which appears within halo models
(when all points are assumed to lie within the same dark matter halo, see Appendix A.3) and recovered the pattern shown
by numerical simulations. These results may serve as a guideline to build optimized estimators for the shear three-point
correlations.
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Fig. 10. Projected 68% confidence level constraints in the parameter space of Ωde , w0 , wa and σ8 from the lensing power spectrum and the bispectrum
in two redshift bins, as indicated. The coefficients w0 and wa parameterize the equation of state of the dark energy component. The results shown are
obtained assuming priors on n, Ωbh

2 and h expected from the Planck mission. The sky coverage and number density are taken to be fsky = 0.1 and
ng = 100 arc min−2 , and angular modes 50 ≤ l ≤ 3000 are used. From [278].

Fig. 11. Results for the VIRMOS-DESCART survey for the two point correlation function (left) and the reduced three point function (right). The solid line
with error bars shows the raw results, when both the E and B contributions to the two-point correlation functions are included. The dot–dashed line with
error bars corresponds to measurements where the contribution of the B mode has been subtracted out from the two-point correlation function (but not
from ξ3 there is no known way to do it). These measurements are compared to results obtained in τCDM, OCDM and ΛCDM simulations (dashed, dotted
and dot–dashed lines respectively). From [25].
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A more systematic approach presented in [248] is to look for natural components which transform in a simple way
through rotations. Thus, to handle the three point function 〈γ(Eθ1)γ(Eθ2)γ(Eθ3)〉 one first defines the “center” c of the three
directions Eθ1, Eθ2, Eθ3 on the sky (c may be taken for instance as the centroid, the circumcenter or the orthocenter of the
triangle). Next, at each point one defines γ+ as the component of the shear along the direction that separates c and Eθi and
γ× as the component along this direction rotated by 45◦. From these tangential and cross components one introduces the
complex shear γ(c)

= γ+ + iγ× and the “natural components” are defined as the four complex combinations:

Γ (0)
= 〈γ(c)(Eθ1)γ

(c)(Eθ2)γ
(c)(Eθ3)〉, Γ (1)

= 〈γ(c)∗γ(c)γ(c)
〉,

Γ (2)
= 〈γ(c)γ(c)∗γ(c)

〉, Γ (3)
= 〈γ(c)γ(c)γ(c)∗

〉.
(5.7)

Clearly the Γ (i) only depend on the geometry of the triangle but to avoid ambiguities and miscalculations one must ensure
that the points are always labeled in the same direction (e.g. counterclockwise, [249]). Each of these Γ (i) is invariant only
under special rotations but the important feature is that, under a general rotation, the different Γ (i) do not mix but are
simply multiplied by a phase factor. Note however that the four Γ (i) are not independent as they arise from the samematter
distribution and three-point statistics are fully described by the projectedmatter bispectrum [250]. On the other hand, such
interrelations provide a redundancy which might be used to detect noise sources or B modes.

An alternative method to study the shear three-point function is to divide the possible combinations into even and odd
quantities through parity transformations [316]. For instance, one chooses for the center of the triangle the barycenter
c = (Eθ1 + Eθ2 + Eθ3)/3 and defines again the tangential and cross components of the shear, γ+ and γ×, from the direction
that separates c and Eθi and from this direction rotated by 45◦. Clearly this rotation changes direction under a parity
transformation so that γ× → −γ× (since γ is a spin-2 field, see Eq. (2.17), and the relative rotation is 2×45◦

= 90◦) whereas
γ+ → γ+. Therefore, we obtain four parity-even three-point correlations: 〈γ+γ+γ+〉, 〈γ+γ×γ×〉, 〈γ×γ+γ×〉, 〈γ×γ×γ+〉, and
four parity-odd three-point correlations: 〈γ×γ×γ×〉, 〈γ×γ+γ+〉, 〈γ+γ×γ+〉, 〈γ+γ+γ×〉. As a consequence, for some symmetric
configurations some odd functions must vanish [277]. In particular, for equilateral triangles all odd functions vanish. This
property assumes that the shear results only from weak-lensing (which only produces E modes), whereas source galaxy
clustering, intrinsic alignments and observational noise can produce both E and B modes (see Sections 3 and 4). The
advantage of this procedure is that by focusing on even functions one avoids diluting the signal by combining the estimators
with parts which contain no weak-lensing information (odd functions for symmetrical triangle geometries). Besides, the
parity-odd functions can be used to monitor the noise or to estimate the contribution associated with higher-order effects
beyond the Born approximation, source clustering or intrinsic alignments. Ref. [316] used a halo model (see Appendix A.3)
to investigate the behavior of these three-point correlations as a function of the triangle geometry. Ref. [279] found that
the halo model agrees well with numerical simulations at scales > 1′ and could be used to obtain predictions for shear
statistics in order to lift degeneracies in cosmological parameters. We display their results in Fig. 12 which also shows that
odd functions are smaller than even ones and vanish for symmetric geometries. They also note that future weak-lensing
observations may be able to constrain the parameters of the halo model such as the mean halo density profile and halo
mass function. On the other hand, using ray-tracing simulations Ref. [277] also evaluated the signal-to-noise taking into
account the noise associated with galaxy intrinsic ellipticities. They found that a deep lensing survey of area 10 deg2 should
be sufficient to detect a non-zero signal but an accurate measure would require an area exceeding 100 deg2.

5.2. Cumulants and probability distributions

A simpler quantity than the three-point functions discussed above is provided by the third-order cumulant 〈X̄3
〉 of

smoothed weak-lensing observables (2.11) such as the smoothed convergence κ̄ or the aperture-mass Map. In the quasi-
linear regime where a perturbative approach is valid (with Gaussian initial conditions) one can see from Eqs. (5.3)–(5.6)
that the skewness S(κ)

3 = 〈κ̄3〉/〈κ̄2〉2 of the smoothed convergence is independent of the matter density power spectrum
normalization σ8 (the same property is clearly valid for other observables like Map which are linear over the matter density
field). Therefore, by measuring the second- and third-order moments of the convergence or of the aperture mass at large
angular scales one canobtain a constraint onΩm [21]. Indeed, fromEq. (2.9)we see thatκ ∼ Ωm (neglecting the dependence of
cosmological distancesD onΩm) hencewe can expect a strong dependence onΩm of the skewness as S(κ)

3 ∼ Ω−1
m . A numerical

study shows indeed that for sources at redshift zs ' 1 the skewness scales roughly as S(κ)
3 ∼ Ω−0.8

m [21]. Alternatively, from the
skewness of weak lensing observables one can derive the skewness of thematter density field in the linear regime and check
that the scenario of the growth of large-scale structures through gravitational instability from initial Gaussian conditions
is valid. In order to increase the information content which can be extracted from low-order cumulants one can consider
generalized moments such as 〈Map(θs1)Map(θs2)Map(θs3)〉 which cross-correlate the aperture-mass Map(θsi) associated with
three different filter radii θs1, θs2 and θs3. Then, the amplitude of such cumulants can be used to constrain cosmological
parameters whereas the dependence on the angular radius or the angular separation of the various filters helps constraining
the properties of the large-scale density field [209,160]. For instance, one can introduce correlation coefficients rpqs such as:

rpqs =
〈X̄p

1X̄
q
2X̄

s
3〉c

〈X̄p+q+s
1 〉

p/(p+q+s)
c 〈X̄p+q+s

2 〉
q/(p+q+s)
c 〈X̄p+q+s

3 〉
s/(p+q+s)
c

, (5.8)
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Fig. 12. The eight shear 3-point correlation functions for the ΛCDMmodel against triangle configurations (ψ is the angle between the two sides of length
q and r). The upper and lower plots show the results for the parity-even and -odd functions, respectively. Note that range on the y-axis for the right panel
is about two times smaller than in the left panel. The solid curves show the halo model predictions for the eight shear 3-point correlation functions, while
the symbols are the simulation results as indicated. From [278].

where X̄i is the aperture-mass or the convergence smoothed over scale θsi (the source redshift distributions ni(zs) may also
be different). These correlation coefficients describe the information associatedwith three-point cumulants 〈X̄p

1X̄
q
2X̄

s
3〉c which

goes beyond the one-point cumulants 〈X̄p
〉c. We show in Fig. 13 the predictions of an analyticalmodel based on a hierarchical

ansatz (Appendix A.2) for the aperture-mass statistics, applied to the planned SNAP survey (left panel) and compared with
numerical simulations (right panel). The behavior of these correlation coefficients can be used to discriminate between
models of the density field [209] and to check that the observed non-Gaussianities arise from non-linear gravitational
clustering. On the other hand, the left panel in Fig. 13 also shows how the aperture-mass is correlated between different
angular scales. This correlation decreases faster than for the smoothed convergence or the smoothed shear because the
filterWMap(`θs) is more narrow thanWκ in Fourier space, see Fig. 2. This is actually useful if one intends to derive constraints
on cosmology from weak lensing surveys since it means that the errors associated with sufficiently different scales are
uncorrelated. This also holds for the two-point moments discussed in Section 3 and for higher-order moments. Of course,
the power-spectrum Pκ(`) and higher-order generalization such as the bispectrum Bκ(`1, `2, `3) are even less correlated
and contain all the relevant information.

In practice, because of the numerous holes within the survey area one first computes shear three-point correlations by
summing over galaxy triplets and next writes 〈M3

ap〉 as an integral over these three-point correlations (using the fact thatMap
can be written in terms of the shear γ), see for instance [146]. Applying this method to the VIRMOS-DESCART data Ref. [218]
were able to detect S(Map)

3 and to infer an upper bound Ωm < 0.5 by comparison with simulations. Next, one could measure
higher order moments of weak lensing observables. Note that for the shear components odd order moments vanish by
symmetry so that one needs to consider the fourth-order moment to go beyond the variance [277]. However, higher order
moments are increasingly noisy [295] so that it has not been possible to go beyond the skewness yet.

In order to compare observations with theory one needs to use numerical simulations or to build analytical models
which can describe the low order moments of weak lensing observables or their full probability distribution, as described in
the Appendix. This can be done through a hierarchical ansatz where all higher-order density correlations are expressed in
terms of the two-point correlation [12,295]. Then, the probability distribution of weak lensing observables can be directly
written in terms of the probability distribution of the matter density (Appendix A.2). In some cases the mere existence of
this relationship allows one to discriminate between analytical models for the density field which are very similar [207].
Alternatively, one can use a halomodel (Appendix A.3)where thematter distribution is described as a collection of halos [52]
and the low order moments of weak lensing observables can be derived by averaging over the statistics of these halos [278,
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Fig. 13. Left panel: The correlator r111 of the aperture-mass for the full wide SNAP survey is plotted as a function of smoothing angle θs3 for a fixed pair of
(θs1, θs2). The pair (θs1, θs2) for each curve is indicated in the plot. Error bars denote the 1 − σ scatter around the mean, associated with galaxy intrinsic
ellipticities and cosmic variance. Right panel: The three-point correlation coefficient r111 of the aperture-mass as a function of smoothing angle θs3 for a
fixed pair of (θs1, θs2). The three source redshifts are equal: zs1 = zs2 = zs3 = 1. The solid curve is the analytical model (A.19) while solid points with
error-bars are measurements from simulation data. From [209].

Fig. 14. Left panel: The skewness S
Map
3 = 〈M3

ap〉/〈M2
ap〉

2 of the aperture-mass (solid curve), for the SNAP survey. The central error bars show the 1 − σ

dispersion due to galaxy intrinsic ellipticities and cosmic variance. The smaller error bars which are slightly shifted to the left show the dispersion obtained
by neglecting non-Gaussian contributions to the dispersion whereas the smaller error bars which are slightly shifted to the right show the dispersion
obtained from the estimator built from the cumulant rather than the moment. We also show the effect of a 10% increase of Ωm (lower dotted curve), of a
10% increase of σ8 (central dot–dashed curve) and of a 10% decrease of the redshift z0 (upper dashed curve). Right panel: The pdf P (M) for the estimator
M associated with the aperture-mass Map . Note that the Gaussian noise introduced by intrinsic ellipticities makes P (M) closer to the Gaussian than the
actual pdf P (Map) which only takes into account gravitational lensing. The solid line shows the theoretical prediction, the dashed line is the Gaussian and
the dotted line is the Edgeworth expansion up to the first non-Gaussian term (the skewness). The error bars show the 1 − σ dispersion. From [295].

