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The density and peculiar velocity �elds of nearby galaxiesMichael A. StraussSchool of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540andJe�rey A. WillickObservatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, California91101-1292AbstractWe review the quantitative science that can be and has been done with redshift and peculiar velocity surveys ofgalaxies in the nearby universe. After a brief background setting the cosmological context for this work, the �rstpart of this review focuses on redshift surveys. The practical issues of how redshift surveys are carried out, and howone turns a distribution of galaxies into a smoothed density �eld, are discussed. Then follows a description of majorredshift surveys that have been done, and the local cosmography out to 8,000 km s�1 that they have mapped.We then discuss in some detail the various quantitative cosmological tests that can be carried out with redshiftdata. The second half of this review concentrates on peculiar velocity studies, beginning with a thorough review ofexisting techniques. After discussing the various biases which plague peculiar velocity work, we survey quantitativeanalyses done with peculiar velocity surveys alone, and �nally with the combination of data from both redshiftand peculiar velocity surveys. The data presented rule out the standard Cold Dark Matter model, although severalvariants of Cold Dark Matter with more power on large scales fare better. All the data are consistent with thehypothesis that the initial density �eld had a Gaussian distribution, although one cannot rule out broad classes ofnon-Gaussian models. Comparison of the peculiar velocity and density �elds constrains the Cosmological DensityParameter. The results here are consistent with a at universe with mild biasing of the galaxies relative to darkmatter, although open universe models are by no means ruled out.
Preprint submitted to Elsevier Science 15 February 1995



Contents1 Introduction 42 Theoretical Background 62.1 The Big Bang Model and its Parameters 62.2 The Gravitational Instability Paradigm 102.3 Power Spectra, Initial Conditions, and Dark Matter 122.4 The Relation Between the Mass and Galaxy Density Fields 182.5 Outstanding Questions 203 Redshift Surveys: Setting the Quantitative Groundwork 213.1 The Variety of Redshift Surveys 213.2 History of Redshift Surveys 233.3 The Measurement of Galaxy Redshifts 263.4 Determination of the Luminosity and Selection Functions 283.5 Luminosity Functions: Scienti�c Results 333.6 Testing the Hubble Law with Redshift Surveys 343.7 The Smoothed Density Field 353.8 Filling in the Galactic Plane 394 Redshift Surveys: A Cosmographical Tour 405 Redshift Surveys: Galaxy Clustering 455.1 The Two-Point Correlation Function 455.2 Distortions in the Clustering Statistics 495.3 The Power Spectrum 555.4 Higher-Order Statistics 585.5 The Density Distribution Function and Counts in Cells 625.6 Topology and Related Issues 632



5.7 The Dipole 655.8 Spherical Harmonics 665.9 Recovering the Real Space Density Field 685.10 Clustering of Di�erent Types of Galaxies 706 Peculiar Velocity Fields: Techniques of Measurement and Analysis 726.1 Galaxian Distance Indicator Relations 746.2 Universality of the Distance Indicator Relations 816.3 Beyond TF and Dn-�: A Look to the Future? 826.4 Statistical Bias and Methods of Peculiar Velocity Analysis 846.5 Quantifying Statistical Bias 927 Statistical Measures of the Velocity Field 1047.1 A History of Observations of Large-Scale Flow 1057.2 Homogeneous Peculiar Velocity Catalogs 1117.3 Velocity Correlation Function 1137.4 The Cosmic Mach Number 1157.5 Reconstructing the Three-Dimensional Velocity Field 1158 Comparing the Density and Velocity Fields 1198.1 Comparison via the Velocity Field 1198.2 Comparison via the Density Field 1269 Discussion 1289.1 The Initial Power Spectrum 1289.2 The Distribution Function of the Initial Fluctuations 1309.3 The Gravitational Instability Paradigm 1309.4 The Value of 
0 1319.5 The Relative Distribution of Galaxies and Mass 1319.6 Is the Big Bang Model Right? 1343



9.7 The Future 134Acknowledgement 135References 1351 IntroductionThe last two decades have seen a tremendous growth in our awareness of the richness of the structureof the Universe on scales of galaxies and larger. Technical advances in spectrographs and detectors inboth the visible and radio wavebands have allowed redshifts of large numbers of galaxies to be measurede�ciently, giving us the opportunity to map their distribution for the �rst time. We are in the midst ofa golden age of exploration. The redshift surveys of the last �fteen years have discovered the existenceof superclusters, great voids, and coherent structures stretching across the entire volume covered by thesurveys. But it is not just \geography" (or cosmography, as it is called in the astronomical context) thathas been done: hidden in the statistics of the galaxy distribution is much important information aboutthe structure of the Universe on large scales. Thus we can deduce much about the early history of theuniverse, and its global structure, from careful quantitative analyses of redshift surveys: this will be thecentral theme of this review.The Hubble Law states that at distances much less than the Hubble radius, the expansion of theuniverse causes the recession velocity of a galaxy cz to be proportional to its distance r:cz = H0r; (1)where H0 is the Hubble Constant, whose value remains uncertain by a factor of two; in astronomer's units, itis often written as H0 = 100h km s�1 Mpc�1, the quantity h parameterizing our ignorance of its value. Mpcstands for megaparsecs, the common unit of distance for much extragalactic work: 1 Mpc = 3:08�1024 cm.Thus in physicist's units, H0 = 3:25 � 10�18 h sec, or H�10 � 1010 h�1 yr. In practice, we will rarely betroubled by the uncertain value of h in this review, because we will measure distances in units of km s�1,wherein H0 � 1. The observational evidence for the linearity of Eq. (1) is reviewed in Peebles (1993) andLauer & Postman (1992); cf. x 3.6 below.At the low redshifts discussed in the majority of this review, relativistic e�ects are for the most partunimportant and the Hubble law is an excellent approximation. However, galaxies have motions above andbeyond their Hubble velocities, deviations from the isotropic expansion that holds only in the theoreticalidealization of a perfectly homogeneous universe. Thus Eq. (1) is modi�ed to:cz = H0r + r̂ � [v(r)� v(0)] ; (2)where r̂ is the unit vector towards the galaxy in question, v(r) is the peculiar velocity at position r, and v(0)is the peculiar velocity of the observer. The development over the past �fteen years of redshift-independentmethods of measuring distances have allowed the measurement of the peculiar velocity �eld v(r). As wewill see in detail, observations of the peculiar velocity �eld are of great importance; it is their study whichoccupies the second half of this review. In particular, under the hypothesis that structure formed by thegravitational growth of small perturbations on an initially uniform background, there is a direct relationbetween the density and velocity �elds, which we will exploit to great advantage to put constraints oncosmological models.Thus the main emphasis in this review will be on quantitative constraints that can be placed oncosmological models, from redshift and peculiar velocity surveys of the local Universe. By local, we mean4