279]. On the other hand, one can use weak lensing to constrain halo properties and to detect substructures [67]. For the
particular case of the smoothed convergence the probability distribution function (PDF) P (κ̄) can be expressed in terms
of the PDF P (δ) of the 3D matter density contrast within some simple approximations, see Eq. (A.7). This allows one to
apply to the convergence simple models which were originally devised for the 3D density field such as the lognormal
model [282] or more elaborate ones [291,309,12]. For more complex weak-lensing observables such as the aperture-mass
these approximations can no longer be used and one needs an explicit model of the density correlations (see Appendix) to
derive their cumulants or their PDF. We display in Fig. 14 the results obtained from a hierarchical ansatz for the aperture-
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Fig. 15. Schematic representation of a lensed galaxy. In the source plane, the galaxy is circular and has radius R0 . Convergence κ stretches its average
radius to R0/(1 − κ), and the shear γ distort the galaxy along some angle β. a and b are the semi-major and semi-minor axis respectively.

mass, for the skewness (left panel) and the PDF of an estimator ofMap [295]. In such calculations one must take into account
the noise associated with the intrinsic ellipticities of galaxies and the cosmic variance. However, the left panel of Fig. 14
shows that despite these sources of noise future surveys such as SNAP should be able to constrain cosmological parameters
at a level of 10% from such low-ordermoments, whereas the right panel shows that the tails of the PDFP (Map) should allow
one to extract information beyond low-order moments.

5.3. Primordial non-Gaussianities

So farwe have discussed the non-Gaussianities associatedwith the non-linearity of the gravitational dynamics, assuming
Gaussian initial conditions. However, results from future surveys can also be very useful in constraining primordial non-
Gaussianity predicted by some early universe theories [280]. On the other hand, generalised theories of gravity can have
very different predictions regarding gravity-induced non-Gaussianities as compared to General Relativity, which can also
be probed using future data. A joint analysis of power spectrum and bispectrum from weak lensing surveys will provide a
very powerful way to constrain, not only cosmological parameters, but early universe theories and alternative theories of
gravitation, see also [234]. Thus, a recent work [27] has studied the possibility of constraining higher-dimensional gravity
from the cosmic shear three-point correlation function.

6. Data reduction from weak lensing surveys

6.1. Shape measurement

Weak lensing by large scale structures induces a coherent alignment of galaxy shapes across large angular distances.
A crucial step for its measurement is the accurate estimation of galaxy shapes, free of biases and systematics. A common
approximation is to describe galaxies as simple elliptical objects, for which the quadrupole of the light distribution is a fair
estimate of the shear γ. If we call f (Eθ) the 2-dimensional light distribution of the galaxy image, then the quadrupolemoment
Qij is defined in its simplest form as:

Qij =

∫
dθidθjw(|Eθ|)f (Eθ)(θi − θ̂i)(θj − θ̂j)∫

dθidθj w(|Eθ|)f (Eθ)
, (6.1)

where θ̂i is the centroid of the light distribution. The role of the isotropic weight functionw(|Eθ|) is to suppress the pixel noise
at large distance from the center of the light distribution. This weighting is crucial to all shape measurement, if absent, the
galaxy ellipticity would be extremely noisy. Most of the problems in shear measurement is precisely to recover the true
galaxy shape before convolution, and the weight function makes this task very complicated. Different shape measurement
techniques have chosen different functional forms for w, and this is discussed in the following section. The ellipticity
ei = (e1, e2) of the galaxy is given by (using the same definition as in Section 3.4 with Eqs. (3.15)–(3.17)):

(e1, e2) =

(
Q11 − Q22

Q11 + Q22
;

2Q12

Q11 + Q22

)
. (6.2)

When galaxies are not lensed (in the source plane), their average ellipticity is zero 〈ei〉 = 0 from the assumption of
isotropy. Lensed galaxies exhibit an average non-zero distortion δi = 〈ei〉 over the coherence scale of the lensing potential
φ because the shear γi stretches galaxy shapes locally in the same direction. The distortion is given by Eq. (6.2), where Q
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is the quadrupole moment of the galaxy image Q I . The relation between the source quadrupole QS and Q I depends on the
magnification matrix A (see Section 2):

Q I
= A−1QSA−1, (6.3)

where

A =

(
1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)
. (6.4)

Thematrix A of Eq. (6.4) describes themapping between the source and image planes. The source galaxy surface brightness
f S(Eθ) is stretched along the eigen axis of A, and the observed galaxy light distribution becomes:

f (Eθ) =

[
1 + (A − I)ij θj∂i

]
f S(Eθ). (6.5)

Fig. 15 shows what is happening to the shape of a galaxy in the weak lensing regime. The quantities of interest can be listed
as follows (see also Section 2):

• Convergence κ
• Distortion |δ| =

a2−b2

a2+b2

• Shear |γ| =
a−b
a+b

• Magnification µ = [det(A)]−1
=
[
(1 − κ)2 − γ2]−1.

The convergence andmagnification cannot be easily measured because we do not know the size of galaxies in the source
plane. Therefore, we focus on the shear (and the related aperture-mass Map, see Eq. (2.12)) as estimators of weak lensing
effects. However wewould like to point out thatmagnification has beenmeasured successfully on SLOAN from the excess of
distant quasars around foreground galaxies [254] and this technique could potentially be a powerful probe of cosmology in
the future. The distortion offers the advantage that we know statistically its value in the source plane, i.e. 〈δi〉 = 0, meaning
that source galaxies are randomly aligned (but see Sections 4.7 and 4.8).

6.2. Point spread function correction

One cannot easily measure the distortion δi for two reasons: the optics of the telescope induce geometrical distortions
that can be misinterpreted as a weak lensing signal if not carefully corrected: the stars, which provide a picture of the Point
Spread Function (PSF) of the telescope’s aperture, have complicated, elongated shapes. The second problem is that the weak
lensing signal is better measured on distant galaxies. Indeed, since the line of sight is more extended weak lensing effects
have a greater magnitude, see Eq. (2.4). However, these distant galaxies are small and faint, and the sky noise for these
objects is large. Consequently, a naive estimation of the quadrupole Qij from Eq. (6.1) is essentially a measure of sky noise.

Refs. [152,178] showed that one can overcome both problems by (1) reducing the noise at the edge of the galaxy using
a gaussian filter, (2) expressing the effect of the PSF convolution analytically as a perturbation expansion, and use the first-
order term to correct the galaxy shapes. The KSB method [152] can be summarized as follows: the observed ellipticity eobsi

is the sum of three terms, the first is the intrinsic ellipticity einti of the galaxy before lensing and before convolution with the
PSF. einti is unobservable, but the isotropy of space implies 〈einti 〉 = 0. The second term describes the galaxy shape response
to an anisotropic PSF (which depends on ameasurable quantity called the smear polarizability tensor Psmij ), and the last term
describes the response to the isotropic PSF (which depends on the “preseeing” shear polarizability Pγ , also measurable).
Therefore the observed ellipticity becomes

eobsi = einti + Psmij p∗

j + Pγγi, (6.6)

where γi is the shear we want to measure and p∗ is the stellar ellipticity estimated at the galaxy position. Psm, p∗ and Pγ can
all be estimated from the image (see [152] for the details). Some refinements should be includedwhen shapes aremeasured
on space data [112,223], but they do not change the philosophy of the method, which remains a first-order perturbative
approach. The estimation of p∗ at the galaxy position is done by first measuring p∗ on the stars and then interpolating
its value assuming a second-order polynomial variation across the CCDs. This is a crucial step since an inaccurate model
could lead to significant B modes in the signal [302], fortunately various models have been proposed to account for non-
polynomial variations [117]. Ref. [141] has shown that we can perform a singular value decomposition method of the PSF
variation between individual exposures in order to improve the correction. This would be a particularly useful approach for
lensing surveys planning to observe the same part of the sky hundreds of times (LSST, ALPACA).

The ultimate accuracy of galaxy shape correction is still awide open question.Whether or not there is a fundamental limit
in the measurement of galaxy shapes is a particularly critical issue for the design of future gravitational lensing surveys (see
Section 6.3). KSB has been historically the first shape measurement method working and for that reason it has been tested
intensively, but its accuracy is not expected to be better than 5%–10% [73]. Clearly this is not enough for precision cosmology
which seeks sub-percent precision on shape measurement.
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Many post-KSB techniques have been developed over the past five years in order to improve upon the original KSB
approach, most of them are being intensively tested only now [105,193]. A quick summary of these methods follows. The
reader can obtain the details by looking at the original papers or the description given in [105]. Ref. [166] proposed to
model the PSF and the galaxies by a sum of Gaussians of different widths. The pre-seeing galaxy shape is recovered by
a χ2 minimisation between the galaxy model and the measured profile. Ref. [155] extended the original KSB by properly
modelling the PSF with a realistic kernel, dropping the assumption of a Gaussian profile. The PSF is then circularized prior
to measuring the galaxy shapes (the circularization technique is also used by [270]). A radically different approach consists
in projecting the shapes (galaxies and stars) on a basis of orthogonal functions [28,225,226]. The effect of convolution and
shear can be expressed analytically on the basis functions and the solution of the preseeing galaxy shape can be found by
a straightforward matrix inversion. This technique turns out to be important not only for shape measurement, but also for
simulating realistic galaxy profiles. It also offers in principle a total control of the different processes changing the shape of
a galaxy (shear, amplification, PSF, etc. . . ). Mathematically, a galaxy with profile f (Eθ) can be decomposed over a set of basis
functions B(n1,n2)(

Eθ;β) as

f (Eθ) =
∑

(n1,n2)

f(n1,n2)B(n1,n2)(
Eθ;β), (6.7)

where β is a scaling parameter adjusted to the size of the galaxy we want to analyse, f(n1,n2) = fn are called the shapelets
coefficients, and B(n1,n2) could be any family of polynomial functions fulfilling our favorite recurrence relation (orthogonality,
orthonormality, etc. . . ). Although the description is given here for a cartesian coordinate system, the same formalism can
be developed for any coordinate system better suited for galaxy shape analysis (see [191] for a derivation using polar
coordinates). The convolution of a lensed galaxy f (Eθ) with a stellar profile g(Eθ) produces a galaxy with profile h(Eθ) such
that its shapelets coefficients are:

hn =
∑
m,l

Cnmlfmgl =
∑
m

Pnmfm, (6.8)

where C and P = Cg are matrices that can be measured on the data. The preseeing galaxy profile can be formally obtained
from the matrix inversion f = P−1h. Ref. [28] developed a similar method but they also perform a circularization of the PSF
like in [270] prior to the measurement of the pre-seeing galaxy shape. Ref. [167] has implemented a version of the shapelet
technique based on ideas developed in [166] where galaxies and PSF are decomposed on a fixed set of simple profiles.
Currently, there are six different shape measurement techniques, and several implementations of KSB, corresponding to
more than a dozen of different pipelines. This clearly demonstrates the richness of the topic, but one should ensure that
they all lead to the same shear measurement. A comparison of the performances of all these techniques is shown in [109],
but the authors focussed on analytical galaxy profiles instead of real, noisy, profiles. They found that KSB was performing
the best, which is surprising given the number of approximations involved. The Shear TEsting Program STEP [105,193]1 has
been setup in order to systematically perform intensive tests of shapemeasurement methods. Its goal is to test the different
pipelines on simulated and real data sets and to find the ultimate limit of shape measurement from space and ground based
images.

Ref. [105] measured the difference between the measured shear γmeas
i and the true shear γtrue

i on a large number of
simulated images with very different PSF simulating various optical defects of the telescope. The chosen parametrization
was:

γmeas
1 − γtrue

1 = q(γtrue
1 )2 + mγtrue

1 + c1, (6.9)

where q, m and c1 are measured from different realizations of image quality (PSF anisotropy and seeing size). Fig. 16 shows
the r.m.s. of these parameters. It shows the main result from STEP, indicating that shape measurement accuracy is within
the few percent range, at least one order of magnitude above the required accuracy for future experiments such as SNAP
and LSST. This figure also shows that KSB is performing remarkably well, in agreement with [109], and the newer methods
are potentially even more powerful, although this is not revealed by the STEP analysis. The average calibration factor m
with today’s shape measurement methods is found to be of the order of one percent or higher of the input shear, and the
systematic bias c is of the order of a tenth of a percent for most techniques. Recent developments are encouraging, however,
with fast model-fitting techniques such as lensfit [201] showing smaller offsets than the best linear STEP methods [164].

Among all the methods, the very attractive feature of the shapelets lies in the fact that each transformation experienced
by a galaxy (PSF, shear, convergence, etc. . . ) can be expressed as a simple set of operators acting linearly on the set of basis
functions describing the galaxy. A general transformation of the galaxy shape is therefore a linear processwhich can formally
be solved in one pass to provide the pre-seeing shape. The shapelets, or similar approaches [28], provide in principle a perfect
description of the galaxy shapes. Is it the ultimate method with the best possible accuracy? In the weak lensing regime for
instance, the quadrupole of the light distribution fully describes the shear γ, a two-components spin-weight 2 object, and it
is unnecessary to measure the details of the galaxy shape. In that case, the shapelets might appear like overkill, and limiting

1 http://www.physics.ubc.ca/~heymans.

http://www.physics.ubc.ca/~heymans
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Fig. 16. From Heymans et al. [105], plot showing the calibration biasm, PSF residual and non-linearity 〈q〉 for different pipelines (see Heymans et al. [105]
for a complete list of references and detailed description of the methods).

the number of basis functions is appropriate [167]. The solution of the shape measurement problem is a trade-off between
an accurate description of the galaxy morphology (i.e. galaxy structures) and an unbiased measure of the second order
moments: we want to describe the galaxy shape with enough, but not too many, details. This optimal trade-off depends
on the weak lensing information we want to extract from the galaxy distortion. For instance, in the weak lensing regime, it
is assumed that the shear does not vary across the galaxy, and the quadrupole of the light distribution is then a complete
description of the lensing effect. This is equivalent to saying that the centroid of a lensed galaxy is the lensed centroid of the
source galaxy. Mathematically, this means that(

Eθ
S
− Eθ

SC
)

' A

(
Eθ

I
− Eθ

IC
)

, (6.10)

where EθS and EθI are the angular position of a galaxy source and image respectively, and EθSC and EθIC are the centroid position of
the source and image respectively. Eq. (6.3) is a direct consequence of this approximation. It obviously breaks down near the
critical linewhere the determinant of the amplificationmatrixA is zero and themagnification is infinite. The source galaxy is
then strongly distorted and gravitational arcs are observed [76]. In the intermediate regimewhere source galaxies aremildly
distorted and have an arc-like shape, weak lensing is just an approximation, and the quadrupole of the light distribution is
not enough to quantify the lensing effect. A higher-order description of the galaxy shape becomes necessary [88]. Refs. [89,
8,194] developed the theory of flexionwhich is a description of the next order of shear measurements, the octopole. In that
case, Eq. (6.10) is not valid and should be replaced by:

θ′

i = Aijθj +
1
2
Dijkθiθj, (6.11)

where Dijk = ∂kAij is given by:

Dij1 =

(
−2γ 1,1 − γ 2,2 −γ 2,1

−γ 2,1 −γ 2,2

)
; Dij2 =

(
−γ 2,1 −γ 2,1
−γ 2,1 2γ 1,2 − γ 2,1

)
. (6.12)

Higher orders of galaxy shapes are a probe of higher order derivatives of the gravitational lensing potential [244]. This is
therefore particularly relevant for lensing by cluster of galaxies and space quality images, because the latter is well suited for
an accurate measurement of galaxy shapes beyond the quadrupole. The new relation between the source and image galaxy
profile is given by

f (Eθ) =

[
1 +

[
(A − I)ijθj +

1
2
Dijkθjθk

]
∂i

]
f S(Eθ), (6.13)

which replaces Eq. (6.5). The flexion terms can be conveniently expressed in terms of shapelet operators [89]. The practical
utility of flexion has not been demonstrated yet, but progress is being made to show whether or not it is measurable. With
the development of CCD detectors in space it is likely that flexion could provide useful lensing information [8].

Lots of progress has been made in the measurement of galaxy shapes since the original KSB paper in 1995. The most
recent shape measurement method [167] shows that the one percent accuracy goal has not yet been reached, and most of
the effort now consists of showing that this goal can bemet in order to performhigh precision cosmologywithweak lensing;
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Fig. 17. Simulating galaxies with shapelets: Top-left is a galaxy from the Hubble Ultra Deep Field and the other panels show its simulated image using the
shapelets with nmax = 5, 10, 30.

Fig. 18. Two sources of error: statistical noise and cosmic variance. The curves show the diagonal part of the covariance matrix for either source of noise,
normalised by the fiducial model shear variance. Dashed line: contribution from the statistical error, dotted line: contribution from the sampling (cosmic)
variance. The thick solid lines show various levels of multiplicative errors from 0.01 to 0.001.

this is the primary goal of the STEP project. With the development of these techniques and improving image quality, it
becomes possible to measure higher order shear effects such as the octopole. Shapelets or a similar method are particularly
useful to extract high-order morphology information, while KSB is enough for percent precision shear measurement
[105,193].

The shapelets can also be used to generate realistic images of galaxies, which is important for testing shapemeasurement
methods. Here one uses a training set to teach a galaxy image simulator how to generate a realistic combination of shapelet
coefficients in order to reproduce statistically real data sets. One such galaxy simulation is shown in Fig. 17. Ref. [194] for
instance simulated galaxies using the shapelets, whose distribution has been trained using the Hubble Ultra Deep Field.

6.3. Statistical and systematic errors

In this section, we consider the potential sources of error and systematics in the shearmeasurement, not the error caused
by intrinsic alignment (see Section 4.7) and selection biases correlated with the shear orientation and amplitude [109]. The
latter was shown to be negligible [105].

A complete description of galaxy shape is certainly not necessary for most weak lensing applications. According to [105],
themain limitation in shearmeasurement comes from the calibration of the shear amplitude: the PSF anisotropy is relatively
easy to correct, but the isotropic correction due to the seeing is still not accurate to better than a few percent (see Fig. 16).
An additive error should also be considered, as suggested by Fig. 16. Ref. [133] has shown that, in order not to degrade
significantly the cosmological parameters estimation from future weak lensing experiments (SNAP and LSST), the additive
error has to be less then 10−4, which is one order of magnitude better than what can be achieved today (see Fig. 16). It is
still unclear how to estimate the impact of the additive error for realistic surveys, since the redshift, color and morphology
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Fig. 19. The blue elongated disks represent observed images of background galaxies. The dark matter filaments from numerical simulations which
were used to simulate the survey are also plotted to show alignments of ellipticities of observed galaxies with underlying filamentary structures
(Figure courtesy: Stephane Colombi and Yannick Mellier).

dependence might be quite complicated and are not yet well understood. The multiplicative (i.e. calibration) error of the
order of one percent does not seem to degrade dramatically the cosmological parameters constraints [133], but this is
because the cosmological constraints come from the largest scales, where the error budget is dominated by cosmic variance
and not by the multiplicative error [304]. Fig. 18 shows that a large multiplicative error degrades significantly the weak
lensing signal at angular scales less than 10 arc min, and has no effect at scales 20 arc min and above. Therefore a complete
scientific use of a lensing survey is also dependent on our ability to reduce themultiplicative error, not only the additive error.
With the STEP effort [105,193] and the large amount of ground and space based data available from current weak lensing
surveys, the shape measurement issue will probably be solved within the next 2 or 3 years. The major source of error for
weak lensing survey will then become our ability to estimate the photometric redshifts of the source galaxies [304]. This is
a powerful technique, but the redshift error is large and often there are multiple redshift solutions due to spectral features
not covered by the set of filters. This is clearly shown in [134], where photometric redshift degeneracies are left with the 5
filters ugriz of the MEGACAM camera. Ref. [133] has shown that the requirement of photometric redshift precision is tight
if we want to achieve tomography: for instance the average redshift needs to be accurate to better than 1%. A large number
of filters in the optical and near infrared coverage would then be necessary. Ref. [163] finds that the requirements are less
severe for 3D weak lensing (see Section 4).

7. Simulations

In order to obtain good signal-to-noise for estimates of cosmological parameters, it is necessary to probe many different
scales, including small scales where linear or second-order perturbation theory is not valid. As we have no exact analytical
description of matter clustering at small or intermediate scales, numerical N-body simulation techniques are employed
to study gravitational clustering in an expanding background. Numerical techniques typically use ray-tracing techniques
through N-body simulations to study weak lensing of background sources. Other methods include line-of-sight integration
of shear. Although often only limited by computational power, numerical techniques too depend on various approximations
which can only be verified by consistency checks against analytical results.

Simulating (strong) lensing by individual objects can provide valuable information regarding background cosmology
through the statistics of arcs, see e.g. [288,210] for early studies. Simulating weak lensing surveys on the other hand probes
inhomogeneous matter distribution by large scale structure in the Universe. Early attempts to simulate weak gravitational
lensing by inhomogeneous dark matter distribution was initiated by various authors in the early 1990s. These studies
include [236,144,169,5,16,31]. However the most detailed studies in this direction started emerging by the late 1990s.
Ref. [308] following up previous work done by [306,307] presented a detailed analysis of lensing by large scale structure. On
a slightly larger angular scale this study was extended and complemented later by the work done by [138] who constructed
shear and convergence maps using ray-tracing simulations. With ever increasing computational power the typical size of
the skywhich can be simulated using ray tracing experiments has increased over the years and recent studies can now focus
even on scales comparable to tens of degrees while still resolving smaller angular scales well, see Fig. 19. These numerical
developments have also stimulated improved analytical modelling of weak lensing using perturbative techniques at larger
angular scales and halo-based models or the hierarchical ansatz at small angular scales.
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Fig. 20. In the left panel convergence power spectra for redshift zs = 9 are plotted. The dotted line on the left corresponds to noise level expected from
PAST/LOFAR where as the dotted line on the right corresponds to noise level expected from second generation PAST+ and the SKA. Measurement errors
and accuracy of various surveys in estimating matter power spectra are compared on the right panel. Solid line corresponds to the matter power spectrum
at z = 9 as in left figure. Dot–dashed line corresponds to power spectrum of patchy reionization with a bias factor b = 4 for more details. Dashed lines
correspond to noise levels expected for PAST and second generation PAST+. Dotted line corresponds to fractional accuracy of power spectrum estimation
per logarithmic l bins. (Figure Courtesy Ue Li-Pen).

Fig. 21. Left Panel: Power spectrum for the temperature anisotropies in the fiducialΛCDMmodel with τ = 0.1. In the case of temperature, the curves show
the local universe contributions to CMB due to gravity (ISW and lensing) and scattering (Doppler, SZ effects, patchy reionization). See, Cooray, Baumann
and Sigurdson [56] for a review on large scale structure contributions to temperature anisotropies (Figure Courtesy: Asantha Cooray). Right Panel: CMB
B-mode polarization. The curve labeled ‘IGWs’ is the IGW contribution with a tensor-to-scalar ratio of 0.1 with (solid line; τ = 0.17) and without (dashed
line) reionization. The curve labeled ‘lensing’ is the total lensing confusion to B-modes. Thin lines show the residual B-mode lensing contamination for
removal of with lensing out to zs . See, Sigurdson and Cooray [267] for details.

7.1. Ray tracing

In case of experiments involving ray-tracing simulations, one combines several large-scale boxes obtained from
cosmological N-body simulations to build a large simulated volume from the observer up to the source plane at redshift
zs. Then, the dark-matter particle distributions within each box are projected on successive two-dimensional planes up to
the redshift of the source. Typically up to 30 such planes are employed to sample the matter density to a source redshift of
zs ∼ 1 and 106 rays are propagated through the N-body data volume. The computation of the derivatives of the gravitational
potential in each of these lens planes is performed using FFTs. This provides the shear tensor at each plane which allows one
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to follow the deflection of the light rays from one plane to the next. The Jacobian matrix A of the mapping from source to
the image plane determines lensing observables such as the convergence κ and the shear components γ1, γ2, see Eq. (2.6).
Such an algorithm is also known as the multiple-lens algorithm (see e.g. [237] for more detailed discussions).

Various numerical artifacts that determine the resolution of a ray-tracing simulation include the spatial and mass
resolution of the underlying N-body simulation through which the ray tracing experiments are being performed as well
as the size of the grid which is used to compute the intermediate projected densities and the gravitational potential. The
finite size of the simulation boxes on the other hand determines the largest angular scales to which we can reliably use
the results from ray-tracing simulations. Depending on the size of the simulation box and source redshift one can typically
construct a few degree square patches of the sky. To improve the statistics, the N-body simulation box is rotated and ray
tracing experiments repeated, to generate additional weak lensing sky patches.

Studies using ray tracing simulations were initiated by [138]. They used a 2563 adaptive P3M simulation outputs from
Virgo to perform the ray-tracing simulations. The lens plane grid used to compute the potential and its derivatives from the
projected matter distribution had a resolution of 20482. Depending on a specific cosmology these studies generated weak
lensing maps of a few degrees, with resolution down to sub-arc minutes. Recent ray tracing simulation using multiplane
techniques include the ones presented in [94].

7.2. Line-of-sight integration

Ref. [58] pointed out that several problems can arise in weak lensing studies from the use of themultiple-plane approach
described in the previous section, especially when the sources are distributed at relatively high redshifts. In particular, the
projection of thematter distribution onto successive 2D planes orthogonal to themean line of sight clearly approximates all
angular diameter distances by a constantwithin a given redshift interval. Thismay lead to significant errors if these intervals
are too large. Thus, Ref. [58] introduced a 3D algorithmwhich computes the second derivatives of the gravitational potential
Φ(x)within the full 3D volume using FFTs. Then, light rays are followedwithin the 3D volume and deflections are taken into
account along the 3D grid using the local derivatives of the gravitational potential and the local angular distances, which
allows one to derive the Jacobian matrix A between source and observer planes (for more detailed discussions see [58,9,
10]). The variance of the cosmic shear obtained from this algorithm was compared with analytical predictions and other
simulations in [11]. More detailed comparisons appear in [12,295,207] where a good agreement was found with a whole
range of analytical predictions.