at distances small compared with the horizon distance, or equivalently, at look-back times small relativeto the age of the universe, or redshifts small compared to the speed of light. That is, for most of thisreview, we will not be concerned about the general relativistic generalization of Eq. (1), and can workin the Newtonian limit almost exclusively. Another de�nition of the local universe is that within whichevolutionary e�ects in the galaxy properties can be assumed to be negligible. In practice, we will restrictourselves to recession velocities below 20,000 km s�1 (z = 0:067).There are a number of major reviews and books that are relevant as background material for thisreview. The reader is assumed to be familiar with the basics of Big Bang cosmology, as reviewed inPeebles (1993) and Padmanabhan (1993). Somewhat more advanced material can be found in White(1991), Efstathiou (1991), and Suto (1993). Older texts that also discuss this material include Peebles(1971), Efstathiou & Silk (1983), Peebles (1980) and Weinberg (1972). A useful pocket summary of the�eld is found in Scott et al. (1994). We will many times skirt the issues of astroparticle physics in thecosmological context; Kolb & Turner (1990) is an excellent overview of the �eld. Redshift surveys arediscussed in Geller & Huchra (1988) and Giovanelli & Haynes (1991), and peculiar velocity surveys arereviewed in Burstein (1990) and Dekel (1994). The subject can also be followed in the proceedings of manyconferences, among them Br�uck, Coyne, & Longair (1982), Kolb et al. (1986), Madore & Tully (1986),Burbidge & Hewitt (1986), Kormendy & Knapp (1987), Audouze, Pellatan, & Szalay (1987), Rubin &Coyne (1988), van den Bergh & Pritchet (1988), Latham & da Costa (1991), Chincarini et al. (1993), andBouchet & Lachi�eze-Rey (1994).We stress observational aspects of large-scale structure studies in this review. Not all aspects of the�eld can be covered. In particular, we only touch upon observations of the high-redshift universe, eitherin galaxies (Spinrad & Kron 1995) or in background radiation (Partridge 1994). We focus exclusivelyon galaxies as probes of large-scale structure, and do not discuss the distribution of clusters of galaxies(e.g., Bahcall 1988). See the review of Efstathiou (1994) for a more uni�ed treatment of the large-scaledistribution of galaxies and clusters. We also do not review evidence for dark matter on Galactic scales(Faber & Gallagher 1979; Trimble 1987; Binney & Tremaine 1987), or models for galaxy formation (e.g.,White 1994). Finally, although peculiar velocities are a major focus of this paper, we do not review theclosely related question of the determination of the Hubble Constant (cf. Jacoby et al. 1992).This review is too long to be read in a single sitting, but the di�erent chapters are largely independent.Chapter 2 covers the basics of Big Bang cosmology to the extent needed for the rest of the review, andcan be skipped by the reader familiar with this material. Chapter 3 gives a history of redshift surveys, anddiscusses many of the practical issues needing to be addressed in their quantitative analysis. Chapter 4 is aqualitative tour of the structures we see within 8000 km s�1, as revealed to us via redshift surveys. Thosewho are interested in quantitative results can skip ahead to Chapter 5, which details the various statisticalmeasures of large-scale structure that have been drawn from redshift surveys.We then shift the focus to peculiar velocity surveys. Chapter 6 parallels Chapter 3 and discussesthe practical aspects of peculiar velocity measurements. We put special emphasis on the various biaseswhich plague peculiar velocity work, and the methods necessary to correct them. Quantitative analyses ofpeculiar velocity surveys are discussed in Chapter 7, and analyses of redshift and peculiar velocity surveystogether are covered in Chapter 8. Chapter 9 is a summary chapter.Those readers who are familiar with much of the background material may thus �nd it most usefulto read Chapters 5, 7, and 8, after skimming Chapters 3 and 6. We recommend that students new to the�eld read through the entire review, making sure that they understand the basic concepts introduced inChapter 2. 5



2 Theoretical BackgroundFor the majority of this review, we will work in the context of the Big Bang model. In order to seta common language and notation, we briey review the relevant points of Big Bang cosmology to whichwe will �nd ourselves referring. The Big Bang model itself is discussed in x 2.1, in which we de�ne thebasic parameters of an homogeneous and isotropic expanding universe, and write down the equations fortheir evolution. x 2.2 gives the evolution equations for perturbations in such a homogeneous universe, andx 2.3 discusses the power spectrum of these perturbations, and introduces the concept of dark matter.x 2.4 discusses models for the relative distribution of galaxies and dark matter in the context of the biasingparadigm. x 2.5 summarizes the outstanding questions we would like to address with the observations.2.1 The Big Bang Model and its ParametersIt is an observational fact that all galaxies (with the exception of galaxies in the Local Group anda few galaxies associated with the Virgo Cluster) have positive redshifts, and it is observed that redshiftsare proportional to distance (x 3.6). This is interpreted as due to the expansion of the Universe. TheCosmological Principle, as formulated originally by Einstein, states that on large enough scales (to bequanti�ed below) the Universe is homogeneous and isotropic; this model together with the tenets of generalrelativity leads to the prediction that we do not live in a static Universe 1 . In particular, the CosmologicalPrinciple implies that the covariant line element between two points is given by:ds2 = c2 dt2 � a2(t) dl2; (3)where a(t) is the scale factor. Our observation that the universe is expanding means that a(t) is anincreasing function of time. The comoving distance l between any two points taking part in the Hubbleexpansion is a constant; the proper distance between two points is the quantity s at a given constant timet, i.e., such that dt = 0. Comparing with Eq. (1), we see immediately thatH0 = 1s dsdt = _aa�����t=t0; (4)where the subscript 0 refers to values of quantities at the present time t0. Indeed, the quantity _a=a is notconstant with time, and thus neither is the Hubble Constant; however, at any given time, it is independentof position and direction.Consider two observers separated by a proper distance �l small compared with the distance to thehorizon. By Hubble's law, they are moving apart from one another at a speed given by v = _aa�l. Nowconsider a plane wave of radiation, with de�nite wavelength � as measured by the �rst of the observers,traveling towards the second. The second observer will observe this radiation to be shifted by the �rst-orderDoppler shift (because v � c) to a wavelength� (1 + v=c) = ��1 + _aa�l=c� : (5)1 The introduction of a cosmological constant does allow solutions indicating a static Universe, but these solutionsare unstable. 6



Thus, recognizing that the proper time required for the radiation to travel the distance �l is �t = �l=c,and taking the limit �l! 0, we �nd_�� = _aa (6)or �(t) / a(t): (7)The redshift of a galaxy z is de�ned asz = �(t)� �0�0 ; (8)where �0 is the wavelength of a plane wave emitted by the galaxy at the time of emission (the restwavelength), and �(t) is the wavelength of the plane wave at the present (the observed wavelength). Thusthe redshift and the scale factor are directly linked:1 + z = a0=a(t): (9)At low redshifts, the recession velocity of a galaxy is simply given by cz. At high redshifts, this expressionclearly breaks down, and one must go to general relativistic generalizations of it.Under the assumption that the universe is homogeneous and isotropic, the line element can beexpressed in spherical coordinates:ds2 = c2 dt2 � a2(t) " dr21� kr2 + r2( d�2 + sin2 � d�2)# : (10)This is called the Friedman-Robertson-Walker metric, after the men who �rst wrote it down. The quantityk is the curvature constant, an integration constant of Einstein's equations 2 . Thus k = 0 corresponds toa Euclidean geometry for the three spatial dimensions; this is called a at universe.Dynamical equations for the scale factor a follow from the metric, together with the equations ofgeneral relativity and the ideal uid approximation 3 . One �nds (e.g., Chapter 15 of Weinberg 1972) twoequations:�aa = �43�G��+ 3pc2 �+ �3 (11)and H2 � � _aa�2 = 83�G�� kc2a2 + �3 : (12)In these equations, G is Newton's gravitational constant, � is the (non-relativistic) mass density of theuniverse, p is the pressure, H is the Hubble Constant (compare with Eq. 4), where the lack of a subscripted0 indicates that it is a function of time, and � is the Cosmological Constant.2 The curvature constant is sometimes written in the form � 1R2 because in a closed universe, a0R can beinterpreted as the radius of the universe (cf. Eq. 5.9 of Peebles 1993).3 These equations may also be derived heuristically following a purely Newtonian argument (cf. Chapter 5 ofPeebles 1993). 7