It should be noted that ray-tracing simulations and line-of-sight integrations still remain costly options to simulate a
reasonable portion of the sky with fairly low resolution. This limits the number of independent realizations which can be
simulated. However, to probe the small angular scales where non-linear gravity has not been understood analytically yet,
simulations are the only reliable option against which all analytical predictions are tested regularly.

8. Weak Lensing at other wavelengths

Current weak lensing surveys mostly rely on statistical studies of ellipticities of background galaxies at optical
wavelengths. However various authors have considered the possibility of weak lensing studies in other wavebands, both
for individual radio or IR sources at high redshift and for the fluctuations in the integrated diffuse emission from unresolved
sources [55,219]. It was pointed out that future facilities at radio wavelengths will even start competing with space-based
optical observations which are limited by their ability to resolve the shape of distant sources and their small field of view.
Radio surveys by the proposed Square Kilometre Array (SKA)will be able tomake huge progress in this direction by resolving
orders of magnitude more sources [243]. In addition to resolved individual sources it was also suggested that integrated
diffuse emission from the first stars and protogalaxies at high redshift (zs = 15–30) as well as 21 cm emission by neutral
intergalactic medium can provide useful arenas for weak lensing studies. It was realized that such programmes could be
very useful in bridging the gap between weak lensing surveys based on optical studies of nearby galaxies at a redshift of a
few and weak lensing studies of the CMB at a redshift of zs = 1100. Nevertheless separating galactic contamination from
cosmological signal remains a difficult task, see Fig. 21.

8.1. Weak lensing studies in Radio and near IR

Future radio facilities, such as the proposed SKA,2 will be superior to current radio observatories by orders of magnitude,
particularly in its field of view, and in sensitivity. In addition, the higher resolution achieved by SKA will place it in a much
better position than the present generation of radio telescopes. Surveys using SKAwill push radio astronomy into a position
where the number density of radio sourceswill be comparable to that of the optical sky (where the number density of useable
galaxies is ∼30 arc min−2 up to a redshift of order unity, for ground-based surveys). This is possible thanks to the fact that
SKA will be able to observe 100 times fainter objects than currently achievable; the radio sky at present is almost literally

2 http://www.skatelescope.org/.

http://www.skatelescope.org/
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empty. For effective weak lensing studies the number density n of sources as well as themean redshift of sources 〈zs〉 should
be as high as possible. However predictions about these faint radio sources and their 〈zs〉 and n is currently less certain. If the
dominant population consists of normal or star-forming galaxies the average redshift would be roughly unity. Additional
populations of sources can make the redshift distribution less certain. Another complexity in the whole scenario is that we
do not know to any accuracy the shape distribution (i.e. the value of σε) of the faint radio sources. Ref. [32] give estimates
for the SKA of σγ = 0.2 and n = 500 arc min−2 (Fig. 20). Ideally one would hope for near-spherical sources with no intrinsic
ellipticities acting as source objects, i.e. with σε as low as possible. If the radio sources in SKA are dominated by core-jet type
objects, then σε can be very high, whereas normal galaxies have relatively lower values. The field of view (FOV) for SKA will
be large and clearly the PSF will be controllable; this makes it comparable or probably better than the present generation of
optical surveys. As discussed above, seeing provides a fundamental limitation for optical telescopes: as they become fainter,
the source galaxies tend to become smaller too. This limits the number density of sources for which the ellipticity can be
measured reliably. A situation where point sources dominate resolved source number counts is already present in some of
the deepest space-based images available to date. These include the Hubble Deep Fields North and South and recent images
from the Advanced Camera for Surveys (ACS) on theHubble Space Telescope (HST). Clearly the space-based images aremuch
better compared to their ground-based counterparts, but the FOV of such observations is limited. Radio observations using
future facilities could be highly productive as they could combine high measurable source density and large FOV. However,
these conclusions will depend to some extent on the intrinsic properties of the sources, and further assume that sources are
not too elongated and that the average redshift distribution of these sources is not too shallow. Ionospheric effects and how
they change the PSF remains to be understood more accurately.

8.2. Possibility of 21 cm weak lensing studies

Usually background objects can be broken down to individual sources at optical and infra-red wavelengths, but the
emission of 21 cm radiation [252,182,287,135,79] from neutral gas prior to reionization, and the CMB, provide examples
of truly diffuse backgrounds [216,276,268,127].

At high redshifts, typically beyond current large-scale surveys, the unresolved point sources becomemore dominant. At a
source redshift of zs = 15–30, first generations of stars andprotogalaxies start to appear according to current theory of galaxy
formation. These point-like objects provide a perfect background for weak lensing studies due to the large distances that
light rays need to travel from these objects to reach us. Though detection of these objects is beyond present observational
technology, the spatial fluctuations in the integrated diffuse background emission can be potentially interesting for lensing
studies if we assume the most optimistic emission models.

The analytical formalism for weak lensing studies of diffuse backgrounds has recently been established [55]. Borrowing
techniques from studies of weak lensing of the CMB, this shows that a perturbative approach — typically employed to
study CMB lensing — will still be valid for diffuse background studies. This is despite the fact that unlike the CMB there
is considerable power at small angular scales due to the lack of damping tail. This indicates that a perturbative series has a
comparatively slow convergence rate and a larger number of terms need to be included for realistic calculations.

In contrast to CMB lensing studies [314,18,92,126,110], the weak lensing studies based on diffuse components suffer
from the fact that the lensing modification to the power spectrum is minor at arc-minute angular scales and the lensing
information that one can extract from low-redshift diffuse background is significantly limited. This is related to the presence
of significant structure in CMB power spectra, as signified by the acoustics peaks, which is lacking in the case of diffuse
background studies. The presence of a damping tail in the CMB means that the convolution associated with weak lensing
effects transfers some power from larger angular scales to smaller angular scales at the arc-minute range, which makes it
most easily detectable. Use of polarization information in CMB also carries much richer lensing information as compared
to unpolarized diffuse background studies. Moreover, at the last scattering surface where the CMB temperature and
polarization fluctuations are generated they follow aGaussian pattern. Then lensing due to the interveningmass distribution
imprints a non-Gaussian footprint which can be effectively used to extract cosmological information [22,159]. There have
been extensive studies in this direction using higher-order moment-based techniques (see e.g. [54]). By contrast the non-
Gaussianity generated by weak lensing in diffuse backgrounds such as the 21 cm background is unlikely to be detected in
near future. Nevertheless if possible 21 cm weak lensing studies can extend the reconstruction of the integrated matter
power spectrum out to redshifts of 15–30, and will bridge the gap between current and upcoming galaxy lensing studies
and the CMB.

8.3. Using resolved mini-halos for weak lensing studies

Concentrating on mini-halos that will contribute to the 21 cm background radiation, [219] found that instruments such
as PAST, LOFAR would tremendously improve our knowledge of some key cosmological parameters. Before reionization,
most of the baryonic matter in the Universe is in the form of neutral hydrogen. The first gravitational bound objects are the
collapsed virialized dark matter mini-halos where this neutral hydrogen resides. These mini-halos [182,135,136] provide a
fluctuating background with a characteristic scale that can be used for weak lensing studies.

For weak lensing studies, one would like to have a background at a high source redshift that also exhibits structures at
small scales. Clearly the CMB satisfies the first criterium but it is smooth at small scales. It was pointed out that the Universe
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at the epoch of reionisationmight be themost natural place to look for applications of weak lensing studies. Clearly not only
it is at a very high redshift, but also it emits brightly in the hydrogen hyperfine transition line and has structures on many
scales ranging from several arcminutes to under a milliarcseconds. Experiments which will target these particular redshifts
and wavelengths are being planned, including some that are already undergoing construction, e.g. PAST,3 LOFAR [158].4
Other experiments which will have low signal-to-noise include T-REX5 and CATWALK.6

Presenting a detailed calculation of signal to noise analysis [219] argues that weak lensing studies of epoch-of-
reionization gas can constrain the projected matter power spectrum to very high accuracy. Use of tomography can further
increase the level of accuracywithwhich certain cosmological parameters can be constrained. It was claimed that with such
a technique, the neutrinomass could be constrainedwith an accuracy of 0.1meV. The inflationary gravity-wave background
and consequently the inflationary dynamics as encoded by the Hubble parameter during inflation can be constrained with
high accuracy too. These calculations show that such 21 cm weak lensing observations are an order of magnitude better
than those from galaxy surveys. However such optimistic scenarios will require resolving each of the 1018 mini halos that
will be observed on the sky.

Clearly several problems arise when one tries to map gravitational lensing at such an ambitious scale. For example [213]
have shown that synchrotron emission from ionised gas can outshine the 21 cm radiation. However, [79] pointed out that
such components can be removed by power-law spectra from spatial fluctuations.

9. Weak lensing of the cosmic microwave background

Observation of cosmic microwave background (CMB) radiation is one of the cleanest probes of cosmology [127,128,
64,130,44,253]. However lensing of CMB photons by intervening mass clumps can provide additional information about the
structure and dynamics of the Universe. Besides, lensing of the CMB provides information at larger scales and higher redshift
than can be reached by any other astronomical observations. Weak lensing of the CMB is responsible for many observable
effects which have been studied in extensive detail — for a detailed review see [172]. Calculations of these effects have been
made both for temperature and polarisation anisotropies [30,49,176,258,198], see Fig. 21.

9.1. Effect of weak lensing on the temperature and polarisation power-spectrum

Lensing broadens the acoustic peaks and enhances power at small angular scales. These features are non degeneratewith
the standard cosmological parameters. This allows a determination of the lensing amplitude by comparing the observed
spectra with CMB spectra of different mass fluctuations. The magnitude of distortion is sensitive to the level of mass
fluctuations as a function of redshift and scale. This in turn depends on the background cosmology. In this way lensing
of CMB can be used as a window to probe the fluctuations in the dark matter distribution over a huge range of redshifts and
length scales.

Lensing generates a non zero B-mode polarization from a purely E-mode. (Note that here we are referring to E and B
modes in the CMBpolarisationmap, not in the shearmap). B-modes generated during inflation by tensormodeperturbations
or gravitational waves produce a distinct spectrum which can be used to discriminate between different classes of
inflationary models. Lensing of E-modes produces B-modes which dominate the more primordial signal on small scales,
and which are considered mainly as a source of confusion in polarisation experiments. Detection of a primordial B-mode
signal in the presence of lensing therefore pushes observational strategies towards favouring larger sky coverage [157,259].
A low sky coverage and presence of boundaries also causes additional confusion by introducing mixing of E and B modes.
It is however useful to note that as the inflationary B-mode signal is mainly significant on large angular scales experiments
with low resolution can also be very promising. High resolution B-mode detection experiments will typically employ a
“delensing” step in data reduction to effectively restore the unlensed sky from the lensed data.

Typically the power spectrum of the lensedmap is computed by a series expansion in the deflection angle. A perturbative
expansion in the deflection angle is a transparent way to understand most of the lensing effects. Non-perturbative
evaluations of lensing effects are carried out by considering the correlation function [258,45,51,315,55,183].

9.2. Non-Gaussianity in the CMB induced by weak lensing

Primordial perturbations produced during inflation are very nearly Gaussian and the linear evolution of these
perturbations up to the last-scattering surface does not generate any non-Gaussianity. Weak lensing by the intervening
matter distribution however does introduce non-Gaussianity in maps of the CMB sky [315].

All odd-order correlation functions vanish for a Gaussian random field. On the other hand weak lensing generates a non-
zero contribution through correlations between the large-scale temperature and lensing potential. This cross-correlation

3 http://astrophysics.phys.cmu.edu/jbp/past6.pdf.
4 http://www.lofar.org/.
5 http://orion.physics.utoronto.ca/sasa/Download/poster/casca_poster.pdf.
6 ftp://ftp.astro.unm.edu/pub/users/john/AONov03.ppt.
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which is due to the Integrated Sachs–Wolfe (ISW) effect at large angular scales can therefore be a very useful tool to probe
the growth of perturbations and the expansion history of theUniverse [125,260,87,84–86]. This implies that such studies can
be very useful tools for studying the dark energy equation of state [275] or the neutrino mass [170]. These correlations are
negligible on smaller scales. Besides non-linear evolution of the matter distribution as well as late time non-linear effects
including the Sunyaev–Zeldovich (SZ) effect also contribute to the bispectrum. The four-point correlation function is the
lowest order non-zero correlation function which does not vanish in the absence of any the cross-correlation between the
low redshift mass distribution and the CMB temperature distribution. The non-Gaussianity studies involving polarisation
fields are very similar to the temperature case, at least for the E-mode polarisation. Various combinations of four-point
correlation functions involving E- and B-mode polarisations have been studied in the literature [22,123]. For future high
resolution all-sky polarisation surveys such studies will be feasible.