In the present universe, non-relativistic matter completely dominates the energy density of the uni-verse, making the pressure term negligible; we drop it from now on. In this zero-pressure limit, massconservation implies � / a�3(t). The wavelength of any relativistic species will be redshifted with theexpansion of the universe; to the extent that the number of particles of this species is preserved, the energydensity in relativistic species drops as a�4(t). The Cosmic Microwave Background (CMB), isotropic radi-ation with a pure black-body spectrum and a temperature of T0 = 2:735�K, represents such a relativisticspecies. The energy density in the CMB today is negligible relative to the density in non-relativistic matter,but because of its faster fall-o� with a, it dominated the energy density of the universe for z > 2:4�104
0h2.The CMB will not be reviewed thoroughly here, although we will �nd ourselves referring to it often. SeeEfstathiou (1991), Peebles (1993), and Partridge (1994) for recent reviews.Setting the Cosmological Constant � to zero for the moment, and dropping the pressure term, Eq. (12)can be written:_a2(t) = �83�G�0� 1a(t) � kc2: (13)For k negative or zero, the right hand side, and therefore _a2(t), stays positive-de�nite. We know that _a(t)is positive now (the universe is observed to be expanding, not contracting) and thus a(t) will continue toincrease for all time. This is what we call the open or at universe. However, if k is positive, there will besome time in the future at which the second term on the right hand side of Eq. (13) balances the �rst term,and thus _a2(t) returns to zero. As �a is negative-de�nite (Eq. 11) this means that _a(t) changes sign, anda(t) begins to decrease, eventually reaching zero. This is a closed universe. The controlling factor decidingthe fate of the universe is the density; the division between the open and closed universe happens at thecritical density, whose current value is:�crit � 3H208�G: (14)Thus we de�ne the Cosmological Density Parameter 
0 as
0 � �0�crit ; (15)whose value is less than unity for an open universe, greater than unity for a closed universe, and exactlyzero for a at universe. If we re-introduce the Cosmological constant, we get a at universe (k = 0) in thecase that 
0 + 
� = 1, where
� � �3H20 (16)is the contribution to the cosmological density due to vacuum energy. Of course, in this case, the conceptsof open and closed universes become more complicated, because �a can change sign. See Harrison (1981)for a complete inventory of cosmological models.We can use this line of reasoning to peer into the past as well. As �a is negative-de�nite (for 
� = 0,as we will assume) and _a is positive-de�nite, then at some �nite time t in the past a(t) = 0. This is theorigin of the concept of the Big Bang: the dynamical equations for a(t) indicate that the universe was ofin�nitesimal extent some �nite time in the past. Let us de�ne that time t = 0. We can now ask for the age8



of the universe (Weinberg 1972):t0 = 8>>>>><>>>>>: 12H�10 
0(
0 � 1)�3=2 hcos�1 � 2
0 � 1� � 2
0 (
0 � 1)1=2i 
0 > 1;23H�10 
0 = 1;12H�10 
0(1� 
0)�3=2 hcosh�1 �1� 2
0 �� 2
0 (1 � 
0)1=2i 
0 < 1: (17)As we could have guessed from the units, the present age of the universe is proportional to H�10 , with anumerical coe�cient which is a decreasing function of 
0. The corresponding equations for � 6= 0 universesare non-analytic, and will not be presented here.We need one further de�nition, the acceleration parameter 4 , de�ned at the present time:q0 � ��aa_a2 = 
02 � 
�; (18)where the second equality follows directly from Equations 11 and 12. The acceleration parameter is a mea-sure of relativistic e�ects in the relation between observables; thus, for example, the �rst-order correctionsto Eq. (1) are proportional to q0.This completes our survey of the global structure of space-time in a homogeneous and isotropicuniverse. The cosmology is de�ned by the following numbers:{ 
0, the cosmological density parameter;{ H0, the Hubble constant;{ �, the cosmological constant;{ q0, the acceleration parameter, and{ t0, the present age of the universe.These parameters are not independent of one another in the context of the Big Bang model, as we have seen,but each are measured or constrained by a variety of di�erent observations. It is one of the important testsof Big Bang cosmology that one �nd consistency between the values found for the di�erent parameters.We will put the greatest emphasis in this review on measurements of 
0, because this is the quantity thatcan best be constrained with analyses of redshift and peculiar velocity surveys.Standard Big Bang cosmology has built into it a number of apparent paradoxes. The �rst is oftenreferred to as the horizon problem: the size of causally connected regions at the time of recombinationsubtends only a few degrees on the sky, leaving the large-scale isotropy observed in the CMB unexplained:this must be taken as an (arbitrary) initial condition. The second is the so-called atness problem: 
0 = 1is an unstable solution to the evolution equations, in the sense that the fact that we observe 
0 to bewithin an order of magnitude of unity today requires that it be very �nely tuned in the early universe.There is a class of cosmological models under the general rubric of the inationary paradigm, whichaddresses these problems, and predicts tight constraints on the parameters of the Big Bang model. Ina-tion is reviewed thoroughly in Chapter 8 of Kolb & Turner (1990). In its simplest form, the inationarymodel posits a period in the very early universe when a super-cooled phase transition caused the vacuumenergy density to become dominant; Eq. (12) then implies that the scale factor grows exponentially. If thisexponential expansion continues long enough for the curvature term to become exponentially small, theatness problem is solved; the result is a universe that is globally at (i.e., k = 0 or 
0+
� = 1). Moreover,as the observable universe inated from a region that was causally connected and in thermal contact, thehomogeneity and isotropy of the universe (the horizon problem) are explained. The inationary model also4 Some authors refer to q0 as the deacceleration parameter.9



predicts a scale-invariant spectrum of adiabatic density uctuations 5 , a subject to which we turn in x 2.3after a discussion of gravitational instability theory.The inationary prediction of a at universe is apparently in direct contradiction with measurementsof the total mass density of the universe, at least until recently. Measurements of the luminosity density ofthe universe (cf., x 3.4) imply that the mass density of the universe in stars is only 
 � 0:01 (x 3.5). Thereis abundant evidence for non-luminous matter associated with galaxies and clusters of galaxies, whose totalcontribution is as much as 
0 � 0:2 (cf., Faber & Gallagher 1979; Kormendy & Knapp 1987; Trimble 1987).The inationary prediction of 
0 = 1 in a universe without a cosmological constant requires that there beadditional dark matter distributed on scales larger than that of clusters; indeed, as we shall see in detaillater in this review, there is recent evidence from large-scale ows that 
0 is larger than that inferred fromdynamics within clusters. The material which makes up the dark matter, however, remains completelyunknown. The physical properties of the dark matter greatly inuences the distribution of matter on largescales, and thus redshift surveys of galaxies have the potential to constrain the form of dark matter. Inorder to explore these issues, we need a theory for the growth of structure in the presence of gravity.2.2 The Gravitational Instability ParadigmThe Big Bang model as outlined in the previous section explicitly assumes a homogeneous andisotropic universe. We believe that the Cosmological Principle does in fact hold on the largest scales (forreasons that will be discussed in x 5.5), and that at early times the universe was very close to homogeneous.However, we observe structure all around us: from planets, to galaxies, to superclusters of galaxies, mattertends to aggregate and form structures, rather than distribute itself uniformly. One of the great questionsfacing cosmology is how this structure came to be. The widely accepted view is that small density uctu-ations present in the beginning grew by gravitational instability into the structures that we see today. Inthis section, we briey review the theory of gravitational instability in an expanding universe.One starts by writing down the equations of mass continuity, force, and gravitation in an expandinguniverse, in proper coordinates (ignoring relativistic e�ects):@�@t +r � (�v)= 0; (19)@v@t + (v � r)v+r�= 0; (20)r2�= 4�G�: (21)Here � is the mass density �eld, v is the velocity �eld, � is the gravitational potential, and we havedropped terms depending on pressure, which we assume are negligible. All spatial derivatives are withrespect to proper distance. If we expand these equations to �rst order in all quantities measuring departurefrom uniformity, convert to comoving coordinates, and subtract the zeroth order solutions 6 , the �rst twoequations simplify to@�@t + 1ar � v= 0; (22)@v@t + _aav+ 1ar�= 0; (23)5 There do exist variants on the standard inationary model which predict other forms for the density uctuationspectrum, and which predict noticeable curvature; see the references at the end of x8.5 of Kolb & Turner (1990).6 The subtraction of the zeroth order solution involves some subtleties having to do with the gravitational potentialof a uniform universe; these are discussed further in x8 of Shu (1992).10



where � is the dimensionless density contrast,�(r) � �(r)� �0�0 ; (24)and �0 is the mean mass density. Taking the time derivative of the continuity equation and substitutinginto the divergence of the force equation yields, with the Poisson equation (Eq. 21):@2�@t2 + 2_aa @�@t = 4�G�0�: (25)Because Eq. (25) is a second-order partial di�erential equation in time alone, we can separate thespatial and temporal dependences, and write:� = A(x)D1(t) +B(x)D2(t); (26)where D1 and D2 are growing and decaying modes, respectively. We will be using the growing modethroughout this review; it is given byD1(t) = _aa aZ0 _a�3 da: (27)In the general case of a non-vanishing cosmological constant, this integral is not analytic. For 
� =0 models, however, analytic expressions for D1(t) and D2(t) can be obtained (x11 of Peebles 1980). Aparticularly simple solution exists in the special case of a at universe, in which a(t) / t2=3 (Eq. 17), andthe right hand side of Eq. (25) is simply 32 � _aa�2, so we �nd:@2�@t2 + 43t @�@t = 23t2�; (28)which has an analytic solution in power laws 7 of t:�(x; t) = A(x) t2=3 +B(x) t�1: (29)More generally, the solutions depend on 
0; in particular, the growth is faster for increasing 
0. For 
0 < 1,the expansion of the universe (the drag term represented by 2_aa @�@t in Eq. 25) dominates the gravitationalattraction of the matter, and the clustering freezes out (i.e., it stops growing) at z � 1=
0 � 1. A fulldiscussion of these solutions, including the e�ects of pressure which is important in the early universe, willtake us too far a�eld; cf. Chapter 9 of Kolb & Turner (1990) for more details.If we wait until late times, the growing mode of Eq. (26) will dominate, and we can rewrite Eq. (22)as: r � v = �a� _D1D1 = �aH0f�; (30)wheref � 1H0D1 dD1dt = 1H0D1 dD1da dadt = d lnD1d ln a : (31)7 Pressureless gravitational growth in a non-expanding universe is quite di�erent: the drag term is not present,and perturbations grow exponentially. 11



We are still in comoving coordinates, as indicated by the a on the right hand side of Eq. (30). The expressionfor D1, and therefore for f , is a function of 
0 and �. A good approximation in the general case is givenby Lahav et al. (1991):f(
0;�) = 
0:60 + 
�70 �1 + 12
0� ; (32)other approximations can be found in Peebles (1984), Reg�os & Geller (1989), Lightman & Schechter (1990),Martel (1991), and Carroll, Press, & Turner (1992). Thus the inuence of � on dynamics at low redshiftis minimal (Lahav et al. 1991). Eq. (30) can be inverted via the methods of electrostatics in the usual wayto yield, after returning to proper coordinates 8 :v(r) = H0f4� Z d3r0 �(r0)(r0 � r)jr0 � rj3 : (33)Eq. (33) reveals the physical content of this �rst-order expansion: linear perturbation theory states thatpeculiar velocities are proportional to gravitational acceleration. We will �nd ourselves using Eqs. (30) and(33) throughout this paper. These equations can be generalized using higher-order perturbation theory;we will introduce these results when needed.If we measure the quantity r in units of km s�1, then H0 � 1, and we see that a comparison of thevelocity �eld v(r) and density �eld �(r) gives a direct measure of f(
0;�). One of the central themes ofthis review will be exploiting this comparison to put constraints on f .Linear theory makes the assumption that the change in comoving position of galaxies as the universeexpands is negligible. Zel'dovich (1970) made an important extension of linear theory by assuming thatthe di�erence between the Lagrangian position q and Eulerian position x of a particle in a gravitatingsystem is separable in space and time:x(q) = q+D1(t) (q); (34)where D1(t) is the growing mode in linear theory (Eq. 27) and  , which determines the amplitude of thevelocity �eld, is proportional to the gradient of the gravitational potential. See Shandarin & Zel'dovich(1989) for a review of the full rami�cations of this deceptively simple equation. This approximation is usedas a basis for several of the non-linear schemes described in x 5.2.2.2.3 Power Spectra, Initial Conditions, and Dark MatterWe have seen that initially small perturbations grow by gravitational instability. It remains to char-acterize the distribution with scale of those initial perturbations. Let us de�ne the Fourier Transform ~�(k)of the fractional density �eld �(r) at some early time t such that:�(r) = 1(2�)3 Z d3k ~�(k) e�ik�r : (35)(Care needs to be taken when comparing the results of di�erent authors, as there is inconsistency in theliterature about where the factors of 2� go in the de�nition of the Fourier Transform.) Because of the8 One has the freedom to add an arbitrary divergence-free term to the right-hand side of Eq. (33). This termcorresponds to the decaying solution, and thus will be negligible at the present.12