9.3. Weak lensing effects as compared to other secondary anisotropies

The thermal Sunyaev–Zeldovich (tSZ) effect, which is caused by the scattering of photons from hot electrons in
clusters, is a dominant anisotropy contribution on small scales. Due to a very characteristic frequency spectrum such a
component can however be readily separated from primordial anisotropies. Another secondary contamination, the kinetic
Sunyaev–Zeldovich (kSZ) effect, has the same frequency dependence as the primary anisotropies, so is harder to separate.
Similarly, lensing does not cause any frequency shift in an otherwise perfect blackbody spectrum of primary CMB. Thus
non-linear sources, such as kSZ are potential sources of confusion, when trying to understand the effect of lensing on the
CMB. Current uncertainties in the reionization history and topology of reionization patches also make it more difficult to
model. For polarisation spectra the kinetic SZ is sub-dominant, simplifying the situation to some extent [293,82,43,266].

9.4. Lensing of the CMB by individual sources

On small scales, the CMB lacks power. As mentioned earlier, most of the power is generated by secondary anisotropies
and transfer of power from larger scales to smaller scales due to lensing. This raises the possibility of detecting individual
cluster-mass objects in CMB maps by their effect of lensing on the CMB. Unlike other probes such as the SZ which depends
on baryon physics, such studies can constrain the physical mass distribution of individual objects directly [171,65,53].

9.5. Future surveys

In the future, satellite experiments such as Planck7 (to be launched in 2008) will be in a good position to detect the effect
of lensing in temperature power spectra. In the case of polarisation, experiments such as CLOVER8 and QUIET,9 which are
being planned, will have detection of B-mode from inflation as their primary science driver [173,206,274,175]. Ongoing
experiments such as QUaD,10 may reach the required sensitivity, but for all of these, lensing is the main source of confusion
on small scales for such experiments.

10. Weak lensing and external data sets: Independent and joint analysis

Weak lensing is a very powerful probe of the projected dark matter clustering, and in principle it is very good at
constraining the cosmological parameters playing a dominant role in the structure growth. The main limitation comes
from the strong degeneracy between the dark matter power spectrum normalisation σ8 and the matter density Ωm (see
the introduction of Section 5 and Eq. (2.9)). These two parameters are degenerate because any change inΩm can be balanced
by an appropriate change in σ8 slowing down or accelerating the growth rate. In [21] it was shown that the shear variance
at scale θs scales roughly as

〈γ̄2
〉θs ∝ σ2

8Ω
1.5
m z1.5s θ

−
(n+2)

2
s . (10.1)

This equation, which is the first term of the perturbation series on the mass density contrast, assumes a power-law power
spectrumwith constant slope n and a single source redshift zs. It has a very limited application but it has a pedagogical value
in that it shows that the parameter degeneracy between σ8 and Ωm extends to the source redshift as well. Therefore, weak
lensing in 2D can become a high precision cosmology tool only if it is combinedwith another cosmology probe and provided
we have a good knowledge of the source redshift distribution. The simultaneous observation of non-linear and linear scales
in lensing surveys shows some features in the projected mass power spectrum which helps to lift this degeneracy [137].

7 http://www.rssd.esa.int/index.php?project=Planck.
8 http://www.astro.cf.ac.uk/groups/instrumentation/projects/clover/.
9 http://quiet.uchicago.edu.

10 http://www.astro.cf.ac.uk/groups/instrumentation/projects/quad/.
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Alternative approaches which can also lift degeneracies were discussed in Section 4, using 3D information, and in Section 5,
using higher-order correlations beyond the shear variance. However, like any other cosmology probe, this is not enough for
weak lensing to be a high precision cosmology tool alone. In this section we review the advantages of combining lensing
with different probes and we outline the gain on cosmological constraints in the future missions.

10.1. With CMB, supernovae and baryon acoustic oscillations to probe cosmology

Weak lensing alone provides a measure of Ω0.7
m σ8, provided that the redshift of the sources is known. This means that

weak lensing best performance is in the measurement of the amplitude of the projected mass power spectrum. For this
reason, it is very powerful at breaking the parameter degeneracies seen in other cosmology probes, which are usually
sensitive to other combinations of cosmological parameters. It is known, for instance, that a precise measurement of σ8
and Ωm can be obtained from the combination of lensing and CMB [302,50]. Fig. 22 shows the set of parameters to be
combined for an optimal joint CMB-lensing analysis [286]. This result, obtained for the CFHTLS and WMAP1 surveys, is
not modified for a different choice of lensing and CMB data sets. Note that the best improvement is obtained on parameters
which the shape of the dark matter power spectrum is the most sensitive to: the mass density Ωm, the power spectrum
normalisationσ8, the reducedHubble constant h, the primordial power spectrum slope ns and the running spectral indexα =

−d ln(ns)/d ln k.
For the lensing signal alone, an improvement of a factor ∼3 in the parameter errors is expected if the lensing signal is

combined for different source redshift slices instead of measured from the broad source distribution [280]. This is the well
known tomography technique which requires the measurement of photometric redshifts (see Section 4.3). Unfortunately,
for these parameters, the improvement cannot be further increasedwith a larger number of source slices: one can show that
the signal-to-noise saturates for a maximum of 3–5 redshift slices [281], which is a consequence of the fact that the lensing
selection window is a rather flat function of redshift where the signal is the strongest. Another source of improvement for
the lensing constraints is the use of higher-order statistics ([280], see Section 5 of this review): the probe of the non-linear
regime of structure formation helps considerably in the determination of the precise moment when large scale structures
become non-linear and at which scale. This event is a strong function of the cosmological parameters, in particular of dark
energy [188,17]. Some measurement of high order statistics have been done [25,218], but this area of research is still in its
infancy.

Amajor science driver for cosmology has become themeasurement of the Dark Energy equation of state. The Dark Energy
Task Force report (DETF) [2] and the ESA-ESO working group report [215] are summaries of where cosmology is heading to
for the next decade: there is a consensus among cosmologists that the goal ofmeasuring the dark energy parameters can only
be achieved from the joint analysis of several cosmological probes. Fig. 23 shows the dark energy parameters forecast for the
future experiments (which includes a pessimistic and optimistic cases). Most of the panels on this figure are extracted from
the DETF report, and they show the various degeneracies for different cosmological probes. The three projects that DETF has
considered are the following:

• Baryon oscillations: 20,000 square degrees, ground-based survey. Photometric redshifts cover the 0.2–3.5 range, and
their precision is 0.01 for the optimistic case and 0.05 for the pessimistic one.

• Supernovae: ground-based survey with 300,000 supernovae. The photometric redshift accuracy is 0.01(1 + z) for the
optimistic case and 0.05(1 + z) for the pessimistic.

• Weak lensing: 20,000 square degrees, ground-based survey. The shear calibration is fcal = 0.01 and photometric redshift
accuracy σz = 0.01(1 + z) for the pessimistic case. fcal = 0.001 and σz = 0.001(1 + z) for the optimistic case.

Note that these surveys are all providing predictions of very accurate determination of the dark energy equation of state
wp and energy density Ωde, far better than any joint analysis would do today [272]. Here wp is the equation of state at an
intermediate redshift, typically around 0.4. The bottom right panel on Fig. 23 is from [280] and shows the joint constraints
on wp and Ωde from the future CMB PLANCKmission and a lensing survey covering 4000 square degrees, combining the two
and three-points statistics. Fig. 23 shows that the supernovae, CMB and lensing (or BAO) have very different degeneracies
in the dark energy parameter space, which offers an optimal complementarity in the combination of cosmology probes. It is
believed that only the combination of all probes together will provide convincing constraints regarding the dark energy,
although each individual probe seems to predict very accurate results. The main limitation being the systematics, it is
indeed important to have more constraints than parameters we wish to measure: weak lensing for instance may appear
as the most powerful probe. However, the lensing signal is rather featureless compared to CMB and BAO, which makes
it more vulnerable to systematics like shear calibration and photometric redshift inaccuracies (see Section 6). The future
of cosmology certainly lies in a joint analysis of surveys, and lensing surveys play a particular role in the sense that this
is the only probe which can provide an unbiased measurement of the dark matter fluctuations amplitude. Note that the
constraints on quintessence models can be improved by the combination of various cosmology probes, such as lensing and
SNeIa as demonstrated in [235].
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Fig. 22. Figure showing the most orthogonal parameter degeneracies between CMB (WMAP1) and weak lensing (CFHTLS). The set of parameters is Ωm ,
σ8 , ωc = Ωch2 , ns , αs and h (from [286]).

10.2. Beyond-Einstein gravity

The success of the joint analysis depends on the validity of our Cold Dark Matter and Dark Energy picture. Given the
unknown nature of these ingredients, it is possible that our description might be incomplete or wrong. We must therefore
keep an open mind and consider alternative interpretations of the data.

Perhaps the most exciting new aspect of weak lensing on large scales is that it has the capability in principle to test
the Einstein gravity model. This is because it probes two effects, the distance–redshift relation and the growth rate of
perturbations. In General Relativity, these both depend on the evolution of the Hubble parameter, but in other theories,
the relationship between the expansion history and the growth rate is different. One can always match a given expansion
history of amodified gravitymodelwithin the standardmodel, by adjusting the dark energy equation of state parameter, but
it is harder to reproduce the growth rate as well [132,177,168,142]. For string-inspired models involving extra dimensions,
the growth rate of fractional density perturbations δ is given quite accurately as a function of scale factor a and matter
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Fig. 23. Panels showing the measurement forecast of the dark energy equation of state parameter wp and dark energy density ΩDE from the baryon
oscillations (top-left panel), supernovae Ia (top-right panel) and weak lensing (bottom-left) from the DETF report (2006). wp is the equation of state
parameter of the Dark Energy parameter at an intermediate ‘pivot’ redshift, usually a little less than 0.5. Solid and dashed lines are for optimistic and
pessimistic surveys respectively. The surveys characteristics are described in the text. The bottom-right panel shows the constraints from the PLANCK CMB
experiment with a lensing survey [280].

density parameter Ωm(a) by

δ

a
= exp

{∫ a

0

da′

a′

[
Ωm(a′)γ − 1

]}
, (10.2)

where γ = 0.68 for the DGP braneworld model, and General Relativity is accommodated by γ = 0.55. Analysis of possible
future space-based lensing experiments such as DUNE shows that it should be very feasible to distinguish Einstein gravity
from the flat DGP braneworld model at very high significance [101,4].

The modified gravity theory MOND proposed by [202] lacks a solid physical motivation and it appears to be unable to
explain the halo flattening seen in weak lensing data [118]. Nevertheless, this study initiated the idea that amodified theory
of General Relativity could solve the dark matter and dark energy problems. These models include the string-motivated
braneworld scenarios [70]. Ref. [290] suggested that modified gravity can be tested directly from a testing of the Poisson
equation

∇
2Φ = 4πGρ, (10.3)

which may be modified in alternative gravity theories. The gravitational potential Φ can be measured fromweak lensing by
large-scale structures, and the mass density ρ from the galaxy distribution, which at large enough scale can be assumed to
be an unbiased tracer of the mass distribution, as shown in [305] from the 2dF Galaxy Redshift Survey.

A general problem with modified theories of gravity is the significantly increased level of degeneracy due to a larger
number of degrees of freedom. As pointed out by [132], it is necessary to measure independently the growth rate of
structures and the Universe expansion rate in order to reduce the degeneracy to a reasonable level. Modified gravity also
might not be the cause of all the dark components of the Universe. The investigation of a realisticmix of dark component and
modified gravity in [132] shows that neglecting themodified gravity severely biases the dark energy parameters, evenwith a
joint Supernovae, CMB and weak lensing constraints. To make things worse, the addition of inflation parameters introduces
quantum correction, the running spectral index, to the primordial mass power spectrum which is a scale-dependent effect.
Yet another degree of complication comes from the small-scale amplitude predictionwhich is highly non-linear. DarkMatter
itself could also be self-interacting as suggested by [40], resulting in density-dependent observational effects [321].

The present situation is that the simple Big-Bang scenario (i.e. no alternative theories) will indeed be accurately
constrained by a joint analysis of different surveys. A general scenario including alternative theories might be harder to
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constrain. Whether or not this is possible with the next generation of surveys remains to be demonstrated, but it is clear
that weak lensing by large scale structure plays a central role in being sensitive to the “dark matter” whether it is real dark
matter or modified gravity.

10.3. With galaxy surveys to probe bias

Weak lensing is the only reliable technique able to probe the darkmatter distribution up to redshift of a few using optical
surveys, or at even higher redshifts from lensing of the CMB and the 21 cm line. The peculiar velocity field, which is also an
unbiased tracer of the matter distribution, is no longer accurate at distances larger than a few hundred Megaparsecs. The
combination of lensing with the galaxy distribution is therefore a unique way of constraining the relative amount of matter
with respect to light, the so-called bias. This can be done out to reasonably high redshift, giving astronomers access to the
dark side of galaxy formation over a wide range of its evolutionary history.

10.3.1. Galaxy biasing
An apparent limitation of lensing surveys is that the mass is only seen in projection, impeding a 3-dimensional probe

of the bias. A method for alleviating this problem was proposed by [296] and [241]. It is an alternative to the 3D mass
reconstruction technique discussed in Section 4, which was designed specifically for potential or density measurements.
We assume a population of foreground galaxies with a known narrow redshift distribution nf(z) centered on zf (in units
of arc min−2), from which we want to measure the mass-to-light ratio. The lensing signal is measured from a background
galaxy populationwhich can have a broad redshift distribution nb(z) (normalized to unity), while the technique discussed in
Section 4 requires an estimate for all redshifts. The cross-correlation of the lensing signal with the foreground galaxy density
distribution provides a measurement of the bias at redshift zf . The scale dependence of the bias can be obtained by filtering
the lensing signal and the galaxy density with an aperture filter, which is a narrow band filter (Fig. 2).

Assuming that the galaxy number density contrast δgal is proportional to the matter density contrast δ with the
proportionality factor defined as the bias parameter b, the lensing-galaxy density cross-correlation at scale θs is given
by [296]:

〈Map(θs)N (θs)〉 = bπθ2s
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see Eqs. (2.9)–(2.12), (3.4) and (3.10) in Sections 2 and 3. Here theweight ŵ(χ) along the line of sight depends on the redshift
distribution nb(z) of the background sources as in Eq. (2.10) whereas n̂f(χ) is the redshift distribution of the foreground
galaxies (with n̂f(χ)dχ = nf(z)dz) of “number counts” N with respect to the aperture of radius θs. P(k;χ) is the time-
evolving 3-D matter power spectrum (where χ is a parameterization of the redshift along the line of sight) andW2

Map
(`θs) is

the square of the Fourier transform of the aperture filter, which peaks at some effective wavelength `eff ∼ 5/θs, see Fig. 2.
For a narrow foreground redshift distribution, the function n̂f(χ) peaks at some radial comoving distance χf(zf). Eq. (10.4)
shows that the cross-correlation is dominated by P (keff;χf)where keff ∼ 5/(D(χf)θs). In order to extract the bias parameter
b, we need to define the variance of the number density fluctuations for the foreground galaxies:
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and define the ratio R

R ≡
〈Map(θc)N (θc)〉

〈N 2(θc)〉
. (10.6)

The quantity R is proportional to the inverse bias factor b. It was shown in [296] that R is nearly independent of scale for all
cosmologies and any darkmatter power spectrum, unless the bias parameter is scale-dependent (this statement was shown
to be valid in the non-linear regime as well). The bias at angular scale k−1

eff and redshift zf can therefore be measured from
weak lensing data.

Refs. [116,269] have performed the only application of this technique. Ref. [116] measured the bias from a combination
of the VIRMOS [302] and RCS [114] surveys, which is shown on Fig. 24. This analysis shows a significant scale dependence of
the bias, although its calibration is still uncertain due to incomplete knowledge of the source redshift distribution. With the
GaBoDS surveys, [269] found b = 0.8± 0.1 and a cross-correlation coefficient r = 0.6± 0.2, which is consistent with [116].
The cross-correlation coefficient r measures the stochasticity of the biasing and is defined as:

r =
〈Map(θc)N (θc)〉

〈N 2(θc)〉1/2〈M2(θc)〉1/2
. (10.7)
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Fig. 24. Galaxy biasing constraints from the VIRMOS and RCS weak lensing surveys [116]. The left panel shows the cross-correlation coefficient r and
biasing b as function of scale. The right panel, top plot, shows the ratio b/r and its prediction for a concordance model Ωm = 0.3, ΩΛ = 0.7. The bottom
plot shows the most convincing test of residual systematics obtained by rotating the lensed galaxies by 45◦ , which is supposed to cancel the lensing signal.

10.3.2. Galaxy–galaxy Lensing
The probe of galaxy biasing can be extended down to galactic halo scales with a technique called galaxy–galaxy lensing.

First proposed by [289] and then formalised by [35], the idea is to cross-correlate the shape of distant lensed galaxies with
foreground galaxies. As shown in the left panel of Fig. 25, the background galaxies lensed by a foreground galactic halo are
preferentially tangentially aligned with respect to the foreground galaxy. The situation is identical to lensing by a cluster of
galaxies, but the lensing by individual galaxies is much weaker, since the amplitude of the effect scales as the mass of the
lens. Tomeasure the galaxy–galaxy lensing, onemust therefore stack the lensing signal behind a large number of foreground
lenses. The average shear as function of angular distance from the center gives an estimate of the average halo profile around
the foreground galaxies (see right panel in Fig. 25).

The tangential shear of a lensed galaxy at position angle θ with respect to the lens on the sky is given by

γt = −e1 cos(2θ) + e2 sin(2θ). (10.8)

It is straightforward to show that, when averaged over all position angles, the mean tangential ellipticity is unchanged if a
constant is added to the galaxy ellipticity Ee = (e1, e2). For this reason, galaxy–galaxy lensing is robust against an imperfect
Point Spread Function (PSF) anisotropy correction, as long as the latter is a slowly-varying function of position. The lensing
signal is therefore relatively easy to measure, even if the amplitude of the signal is low.

Given that the foreground galaxies span a large range of velocity dispersion and luminosity, scaling relations are needed
in order to calibrate the expected lensing signal to the same fiducial galaxy with luminosity L? and size s?. If σ? is the velocity
dispersion of the fiducial galaxy, the scaling relations are:

s = s?

(
σ
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)2
;

L
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=

(
σ

σ?

)η
, (10.9)

where the latter corresponds to the Tully–Fisher or Faber–Jackson relation for spiral and elliptical galaxies respectively if
η = 1/4. (L, s,σ) are the luminosity, scale and velocity dispersion of one foreground galaxy. The lens mass model chosen by
[35] is a truncated isothermal sphere (TIS), which is also frequently used by several authors [131,118]. The mass density of
the TIS is given by

ρ(r) =
σ2 s2

2πGr2(r2 + s2)
, (10.10)

whose total mass Mtot is [118]:

Mtot = 7.3 × 1012h−1M�
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σ
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)
. (10.11)
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Fig. 25. Left panel: Schematic illustration of galaxy–galaxy lensing. Right panel: Galaxy–galaxy lensing signal from theGEMS survey (Heymans et al. [107]).
The solid line shows the best fit NFWmass profile, assuming an average lens redshift of zl = 0.65.

The tangential shear is calculated from the mass model (e.g. Eq. (10.10)), and can be compared to the data provided that an
estimate of the lens and source redshifts is known. In general, the free parameters measured with galaxy–galaxy lensing
are the fiducial velocity dispersion σ? and truncation radius s? of an L? galaxy. The apparent magnitude of each foreground
lens is used to estimate its absolute luminosity L (which may require an appropriate k-correction to be included), then the
velocity dispersion σ is obtained from the scaling relations. The maximum likelihood technique developed by [240] ensures
an optimal analysis, in particular if individual photometric redshifts can be obtained. Note that simple mass models such as
the singular isothermal sphere (SIS) do not have a truncation radius:

ρ(r) =
σ2

2πGr2
, (10.12)

in which case one could constrain the scaling relations, Eq. (10.9), like the parameter η, in addition to the fiducial velocity
dispersion σ?. Ref. [131] and [165] measured a η parameter very close to the Tully–Fisher and Faber–Jackson relation.

At low redshift, themost extensive galaxy–galaxy lensing analysiswas performedby [93] on the SDSSdata set. They found
a Virial mass M200 = 5–10 × 1011 h−1M� for L? = 1010 h−1L�, depending on the galaxy color and morphological type. In the
redshift range 0.2–0.7 a Virial mass ofM200 = 4–8×1011 h−1M�, the less massive corresponding to the bluest galaxies [104,
165]. Ref. [263] measured the galaxy-mass bias from the SDSS galaxy–galaxy lensing signal, and found a constant bias over
correlation coefficient ratio b/r = 1.3± 0.3 for Ωm = 0.27, which is in agreement with the cosmic shear study presented in
Section 10.3.1 (see Fig. 24).

Recent studies use the Navarro–Frenk–White density profile as the parametric mass model, which is particularly well
suited for galaxy–galaxy lensing inmoremassive structures such as galaxy groups [115] and galaxy clusters [211,81]. In [186]
the authors measured the lensing around Luminous Red Galaxies (LRG) from the Sloan Digital Sky Survey. The LRG sample
was split into a bright and faint sample at Mcut = −22.3. LRG are particularly good foreground targets for probing larger
mass halos because they are known to be present in the core of groups and cluster of galaxies. Fig. 26 shows the measured
signal against several mass models. It is particularly interesting to note that the flattening of the dark halo profile is clearly
visible, leading to a concentration parameter of c ∼ 5–7, in perfect agreement with Cold Dark Matter predictions [212].

Ref. [104]marginally measured a halo over lens ellipticity ratio of eh/eg ∼ 0.8±0.2, consistent with the Cold DarkMatter
Scenario [69]. A significant, but contradictory, measurement is shown in [185], who found eh/eg = 0.1±0.06 for red galaxies
and 0.8 ± 0.4 for blue galaxies. The baryon fraction can also be measured by galaxy–galaxy lensing from a comparison of
the lensing to the stellar mass. Ref. [119] and [107] find a virial to baryon mass-to-light ratio between 50 and 100, and they
show that massive early type galaxies have a stellar to total baryon fraction of ∼10%, which indicates that these galaxies are
not efficient at producing stars.

10.4. With Sunyaev–Zeldovich studies to probe small scale baryonic physics

The energy of the CMB photons is boosted by scattering on the free electrons contained in the plasma of the Intra Cluster
Medium (ICM). It is the source of the Sunyaev–Zeldovich (SZ) effect, which shifts the spectral energy distribution of CMB
photons for the lines-of-sight containing hot, ionized, gas. The SZ effect is a probe of the hot baryon distribution, which can
be compared to stellar and lensing mass distributions in order to learn about the cluster physics. If one assume that the gas
is isothermal, SZ is a measure of the electronic density ne(Eθ, z) projected along the line of sight:

y(Eθ) =
kT

mec2
σT

∫
dz ne(Eθ, z), (10.13)
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Fig. 26. Galaxy–galaxy lensing signal for the Luminous Red Galaxies (LRG), used as tracers of galaxy groups and small clusters [186]. 43335 LRG from the
Sloan Digital Sky Survey were used. The left and right panels correspond to faint (Mr > −22.3) and bright (Mr < −22.3) samples respectively.

where σT is the Thompson scattering cross-section and T the temperature of the gas. The SZ effect is therefore independent
on the cluster redshift, as opposed to the lensing effect which has its maximum sensitivity at mid distance between the
observer and the sources. Lensing and SZ are complementary because they are both linear in the density: for this reason they
probe the same regions of galaxy clusters, while X-rays for instance scale as the density squared, which is more sensitive to
the cluster core.

One approach of the combined SZ and lensing data sets analysis consists in working on individual clusters. Both data
sets can be used to predict the X-ray emission of the cluster [68], which provides a direct test of the cluster dynamical
equilibrium. The 3-dimensional halo shape (assuming axial symmetry) can be reconstructed from the combination of SZ,
lensing and X-ray observations [317,222]. Ref. [255] have shown that large lensing and SZ surveys (a few hundred square
degrees) would be able to detect the evolution of the mass-SZ luminosity relation with redshift, which in turn is a measure
of the cluster baryonic physics. This is particularly important for the understanding of the source of energy maintaining the
temperature of the intra-cluster plasma at high temperature. The other approach is statistical, when the SZ and convergence
maps correlations are measured statistically; one does not focus on individual cluster detection this time, rather one tries to
constrain the statistical properties of the cluster population like its baryonic and total mass function, luminosity function,
etc. One of the goals then is to use the cluster number counts to probe cosmology [15], the lensing data is used to measure
the cluster masses. But this requires a full sky survey with a mass sensitivity down to a few 1014M� to provide interesting
constraints.

One should remember that cluster masses derived from lensing are subject to large noise and projection effects [113,
311], although recent studies seem to show that the discrepancy between dynamical, lensing and X-ray masses is rather
small [108]. The ideas developed around the combination of SZ and lensing yet remain to be put into practice: instruments
such as the Cosmic Background Interferometer, Atacama Cosmology Telescope, Arcminute Imager and South Pole Telescope,
all with angular resolution of the order of a few arcminutes, are very promising for this purpose. The understanding of cluster
physics from SZ and lensing is not without any consequences for cosmological studies: statistical lensing for instance probes
the projected mass power spectrum down to arbitrarily small angular scale (if the statistical noise is low enough). At the
cluster scale, typically one arcminute, we know that baryon cooling and heating modify the cluster gravitational potential
well, and therefore the dark matter distribution itself. Ref. [318,312] have shown how the cluster physics could affect the
power spectrum by ∼10% below one arcminute. Taking into account this effect might be necessary for the next generation
of high precision weak lensing studies.