isotropy assumed in the Cosmological Principle, the statistical properties of ~�(k) are independent of thedirection of k̂, and so it makes sense to de�ne a power spectrum P (k):D~�(k1)~��(k2)E = (2�)3P (k) �D(k1 � k2); (36)where �D is a Dirac delta function, and the averaging on the left-hand side is over directions of k. AsBertschinger (1992) makes clear, P (k) is a power spectral density, and thus represents the power per unitvolume in k-space. One often sees the power spectrum de�ned as P (k) � Dj~�(k)j2E, but this is incorrect(at least for the Fourier Transform convention we've adopted), as can be seen by comparing the units ofthe two expressions: the power spectrum has units of volume, as does ~�.The quantity ~�(k) is complex, and thus P (k) is a complete statistical description of the density�eld 9 only if the phases of ~�(k) are random. This is a natural prediction of inationary models, and isoften called the random-phase hypothesis. By the Central Limit Theorem and Eq. (35), random phasesimply that the one-point distribution function of �(r) is Gaussian 10 , so the random-phase hypothesis isoften also referred to as the Gaussian hypothesis. Random phases can strictly hold only in the limit ofvery small perturbations: �(r) cannot be smaller than �1 (Eq. 24), but has no upper bound, and thereforeit develops a positive skewness (about which we will have much more to say in x 5.4) as perturbationsgrow by gravitational instability. Until the lower bound on � becomes important, linear theory holds, andbecause gravitational growth of perturbations is independent of scale in linear theory, the shape of thepower spectrum is independent of time.One way to quantify the density uctuation �eld is in terms of the mass uctuations within a sphericalwindow of radius R:* �MM !2+ �����R =*�Z d3rW (jr� xj)�(r)�2+x= 1(2�)6 �Z d3rd3kd3k0~�(k)~��(k0) eir�(k�k0)W 2(jr� xj)�x= 1(2�)3 Z d3kP (k)fW 2(kR) (37)where W (R) is the window function used; fW (kR) is its Fourier Transform. For a tophat window function,which is unity out to some radius R, and then drops to zero,fW (x) = 3j1(x)x (38)where j1(x) � (sinx�x cosx)=x2 is the �rst spherical Bessel function. This is very crudely a step functionto k � 1=R. This implies that characteristic mass uctuations on a scale k = 1=R are given roughly by�M=M � k3=2P (k)1=2: (39)It is interesting to compare the mass uctuations within a sphere of radius R with the correspondinguctuations in the bulk ow velocity within the same sphere. Using Eq. (30) and following a derivation9 That is, the multi-variate distribution function of �(ki); i = 1; : : : ; N is a multi-variate Gaussian with covariancematrix given by Eq. (36).10 There are classes of models whose initial conditions are explicitly non-Gaussian: among them are models withinitial seeds of gravitational growth (primordial black holes, cosmic string loops and wakes, monopoles, textures),and with initial explosions. We will have little to say about these models in this review.13



very similar to that in Eq. (37), one �nds:Dv2E �����R = H20f22�2 Z dk P (k)fW 2(kR); (40)which di�ers from Eq. (37) with two fewer powers of k in the integrand. This means that the peculiarvelocity �eld on a given scale is sensitive to components of the power spectrum on larger scales than isthe density �eld, and thus is a useful probe of the largest-scale power. We illustrate this in Fig. 1, whichcompares the cumulative contribution to the integrals in Eqs. (39) and (40) for wavenumbers smaller thank. This calculation used a top-hat window of radius 50 h�1 Mpc, and assumed a standard Cold DarkMatter model (see below). The rms velocity includes contributions from much larger scales than do therms mass uctuations.The simplest inationary models predict a so-called scale-invariant power spectrum, given byP (k) / k; (41)so-called because the potential uctuations on a scale ` at the time that ` is equal to the horizon size, areindependent of ` for this spectrum (cf., Kolb & Turner 1990). This form was in fact predicted well beforeination had been suggested (Peebles & Yu 1970, Harrison 1970, Zel'dovich 1972), as it is unique amongpower-law power spectra in avoiding divergences at large and small k in various observable quantities.The pure power-law power spectrum thought to exist in the early universe is sometimes called theprimordial power spectrum. However, the power spectrum that is directly observable is that which holdsfollowing the epoch at which the energy densities in relativistic and non-relativistic particles are equal. Theequations of gravitational instability we worked out above hold only for pressureless (i.e., non-relativistic)matter; in the relativistic case, the pressure of the matter is such as to retard the growth of perturbationson all scales within the radius of the universe. Thus perturbations on scales smaller than the horizon(the scale over which the universe is causally connected, � ct) can only grow after non-relativistic matterbecomes dominant, and this is thus a convenient time at which to characterize the power spectrum.While perturbations cannot grow on scales smaller than the horizon during the radiation-dominatedera, they can and do grow on scales larger than the horizon. After the epoch of matter-radiation equality,perturbations on sub-horizon scales start to grow, although at a di�erent rate 11 . The combination of thesetwo e�ects causes a bending in an originally pure power-law power spectrum on the scale of the horizon sizeat matter-radiation equality. The index of the power law decreases by four over this bend. Thus followingmatter-radiation equality, the power spectrum which is proportional to k1 on large scales bends over tobecome k�3 on small scales. One quanti�es this in terms of a transfer function, whose square is the quantityby which the primordial power spectrum is multiplied to generate the �nal power spectrum.The power spectrum we have described is generic for universes in which the dark matter is non-relativistic (or \cold") when a galaxy mass is contained within the horizon; its form depends principally onthe horizon size at the epoch of matter-radiation equality, which scales as 1=
0h2. The so-called StandardCold Dark Matter model (CDM) goes further and invokes ination to give 
0 = 1 and Eq. (41) for theprimordial power spectrum; the Hubble Constant is set to H0 = 50 km s�1 Mpc�1 in order to get an ageof the universe in concordance with the ages of the oldest globular clusters (x 9.6). Although the CDMmodel has been very popular ever since it was �rst proposed (some of the early important papers includePeebles 1982, Blumenthal et al. 1984, and Davis et al. 1985), due to its naturalness, lack of free parameters,11 This is true for the dark matter, which does not couple with the radiation. However, baryonic matter is stillionized at the epoch of matter-radiation equality, and thus is tightly coupled to the photons. Therefore, uctuationsin the baryonic component cannot grow until recombination. These considerations are of great importance inquantifying uctuations in the CMB on small scales. 14



Fig. 1. The solid curve shows the square root of the contribution to the mean squared bulk ow within a tophatof radius 50 h�1 Mpc as a function of the lower cuto� in k, for a standard CDM model. The dashed line is thesquare root of the contribution to the mean squared mass uctuations (right-hand scale). Note that the velocity�eld includes much more contribution from small k (large scales).and successes in predicting many of the observed properties of galaxies, there exists no compelling modelinvoking particles or physical processes known to exist that predicts any form of CDM. Particle physicistshave come up with a number of hypothetical particles which could constitute the CDM, axions and thelightest supersymmetric partner to the photon among the most popular at the moment (cf. Primack, Seckel,& Sadoulet 1988; Kolb & Turner 1990).The power spectrum of the Cold Dark Matter model has been calculated numerically by a number ofworkers (Peebles 1982, 1984; Bond & Efstathiou 1984; Efstathiou, Bond, & White 1992), and �t to variousfunctional forms; Efstathiou et al. (1992) give:P (k) = Akn(1 + ��6:4k� �+ �3:0k� �3=2 + �1:7k� �2�1:13)2=1:13 ; (42)15