10.5. Weak lensing of supernovae and effects on parameter estimation

Type Ia supernovae (SNeIa), which are believed to be the thermonuclear explosion of an accreting white dwarf, are
standard candles with a small intrinsic dispersion around their average luminosity. Moreover, this dispersion can be further
reduced to about 0.12 mag using an empirical relation between the peak magnitude and the width of the light curve [228].
This makes SNeIa excellent tools for observational cosmology. In particular, by measuring their apparent magnitude we can
derive their distance from us and obtain the redshift–distance relation up to z ∼ 1 which provides useful constraints on
cosmological parameters [90]. This method has supplied the main contribution to the discovery of the present acceleration
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of the Universe [229,220] and it is the basis of future proposals to probe the nature of dark energy through its equation
of state (e.g. the SuperNova Acceleration Probe, [3]). On the other hand SNeIa, like all radiation sources, are affected by
gravitational lensing effects which can magnify or demagnify their observed luminosity. This is a source of noise for studies
which intend to measure the redshift–distance relation but this effect may also be used by itself to constrain cosmology in
the same manner as gravitational lensing distortion of distant galaxies.

There are several important differences between SNeIa and galaxies as probes of gravitational lensing effects. Firstly,
since SNeIa are point sources one uses the magnification (associated with the convergence κ) rather than the shear γ which
we focussed on in previous Sections. In particular, the magnification µ can be written as:

µ =
1

(1 − κ)2 − |γ|2
whence µ ' 1 + 2κ for |κ| � 1, |γ| � 1. (10.14)

Second, whereas weak gravitational lensing only modifies the observed ellipticities of galaxies at zs = 1 by less than 10%,
so that one needs many galaxies to extract the signal, the magnification of a type Ia supernova at zs = 1 by gravitational
lensing is of the same order as the intrinsicmagnitude dispersion. Hence the signal-to-noise ratio is larger for SNeIa but since
we have many more observed galaxies than SNeIa, accurate weak gravitational lensing effects have only been measured
from galaxy ellipticities so far. Third, in order to derive the coherent shear on large scales one must cross-correlate the
observed ellipticities of many distant galaxies over a window radius θs of the order of a few arcmin (since galaxies are
not exactly spherical). This leads to observables such as the aperture-mass Map or the mean shear over scale θs which
probe matter density fluctuations over scales of the order of Dθs. On the contrary, the magnification of each SNeIa only
probes the density fluctuations along its line-of-sight, which corresponds to no smoothing (θs = 0). Then, by measuring the
probability distribution of observed SNeIa magnitudes (or its variance) rather than cross-correlating different SNeIa, one
can probe the statistics of the convergence κwith θs = 0. This means that the signal is dominated by scales where `2Pκ(`) is
maximum, which are set by the matter power-spectrum. For CDM power-spectra this corresponds for sources at zs = 1 to
wavenumbers k ∼ 10 h Mpc−1 whereas smoothing galaxy ellipticities over 1 arc min mainly probes smaller wavenumbers
k ∼ 1 h Mpc−1 [291]. Thus, weak lensing magnification of SNeIa allows us to probe density fluctuations on smaller scales
than with galaxy ellipticities. This also implies that non-Gaussianities are more important for SNeIa gravitational lensing
distortions. On the other hand, this difference between the scales probed by galaxy shear maps and SNeIa magnitude
distortions means that both effects are only weakly correlated so that weak-lensing shear maps obtained from surrounding
galaxies are not very efficient to correct the SNeIa luminosities [62].

The rms magnification of SNeIa was computed by analytical means in [77] who found that this would not significantly
decrease the accuracy of the distance–redshift relation at zs < 0.5 used to measure the current acceleration of the
universe but it could have a significant effect at higher redshifts zs > 1, in agreement with the numerical simulations
performed in [307]. In particular, although future surveys covering more than a few square degrees will be unaffected,
pencil beams surveys (<1 deg2) suffer significant contamination [57]. Turning to the use of SNeIa as a tool to detect
gravitational lensing, [199] computed analytically the rms magnification of SNeIa to find that in a ΛCDM universe one
needs at least 2400 SNeIa at zs = 0.5 (or 110 SNeIa at zs = 1) to detect weak lensing from their observed magnitudes.
The PDF of themagnificationP (µ)was computed from a hierarchical model in [291] as well as its impact on themeasure of
cosmological parameters through the distance–redshift relation. In particular, this study shows the strong non-Gaussianity
of themagnification with an extended high-µ tail which follows the high-density tail of the underlyingmatter density field,
as can be seen from left panel of Fig. 27. Then, the high-luminosity tail of observed SNeIa could be used to detect weak
lensing since it should be significantly enhanced by gravitational lensing. However, the number of observed SNeIa is still too
small to draw definite conclusions about a possible detection of weak lensing effects by this method [310].

On the other hand, since the amplitude of the gravitational lensing contribution to the dispersion of observed SNeIa
magnitudes depends on cosmological parameters it could be used to constrain cosmology [57]. Thus, [66] found that
2000 SNeIa in the redshift range 0.5 < zs < 1.7 should be able to constrain up to 5% the amplitude σ8 of the matter
power-spectrum. However, they point out that one needs to take into account the non-Gaussianity of the weak-lensing
magnification distribution in order to obtain correct estimates, as seen in right panel of Fig. 27.

In order to eliminate the systematic errors associated with uncertainties on the intrinsic SNeIa luminosity distribution
and its possible dependence on redshift, it is possible to cross-correlate SNeIa observed magnitudes with foreground
galaxies, as advocated in [200]. Indeed, in the absence of gravitational lensing this cross-correlation would vanish. Using
a halo model [200] found that a gravitational lensing signal should be detected with ∼250 SNeIa at zs = 1. This will be
within the reach of future experiments (e.g. the SNAP satellite should observe thousands of SNeIa up to z ∼ 1.7) but current
surveys are too small to detect a correlation between SNeIa magnitudes and galaxy overdensities [197].

11. Summary and outlook

Ten years ago, the detection of weak lensing by large scale structures was only a dream. The progress accomplished,
summarized in this review, are remarkable. The main reason for this progress in essentially the development of the Charge
Coupled Device detectors which had a major impact on the accuracy of galaxy shape measurement. Adequate detectors are
probably more important than larger telescopes; weak lensing needs a wide field of view and a well sampled Point Spread
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Fig. 27. Left panel: The probability distribution P (µ) of the magnification within a ΛCDM universe for SNeIa at redshifts zs = 0.5 or zs = 1. From
Valageas [291]. Right panel: The constraints on cosmological parameters obtained from the dispersion of SNeIa magnitudes from a SNAP-like survey.
The two sets of contours correspond to analyzing the data assuming the true non-Gaussian distribution (shaded) or a Gaussian distribution (unshaded).
From [66].

Function. One should remember for instance that the very first tentative attempts to measure distorted galaxy shapes [289]
failed because of inadequate technology detectors.

In this review we mostly focussed on the statistical lensing, what one can learn on cosmology from the shear or
convergence field, rather then focussing on individual lenses like clusters of galaxies. Like most of the cosmology probes,
the information is mainly encoded in the power spectrum. We have shown how different cosmological parameters affect
the projected mass (convergence or shear) and how it can be measured. In particular a combination of σ8 and Ωm appears
well constrained from current lensing surveys. Statistical lensing can also be used to probe the biasing between dark matter
and light, which provides clues on the assembly of galaxies inside their hosting halos. Future surveys should be able to
provide accurate measurement of the biasing history as function of scale. A particularly interesting aspect of lensing is
that it can probe the non-linear regime without any assumption on how light traces mass, and therefore go beyond the
traditional power spectrum analysis. This property gives access to a different sensitivity to the cosmological parameters,
an important feature to help breaking the parameter degeneracy between Ωm and σ8, but it also probes the history of the
gravitational collapse. In that respect, high-order lensing statistics can be used to test the role of gravity during the collapse.
The tomography technique, which has just started to be applied to lensing data, is very promising in probing the Dark Energy
equation of state. The redshift slicing of the lensed sources, or 3D analysis of the shear field, are the onlyways tomeasure the
growth rate of structures (from the power spectrum and bi-spectrum) which is very sensitive to the dark energy content
of the Universe. An interesting alternative to this is the 3-dimensional reconstruction of the mass distribution which in
additionwill give us the distribution of the darkmatter in space. The combination of statistical lensingwith other cosmology
surveys in other wavelengths was also shown to be very important for three reasons (i) the sensitivity to the cosmological
parameters is different and sometimes orthogonal (ii) the systematics can be drastically reduced (e.g. 21 cm observation
which offers perfect source redshift measurement) (iii) this is the only way to probe the physics of the lenses beyond the
simple mass-light relation.

It appears that ray-tracing techniques are an essential ingredient of any precision weak lensing study. In particular this
would be the only way to address many of the complicated higher-order lensing effects such as multiplane deflections,
source clustering, intrinsic and intrinsic-shear alignment which cannot be modeled with high precision. This is particularly
relevant for future lensing surveys. Moreover, a proper assessment of the cosmic variance associated with the survey
geometry can also be done from numerical simulation, which is also important for non-linear scales (typically less than
half a degree) where prediction from semi-analytical models is challenging.

In 2006, weak lensing by large structures has just began to reach a status of scientific maturity: the first successes have
demonstrated the feasibility of the technique and now begins an era of thorough weak lensing studies. The situation is
similar to the Cosmic Microwave Background research in the pre-COBE era, before 1992: many independent groups have
nowmeasured the lensing fluctuation amplitude, and the next generation of lensing surveys will provide full sky, or nearly
full sky, coverage. Table 5 summarizes the ongoing and future lensing surveys. The largest ongoing effort is the Canada France
Hawaii Telescope Legacy Survey (CFHTLS). This survey represents a transition because this is the last one which requires
a percent accuracy of galaxy shape measurement in order to be fully scientifically exploited. One percent accuracy is what
we are currently capable of. All future surveys require a sub-percent precision level, which is still beyond our capability,
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Table 5
List of forthcoming lensing surveys (adapted from [215])

Survey Telescope Sky coverage (deg2) Filters Depth

Deep Lens Survey CTIO 7 × 4 BVRz’ R = 25
CFHTLS-Wide CFHT 170 ugriz iAB =

24.5
RCS2 CFHT 1000 grz iAB =

22.5
KIDS VST 1500 ugriz iAB =

22.9
Pan-STARRS PS1 30 000 grizy iAB = 24
KIDS-VIKING VISTA 1500 JHK iAB =

22.9
Dark Energy Survey CTIO 5000 griz iAB =

24.5
DarkCam VISTA 10 000 ugriz iAB = 24
HyperCam SUBARU 3500 TBD TBD
SNAP Space 300/2000 Narrow band (0.35–1.6) TBD
LSST 6 m ground 20 000 Narrow band (0.35–1.2) iAB = 27
DUNE Space 20 000 TBD iAB =

25.5

Surveys are sorted in three groups separated by a line. The top group show the current lensing surveys, the middle group shows survey starting in one year
at the latest, and the group at the bottom is essentially not funded or partially funded projects.

as demonstrated by STEP. In fact, below the percent accuracy, many other effects will complicate the lensing measurement
and analysis.

All recent studies show that the only way to quantify these effects, such as intrinsic alignment, shear-intrinsic alignment
and source clustering, is to have a redshift estimate of each galaxy. This is only doable with photometric redshifts, which
poses additional challenges: assuming one can get enough colors to obtain accurate photometric redshifts, there is no
spectroscopic survey to help calibrating objects fainter than I ∼ 24. The magnitude calibration of brighter sources could
be problematic, especially from the ground due to zero-point fluctuations for different wavelengths. An absolute zero-point
variation is not a problem, but an explicit dependencewith color could jeopardize photometric redshift estimates. It appears
that the only way to obtain unbiased photometric redshift is to have uniform magnitude calibration and to conduct a deep
spectroscopic survey in order to validate the technique at faint magnitude/high redshift. Both might only be doable from
space where photometry is stable. The tunable laser project [1] is an interesting solution for the zero-point issue, while the
satellite GAIA [83], successor of Hipparcos, could help with absolute astrometry calibration. Interestingly, it seems that the
shapemeasurement problem is likely to be solved in the next two or three years, thanks to the Shear TEsting Program.11 The
main limitation ofweak lensing by large scale structuresmight therefore not be shapemeasurement anymore butmulticolor
photometric calibration, a very old astronomical problem!

Acknowledgements

We thank Stephane Colombi, Asantha Cooray, Scott Dodelson, Peter Schneider, Thomas Erben, Henk Hoekstra, Wayne
Hu, Bhuvnesh Jain, Rachel Mandelbaum, Yannick Mellier, Ue Li-Pen, Elisabetta Semboloni, Masahiro Takada and Alberto
Vallinotto for use of their figures. It is a pleasure to thank Catherine Heymans, Sanaz Vafaei and Jonathan Benjamin for their
help with some of the figures and tables. DM would like to thank Martin Kilbinger, Jerry Ostriker, Lindsay King, Tony Tyson
and members of Cambridge Planck Analysis Center for many useful discussions. LVW is supported by NSERC, CIAR and CFI.
DM is supported by PPARC.

Appendix. Analytical modeling of gravitational clustering and weak-lensing statistics

In order to derive the properties of weak lensing observables, like the shear γ, one first needs to specify the properties
of the underlying density field. We briefly describe in this appendix two such models which can be used to predict weak
lensing statistics, the hierarchical models presented for instance in [294] and the halo model described in detail in [52].

A.1. From density to weak-lensing many-body correlations

At lowest-order weak-lensing observables can be written as linear functionals of the density field, as seen in Eqs.
(2.9)–(2.16). Therefore, their many-body connected correlation functions can be directly written in terms of the connected
correlations ξp of the 3D matter density field defined by [217]:

ξp(x1, . . . , xp; z) = 〈δ(x1, z) . . . δ(xp, z)〉c. (A.1)

11 http://www.physics.ubc.ca/heymans/step.html.

http://www.physics.ubc.ca/heymans/step.html
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Note that for a Gaussian field we have ξp = 0 for p ≥ 3. For a weak-lensing observable X̄ defined as in Eq. (2.11) this gives in
real space [291]:

〈X̄p
〉c =

∫ χs

0
dχ ŵp

∫
∞

−∞

p∏
i=2

dχ′

i

∫ p∏
i=1

dEθi UX(Eθi) ξp

(
0
DEθ1

,
χ′

2

DEθ2
, . . . ,

χ′

p

DEθp
; z

)
, (A.2)

where z and D are the redshift and the angular diameter distance associated with the radial distance χ and χ′

i = χi − χ are
the relative radial distances (using the fact that the 3D correlation ξp is invariant through translations and that cosmological
length scales are much larger than the correlation length). This reads in Fourier space [294]:

〈X̄p
〉c = (2π)−2p−1

∫
dχ ŵp

∫ p∏
j=1

dEk⊥j WX(Ek⊥jDθs) 〈δ(Ek⊥1) . . . δ(Ek⊥p)〉c. (A.3)

In Eqs. (A.2) and (A.3) we used Limber’s approximation k ' k⊥ as for Eq. (3.4) and the longitudinal Dirac factor δD(k‖1 +· · ·+

k‖p) has been factorized out of the correlation 〈δ · · · δ〉c in Eq. (A.3). Note that this approximationmeans that in real space the
angular correlation functions at a redshift z along the line of sight are obtained by integrating the 3D correlation functions
ξp over the radial coordinates as in Eq. (A.2).

Next, from the correlation functions one can obtain the full probability distribution function (PDF). Indeed, if we define
the generating function ϕX(y) of the cumulants 〈X̄p

〉c as:

ϕX(y) =

∞∑
p=2

(−1)p−1

p!
S(X)
p yp with S(X)

p =
〈X̄p

〉c

〈X̄2〉
p−1
c

, (A.4)

where we used 〈X̄〉 = 0, then one can show that the PDF PX(X̄) is given by the inverse Laplace transform:

PX(X̄) =

∫ i∞

−i∞

dy
2πi〈X̄2〉c

e[X̄y−ϕX(y)]/〈X̄2〉c . (A.5)

Thus, in order to compute PX(X̄) one only needs to derive ϕX(y), which may be written in terms of the density field from Eq.
(A.2) or (A.3).

For the smoothed convergence κ̄ the cumulants 〈κ̄p〉c correspond to averages of the density cumulants over cylindrical
cells along the line of sight and they can be obtained with a good accuracy from the 3D density cumulants averaged over
spherical cells. If we also use a mean-redshift approximation one obtains [291,292,12]:

ϕκ(y) ' |κmin|
2ϕδ

(
y

|κmin|

)
with κmin = −

∫
dχŵ, (A.6)

where we introduced the minimum value κmin of the convergence, which corresponds to an empty line of sight (δ = −1,
see Eq. (2.10)). This gives:

Pκ(κ̄) '
1

|κmin|
Pδ

(
δ →

κ̄

|κmin|
, ξ2 →

〈κ̄2〉

|κmin|
2

)
, (A.7)

where ϕδ and Pδ are the generating function and the PDF of the 3D matter density contrast at the mean redshift and scale
probed by the smoothed convergence κ̄ (they depend on the angular radius θs and the galaxy distribution n(zs)). Thus, within
this simple approximation the PDF of the projected density field κ̄ is directly expressed in terms of the PDF of the underlying
3D density contrast.

A.2. Hierarchical models

Formore intricate observables like the shear or the aperture-masswhich involve compensated filters one cannot perform
approximations such as Eqs. (A.6) and (A.7) and it is not possible to approximate high-order cumulants or the PDF of weak-
lensing observables in terms of those of the smoothed density contrast. Therefore, one needs to specify the detailed angular
behavior of the many-body correlation functions ξp(x1, . . . , xp). A simple prescription is provided by the general class of
“tree-models” defined by the hierarchical property [231,91]:

ξp(x1, . . . , xp) =
∑
(α)

Q(α)
p

∑
tα

∏
p−1
ξ2(xi, xj), (A.8)

where (α) is a particular tree-topology connecting the p points without making any loop, Q(α)
p is a parameter associated

with the order of the correlations and the topology involved, tα is a particular labeling of the topology, (α), and the product
is made over the (p − 1) links between the p points with two-body correlation functions. Then, as seen in [292] the 2D
correlations ωp involved in weak-lensing cumulants such as (A.2) exhibit the same tree-structure, with:

ωp(Eθ1, . . . , Eθp; z) =

∫
∞

−∞

p∏
i=2

dχiξp

(
0
DEθ1

, . . . ,
χp

DEθp
; z

)
. (A.9)
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In order to perform numerical computations we need to specify the weights Q(α)
p . Thus, the “minimal tree-model”

corresponds to the specific case where the weights Q(α)
p are given by [20]:

Q(α)
p =

∏
vertices of (α)

νq, (A.10)

where νq is a constant weight associated to a vertex of the tree topologywith q outgoing lines. The advantage of thisminimal
tree-model is that it is well-suited to the computation of the cumulant generating functions as defined in Eq. (A.4). Indeed,
for an arbitrary real-space filter, F(x), which defines the random variable s as:

s =

∫
dx F(x)δ(x) and ξs = 〈s2〉, (A.11)

it is possible to obtain a simple implicit expression for the generating function, ϕs(y), see [20,143]:

ϕs(y) = y
∫

dx F(x)
[
ζν[τ(x)] −

τ(x)ζ′ν[τ(x)]
2

]
(A.12)

τ(x) = −y
∫

dx′ F(x′)
ξ2(x, x′)

ξs
ζ′ν[τ(x

′)], (A.13)

where the function ζν(τ) is defined as the generating function for the coefficients νp:

ζν(τ) =

∞∑
p=1

(−1)p

p!
νpτ

p with ν1 = 1. (A.14)

Since the 2D correlations ωp obey the same minimal tree-model we can perform the resummation (A.12) and (A.13) which
yields [24,12]:

ϕX(y) =

∫ χs

0
dχ

〈X̄2
〉c

ω2X
ϕcyl.

(
yŵ

ω2X

〈X̄2〉c
; z
)

, (A.15)

where we introduced the 2D generating function ϕcyl. associated with the 2D correlations ωp, given by the resummation:

ϕcyl.(y) = y
∫

dEθUX(Eθ)

[
ζν[τ(Eθ)] −

τ(Eθ)ζ′ν[τ(
Eθ)]

2

]
(A.16)

τ(Eθ) = −y
∫

dEθ′ UX(Eθ
′)
ω2(Eθ, Eθ′

; z)

ω2X(z)
ζ′ν[τ(

Eθ′)]. (A.17)

Here we introduced the angular average ω2X of the 2D correlation ω2, associated with the filter UX:

ω2X(z) =

∫
dEθ1 dEθ2UX(Eθ1)UX(Eθ2)ω2(Eθ1, Eθ2; z). (A.18)

Thus, one obtains in this way the generating function ϕX(y) which yields in turn the PDF PX(X̄) from Eq. (A.5).
A second simple model is the “stellar model” introduced in [294] where we only keep the stellar diagrams in Eq. (A.8).

Thus, the p-point connected correlation ξp of the density field can now be written as:

ξp(x1, . . . , xp) =
S̃p
p

p∑
i=1

∏
j6=i

ξ2(xi, xj). (A.19)

The advantage of the stellar-model (A.19) is that it leads to very simple calculations in Fourier space. Indeed, Eq. (A.19) reads
in Fourier space:

〈δ(k1) . . . δ(kp)〉c =
S̃p
p

(2π)3δD(k1 + · · · + kp)
p∑

i=1

∏
j6=i

P(kj). (A.20)

Using the standard exponential representation of the Dirac distribution gives [294]:

〈X̄p
〉c = S̃p

∫ χs

0
dχ ŵp

∫
dEθUX(Eθ)IX(χ, Eθ)p−1, (A.21)

where we introduced:

IX(χ, Eθ) =

∫ dEk⊥

(2π)2
e−iEk⊥.DEθWX(Ek⊥Dθs)P(k⊥; z). (A.22)

Then, using Eq. (A.4) we obtain:

ϕX(y) =

∫ χs

0
dχ

∫
dEθUX(Eθ)

〈X̄2
〉c

IX(χ, Eθ)
ϕδ

(
yŵ

IX
〈X̄2〉c

; z
)

, (A.23)

which directly gives ϕX(y) in terms of the cumulant generating function of the 3D density field ϕδ.
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A.3. Halo models

An alternative to the hierarchical models presented in Appendix A.2 is provided by the halo model where the matter
density field is described as a collection of halos [181,232,264]. Then, the density correlation functions are obtained through
a convolution over the halo density profiles. One also needs to specify the many-body correlations of the halos themselves
as well as their multiplicity function. Thus, the density field is written as the superposition of the halo profiles:

ρ(x) =
∑
i

miumi(x − xi) with
∫

dx um(x) = 1, (A.24)

where we introduced the normalized density profile um(x) of halos of mass m. Then, the density two-point correlation
function is expressed as the sum of correlations within a single halo (1-halo term, both points are within the same halo)
and between different halos (2-halo term, the two points are within two different halos):

ξ2(x1, x2) =

∫
dmn(m)

(
m

ρ

)2 ∫
dx′ um(x1 − x′)um(x2 − x′) +

∫
dm1 n(m1)

m1

ρ

×

∫
dm2 n(m2)

m2

ρ

∫
dx′

1 um1(x1 − x′

1)

∫
dx′

2 um2(x2 − x′

2)ξh(x
′

1, x
′

2;m1,m2), (A.25)

where n(m) is the halo mass function and ξh is the halo two-point correlation [278,279]. In a similar fashion one can write
the n-point density correlation as a sum of 1-halo up to n-halo terms. In practice, it is more convenient to work in Fourier
space (to simplify the convolution products and to take advantage of the statistical homogeneity and isotropy of the system).
Thus, the density power-spectrum reads [261,179,251]:

P(k) = I02(k, k) +

[
I11(k)

]2
PL(k) (A.26)

with:

Iβµ(k1, . . . , kµ) =

∫
dmn(m)b(m)β

(
m

ρ

)µ
um(k1) . . . um(kµ), (A.27)

where um(k) is the Fourier transformof the halo density profile. In Eq. (A.26)we assumed that the halo–halo power-spectrum
can be written as Ph(k;m1,m2) = b(m1)b(m2)PL(k) where PL is the linear matter power-spectrum and b(m) is the bias
parameter which describes how the halo distribution is biased with respect to the dark matter density field. Indeed, the 2-
halo term dominates at large scales which are described by the quasi-linear theory (hence it is sufficient to use PL) whereas
the 1-halo termdominates at small non-linear scales. This also ensures that one recovers the results of standard linear theory
at large scales. To complete the halo model one needs to specify the halo density profile, which is often taken from [212],
the halo mass function, taken for instance from [265,221], and the biasing of the halo distribution as from [205]. Then,
the correlation functions of weak-lensing observables can be derived from Eqs. (A.2) and (A.3). For instance, the 1-halo
contribution to the angular two-point correlation of the convergence field reads [278]:

〈κ(Eθ1)κ(Eθ2)〉1h =

∫
dχ

ŵ2

D2

∫
dmn(m)

(
m

ρ

)2 ∫
dl

l

2π
|um(k)|2J0(lθ), (A.28)

where k = l/D(χ). Similar expressions give the 1-halo contribution to higher-order convergence correlation functions
whereas 2-halo terms involve the linear density power-spectrum, 3-halo terms involve the density bispectrum and so on.
This approach has been used to estimate the low-order correlations of weak-lensing observables up to fourth-order (the
kurtosis of the shear, see [277]) but no attempt has been made to predict the full PDF PX(X̄) yet (however see [283] for a
model for the tails of the matter density PDF).
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