whereA is a normalizing constant, k is measured in units of hMpc�1, � � 
0h, and n is the power-law indexof the primordial power spectrum. The quantity h is the Hubble constant in units of 100 km s�1 Mpc�1.Thus Standard CDM sets � = 0:5; models with smaller � have more power on large scales. The quantity� is inversely proportional to the Hubble radius at matter-radiation equality, and thus sets the scale atwhich the power spectrum bends over. This equation (and the equality between � and 
0h) holds only ina universe with a negligible contribution of baryons to 
0. The normalization for the case of n = 1 and
0 = 1 (standard CDM) can be written (Bunn, Scott, & White 1994; White, Scott, & Silk 1994):A = 6�25 hQi2T02 �40 = 1:45� 1016 hQi2T02 �h�1Mpc�4 ; (43)where �0 is the conformal time at the present, hQi is the measured quadrupole anisotropy of the CMBbackground, and T0 is its measured temperature.There is another physical e�ect that can come in. We have assumed that the dark matter is cold at theepoch when a galaxy mass is contained within the horizon. However, imagine that the dark matter is madeup of neutrinos with a mass around 100 eV (already ruled out for �e, but well within experimental boundsfor �� and �� ). It can be shown from considerations of thermodynamic equilibrium in the early universethat the number density of neutrinos in this case would be enough to close the universe (i.e., 
� = 1).Moreover, neutrino dark matter would be relativistic at a time when a galaxy mass was enclosed withinthe horizon, and thus in their free-streaming, would wash out any perturbations on scales comparable tothe horizon scale at that epoch. The consequence is a power spectrum that cuts o� exponentially on smallscales. The evolution of large-scale structure in such a Hot Dark Matter model, or HDM, is very di�erentfrom that in CDM. Because there is no power on the scale of galaxies in the HDM model, larger scalestructures collapse �rst in pancakes, that then fragment later to form galaxies. This is often referred to asthe top-down scenario. In CDM, on the other hand, there is power on galaxy scales, and galaxies form �rst,thereafter clustering into larger scales. Indeed, collapse is simultaneous for all scales for which P (k) / k�3(Eq. 39). This is referred to as hierarchical clustering, or the bottom-up scenario.The mass perturbations predicted by ination arise from perturbations in the gravitational potential,and thus relativistic and non-relativistic components uctuate in tandem. These are called adiabatic uc-tuations, in contrast with isocurvature uctuations, in which the two uctuate in opposite senses to giveno net uctuations in the mass density. The Primordial Baryon Isocurvature models (PBI), �rst suggestedby Peebles (1987; cf. Bardeen, Bond, & Efstathiou 1987), invoke neither a hypothetical new particle (asin CDM) nor a hypothetical mass for a particle now believed to be massless (as the neutrino in HDM).Rather, baryons dominate the mass density of the universe. The PBI models characteristically show astrong peak in the power spectrum at the Jeans length at the epoch of matter-radiation equality.The power spectra of a variety of models are shown in Fig. 2, based on a similar �gure in Strauss etal. (1995). Shown are Standard CDM, HDM, and two variants of the PBI model; note the bump on largescales in the PBI models. Also shown are two variants of Standard CDM, one with � = 0:3 (LCDM, thisincreases the epoch of matter-radiation equality, and therefore the wavelength of the turnover in the powerspectrum), and one which invokes somewhat non-standard inationary models to assume a primordialpower spectrum given by P (k) / k0:7 (Tilted CDM, or TCDM). Finally, we show a hybrid model with aroughly 2 : 1 mixture of CDM and HDM (C+HDM). The parameters for these models are given in Table1. We will discuss these models in detail in x 9.1.All of these models are normalized to the anisotropies in the CMB on a scale of 10�, as measuredby the Cosmic Background Explorer (COBE) (Smoot et al. 1992, Wright et al. 1992, Efstathiou, Bond, &White 1992), based on the assumption that the observed anisotropies are due to potential uctuations atthe surface of last scattering (the Sachs-Wolfe (1967) e�ect). Note that inationary models (or for thatmatter, other competing models for the generation of uctuations in the early universe) are not speci�c16
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Fig. 2. The power spectra in seven models of large-scale structure: Standard CDM, Tilted CDM (Tilted CDM),� = 0:3 CDM (LCDM), HDM, Mixed Dark Matter (C+HDM), and two variants of the PBI model. All arenormalized to the COBE observations.enough to predict the amplitude of the uctuations; we simply do not know the relevant particle physicswell enough. Thus COBE provides the only unambiguous way to normalize power spectra 12 . Indeed, inthe pre-COBE days, the normalization of power spectra was a free parameter which was only weaklyconstrained by galaxy clustering (Eq. 52). A thorough discussion can be found in Efstathiou (1991) andPeebles (1993).12 It has been pointed out (e.g., Davis et al. 1992) that in inationary models that predict a deviation from theHarrison-Zel'dovich power spectrum, there is substantial generation of gravity waves, and thus the Sachs-Wolfee�ect does not account for all the anisotropies seen by COBE.17



Table 1: The Parameters of the Power SpectraModel 
0a �8b H0c nd or me xfStandard CDM 1.0 1.05 50 1.0 0.0HDM 1.0 0.86 50 1.0 0.0PBI 1 0.2 0.90 80 �0.5 0.1PBI 2 0.3 1.02 50 �1.0 0.1LCDM 0.3 0.67 67 1.0 0.0TCDM 1.0 0.50 50 0.7 0.0C+HDM 1.0g 0.67 50 1.0 0.0a All models are spatially at so that �0 = 1� 
0.b rms fraction density uctuations within 8 h�1 Mpc spheres.c Hubble Constant in units of km s�1 Mpc�1:d Adiabatic primordial spectral index.e Isocurvature primordial spectral index.f Ionization fraction.g 
CDM = 0:7; 
HDM = 0:3.2.3.1 The Correlation FunctionThe autocorrelation function, or, more commonly, the correlation function of the mass density �eld,is one of the most powerful methods of quantifying galaxy clustering. It is de�ned by�(r) � h�(x)�(x+ r)i ; (44)where the average is over position x and isotropy guarantees that �(r) is independent of the direction ofr. Eq. (44) is only applicable for continuous density �elds; for a point process such as the distributionof galaxies, we de�ne �(r) operationally as the mean excess number of galaxy pairs at separation r, overthat expected for a pure Poisson distribution. That is, the mean number of galaxies in a spherical shell adistance r from a given galaxy of thickness dr is given byN(r) = 4�r2 dr n[1 + �(r)]; (45)where n is the mean number density of galaxies. If we expand the �'s in Eq. (44) in inverse FourierTransforms, we �nd:�(r) =�Z d3kd3k0 eik�r eix�(k�k0)�(k)�(k0)�= 1(2�)3 Z d3kP (k) eik�r : (46)Thus the correlation function and the power spectrum form a Fourier Transform pair. We discuss theapplication of �(r) in much greater detail in x 5.1. Just as for the power spectrum, the correlation functiongives a complete statistical description of the density �eld for a Gaussian �eld; all higher-order correlationsare zero. Thus higher-order correlations are a measure of non-Gaussianity, as we discuss in x 5.4.2.4 The Relation Between the Mass and Galaxy Density FieldsOur discussion thus far has been quite abstract; galaxies have been mentioned only in passing.However, it is galaxies that we observe directly, while we believe that most of the material of the universeis made up of dark matter; we need to make a connection between the galaxies and the mass density �eld.The simplest assumption, and one that was implicitly made until the last decade, is that the distribution of18



galaxies is a mirror of the distribution of dark matter. This could come about, for example, if each galaxywere surrounded by a halo of dark matter with total mass in proportion to the (visible) luminosity of agalaxy, with no extra component of dark matter either smoothly distributed, or lying in clumps with noassociated visible matter. However, there is very little evidence that this is true, and some indirect evidencethat it is false. For example, one could imagine that a component of the dark matter is distributed likethat of the galaxy �eld smoothed on scales of 5 h�1 Mpc, and does not follow the details of the galaxydistribution on smaller scales. If this were the case, one would get a misleading impression of the small-scale distribution of dark matter from studying galaxies. A speci�c model for this sort of e�ect was �rstsuggested by Kaiser (1984), in which galaxies form only at the high-density peaks of the mass density �eld.The galaxy distribution is then said to be biased with respect to the mass distribution. The term biasingis used to refer to a number of di�erent but related e�ects.The original argument of Kaiser (1984) was concerned not with the biasing of galaxies relative todark matter, but of clusters of galaxies relative to galaxies: clusters of galaxies are likely to be producedwhere the initial density contrast, smoothed on larger scales, is high, and therefore is likely to producea higher than average density of other clusters. The result is a stronger correlation function (Eq. 44) ofclusters than that of galaxies, as is indeed observed (Bahcall & Soneira 1983; Bahcall & West 1992). Thusthis form of bias is known to exist.It was then realized that a similar e�ect could cause galaxies to be biased relative to the underlyingdark matter (Bardeen et al. 1986, Davis et al. 1985, Peacock & Heavens 1985), causing the clustering ofthe former to be stronger than that of the latter, and decreasing the apparent value of 
0 from dynamicalstudies. The so-called peaks biasing model originally proposed by Kaiser (1984) makes a de�nite predictionfor the relation between the correlation function of the galaxies and dark matter, at least on large scales:�galaxies(r) = b2 �dark matter(r); (47)where b is the biasing parameter, which is (approximately) a constant, independent of scale, related to thethreshold above which galaxies are presumed to have formed. In practice, we will often assume the muchmore speci�c linear biasing model, in which�galaxies(r) = b �dark matter(r): (48)This is in fact the intuitive de�nition of biasing that most people have, in which a constant of proportionalityrelates the dark matter density �eld to that of the galaxies. Note that in practice, the galaxy distributionis a point process, not a continuous �eld, and thus the bias de�ned as above must always make referenceto a smoothing length. Eq. (48) implies Eq. (47) through Eq. (44), although the converse is certainly nottrue. Furthermore, for b > 1 (as is usually assumed) Eq. (48) cannot be strictly true, because both �galaxiesand �dark matter are limited below by �1, and thus one occasionally sees models like:1 + �galaxies(r) = [1 + �dark matter(r)]b ; (49)which gets around this problem. Weinberg (1994; cf., Coles 1993) has shown empirically that in a widerange of models which invoke local biasing, i.e., in which�galaxies(r) = f [�dark matter(r)] ; (50)the ratio of the uctuations �(R) in the galaxies and dark matter is independent of scale R on scales largerthan � 5h�1 Mpc. This of course will not hold in non-local biasing models, in which galaxy formation isinuenced by events many Mpc away (Babul & White 1991; Bower et al. 1993); in these schemes, the ratioof the amplitude of dark matter and galaxy uctuations can be a strong function of scale.19



Any given prescription relating �galaxies to �dark matter is expected to hold only in the mean; at any givenpoint in space, there will be uctuations around this mean in the relation between the two. A completemodel of biasing must specify the distribution of these uctuations.To the extent that the linear biasing model holds, comparisons of peculiar velocities and gravity viaEq. (30) will not be able to constrain the quantity f , but rather the combination� � f(
0;�)b : (51)Thus our ignorance about the relative distribution of galaxies and dark matter translates directly intoignorance of the value of 
0. Note in particular that for b > 1, as is usually assumed, 
0 = 1 models canbe reconciled with observed low values of �. Thus biasing is often invoked to explain why some dynamicalobservations imply a value of 
0 substantially below the inationary prediction of unity (x 8.1).An early review of the biasing model and speci�c physical models which predict biasing can befound in Dekel & Rees (1987); recent work has found biasing of the galaxies relative to the dark matterin numerical simulations of galaxy formation and the growth of structure in an expanding universe (e.g.,White et al. 1987; Gelb & Bertschinger 1994a; Cen & Ostriker 1992b; Katz, Hernquist, & Weinberg 1992).If galaxies can be biased with respect to the underlying dark matter, di�erent populations of galaxiescan in principle be biased with respect to one another. We know that this holds on small scales for ellipticaland spiral galaxies: although elliptical galaxies make up roughly 15% of the population of galaxies in the�eld, they are by far the dominant population in the cores of rich clusters (Hubble 1936, Oemler 1974,Dressler 1980ab, Dressler 1984, Postman & Geller 1984, Whitmore, Gilmore, & Jones 1993). This is reectedin a steeper correlation function of ellipticals relative to spirals (Davis & Geller 1976, Giovanelli, Haynes, &Chincarini 1986). We refer to this as a form of relative biasing of two galaxy populations, and will discussfurther observational evidence for this below.Finally, the term biasing is occasionally (mis)-used to refer to the normalization of the power spec-trum. It is observed that the variance of optically selected galaxy number counts is approximately unitywithin spheres of radius 8h�1 Mpc (Eq. 37, Davis & Peebles 1983b) and thus the bias can be de�ned as1b2 = 1(2�)3 Z d3kP (k)fW 2(kR); (52)at R = 8h�1 Mpc, with W given by Eq. (38). This de�nition is consistent with that in Eq. (48) only tothe extent that the variance in galaxy counts at R = 8h�1 Mpc is actually unity, whereas in fact it variesfrom sample to sample. Thus we will shun this de�nition of b in this paper.2.5 Outstanding QuestionsThis �nishes our overview of the theoretical framework within which we will interpret the results ofredshift and peculiar velocity surveys. As a form of summary, we list the issues we would like to addresswith observational data:(i) The Friedman-Robertson-Walker metric is characterized by a number of parameters: 
0;H0;�; q0; andt0, which, although not independent in the model, are constrained observationally by quite di�erentmethods. Redshift and peculiar velocity surveys have the most power to constrain 
0 (mostly throughEq. 30), and that is what we will concentrate on for this review.(ii) The gravitational instability model is compelling, but needs to be tested observationally. Linear theoryand gravitational instability imply a unique relation between the mass and velocity �elds (Eq. 30),furnishing one such test. 20



(iii) The power spectrum following the epoch of radiation-matter equality is of paramount importance fordetermining the evolution of large-scale structure in our universe. Moreover, as we have seen, it cangive vital clues as to the form and amount of the dark matter. We will attempt to constrain it withobservations.(iv) The power spectrum discussed above is a complete statistical description of the mass uctuations inthe early universe only to the extent that the Fourier modes had random phases. We will see thatthere do exist direct observational tests of this from the nearby galaxy distribution.(v) The physical processes by which galaxies formed are very poorly understood. Redshift and peculiarvelocity surveys can put constraints on the relative distribution of galaxies and dark matter; thisrelative distribution ultimately must be predicted by galaxy formation models.(vi) At the end, we wish to step back and ask whether the various observational constraints we have foundallow a coherent picture consistent with the theoretical framework. That is, are our observationsconsistent with the Big Bang model, with structure forming via gravitational instability? To whatextent can we rule out competing models?At this point, we are ready to start addressing these questions with observations of the galaxydistribution and velocity �eld at low redshifts.3 Redshift Surveys: Setting the Quantitative GroundworkIn this chapter, we discuss the history of redshift surveys, and the basic methods required to doquantitative work with them. x 3.1 introduces the main quantities that di�erentiate one redshift surveyfrom another, and x 3.2 summarizes the history of redshift surveys. x 3.3 discusses the methods used tomeasure redshifts with optical and radio telescopes. Flux-limited surveys have a number density of objectsthat drops as a function of distance from the Earth; this is quanti�ed with the selection function, asdiscussed in x 3.4. The selection function is closely related to the luminosity function, whose astrophysicalimplications are discussed in x 3.5 and x 3.6. With the selection function in hand, the density �eld ofgalaxies can be determined, using methods discussed in x 3.7. One of the di�culties in determining thedensity �eld is the lack of redshift surveys at low Galactic latitudes. Methods to correct for this are thetopic of x 3.8.3.1 The Variety of Redshift SurveysIn this review, we will concentrate on redshift surveys of well-de�ned samples of galaxies. By well-de�ned, we mean those in which the selection criteria are quanti�able and reproduceable (at least in astatistical way), for without this, it is impossible to do quantitative analyses with them. In practice, thisusually means that a sample is de�ned as limited by some photometric property, usually received uxor diameter in some band. A sample may also have secondary selection criteria as well, such as galaxymorphology, color, or surface brightness. Unfortunately, the data one has available to de�ne a sample arerarely of very high photometric accuracy, and thus the limits are always approximate to some extent. Aredshift survey sample is thus de�ned by several factors:(i) The region of sky covered.(ii) The photometric quantities with respect to which the sample is de�ned, and the errors thereof.(iii) The limits on these quantities.(iv) The fraction of the galaxies meeting the selection criteria for which redshifts are measured.From these parameters, several other characteristics of the survey follow, including the total number ofgalaxies included, the number density of objects surveyed (i.e., its sparseness), and some measure of atypical redshift (the \depth") in the survey. 21



Several authors, including Geller & Huchra (1988), Giovanelli & Haynes (1992) and Borgani (1994)have given lists of major redshift surveys of galaxies. Redshift surveys fall into several categories:{ One-dimensional (\pencil-beam") surveys, which go deep over a very small region of sky. Given the slowspectrographs of twenty years ago, these were all that were available in the early days of redshift surveys(Gregory & Thompson 1978; Kirshner et al. 1978; 1981). Recent pencil-beam surveys push to very faintmagnitudes and therefore high redshifts (Broadhurst et al. 1988, 1990; Colless et al. 1990), especiallywith the advent of multi-object spectrographs. These surveys are especially useful for studying galaxyevolution.{ Two-dimensional surveys, in which a long thin strip on the sky is covered. The most inuential of theseis the CfA2 \slice" survey (de Lapparent, Geller, & Huchra 1986) to be discussed below.{ Three-dimensional surveys, in which a substantial solid angle on the sky is covered. This is the majoremphasis of this review.{ Targeted surveys of special kinds of objects. These include surveys of clusters of galaxies, active andunusual galaxies of various kinds, and pairs and groups of galaxies. Recent cluster redshift surveysinclude those of Huchra et al. (1990b), Zabludo�, Huchra, & Geller (1990), Huchra et al. (1992), Guzzoet al. (1992), Lauer & Postman (1994), and Dalton et al. (1994); see Bahcall (1988) and Bahcall & West(1992) for recent reviews of large-scale structure as traced by galaxy clusters. Redshift surveys of activeand unusual galaxies are typically carried out not for studies of large-scale structure, but rather to learnabout the properties of the galaxies themselves; we will not discuss them further.{ \Blind" redshift surveys carried out in the 21 cm line of neutral hydrogen (HI). These are not pointed atgalaxies or galaxy candidates as de�ned in other passbands, but survey the sky over a range of redshiftsto learn about the HI content of the universe (Kerr & Henning 1987; Weinberg et al. 1991; Ho�man, Lu,& Salpeter 1992; Szomoru et al. 1994a; Briggs 1994).A redshift survey requires a prede�ned sample of targets, and thus is often de�ned by catalogs ofgalaxies detected in photographic surveys of the sky. There have been heroic e�orts to de�ne completegalaxy samples from photographic sky surveys prepared on Schmidt plates, but because a telescope at anygiven location on earth can only see a fraction of the sky, galaxy samples tend to be restricted to either theNorthern or Southern celestial hemisphere; moreover, dust extinction at low Galactic latitudes from ourown Galaxy means that galaxy samples are woefully incomplete at low latitudes (the zone of avoidance.)The most important large galaxy catalogs from which redshift survey samples have been drawn include:{ The Catalog of Galaxies and Clusters of Galaxies (CGCG), prepared by Zwicky and collaborators (1961{1968) from blue plates taken at the Palomar 1800 Schmidt telescope. It covers the entire Northern Sky(� > �2:5�) except for regions at very low Galactic latitudes, and claims completeness to blue magnitudes� 15:5. It contains � 30,700 entries.{ The Uppsala General Catalog of Galaxies (UGC) prepared by Nilson (1973) from the Palomar Observa-tory Sky Survey plates taken on the Palomar 4800 Schmidt Telescope. It claims completeness for galaxieswith diameters measured (by eye) on the blue plates greater than 10, although Hudson & Lynden-Bell(1991) show that the survey is incomplete below 1:650. The survey includes 12,940 objects.{ The European Southern Observatory Galaxy Catalog (ESO) prepared by Lauberts (1982), from theESO-Schmidt plates of the Southern Sky taken with the 4800 Schmidt telescope at Siding Springs. Itcontains 16,160 galaxies with blue diameters greater than 10 and with � < �17:5�, although Hudson& Lynden-Bell (1991) claim incompleteness below 1:30. Lauberts & Valentijn (1989) have done photo-densitometer scans of most of the ESO catalog, resulting in a uniform set of diameters and magnitudes.{ The Catalogue of Principal Galaxies (Paturel et al. 1989) consists of a compilation of data for 73,197galaxies drawn from existing catalogs.{ The Third Reference Catalogue of Bright Galaxies (RC3; de Vaucouleurs et al. 1991) is a major com-pilation of existing catalogs. It contains 23,022 galaxies with photometric data put onto a common22



basis.The RC3 is three volumes long, and probably represents the last comprehensive compilation of galaxydata to be published in hard-cover. Major galaxy databases are now maintained on-line in computerreadable formats, and include the redshift compilation of Huchra et al. (1992), consisting of � 57; 000entries with � 52; 000 redshifts, and the NASA/IPAC Extragalactic Database (NED) available via Internet(Helou et al. 1991), containing data on 286,674 galaxies and galaxy candidates (as of May 1994), mostwithout redshifts. The largest single galaxy catalog in existence is not yet publicly available, and contains2 � 106 galaxies brighter than b = 20:5 measured by photodensitometer scans (the APM machine) of theESO-Schmidt plates over 1.3 ster in the Southern Galactic Cap (Maddox et al. 1990abc).3.2 History of Redshift SurveysWe summarize here some of the major redshift surveys, and give a brief history of the �eld. Ouremphasis is on redshift surveys of nearby galaxies covering substantial areas of sky, and thus we do notinclude all pencil-beam surveys and those of unusual types of objects.Large-scale structure was recognized from two-dimensional maps of the galaxy distribution very earlyon; see for example Charlier (1922; quoted in Chapter 3 of Peebles 1993), and Chapter 3 of Hubble (1936).de Vaucouleurs (1948) recognized the existence of the Local Supercluster from two-dimensional data,although it took many years before his discovery was appreciated by the general astronomical community.When Shane & Wirtanen (1967) published their deep galaxy counts from Lick astrograph plates over asubstantial area of the Northern Sky, detailed quantitative analyses of the galaxy distribution could bedone (Groth & Peebles 1977; Fry & Peebles 1978); more importantly, the resulting map (Seldner et al.1977, cf. Figure 3.9 of Peebles 1993) showed the community the rich structure that could be found in thegalaxy distribution. However, these sky maps lacked the third dimension which is provided by redshiftmeasurement.The �rst redshift surveys carried out to study the large-scale distribution of galaxies were those ofGregory & Thompson (1978a, 1978b, 1984) and Gregory, Thompson, & Ti�t (1981), who did pencil beamsurveys towards Coma, Perseus, and other clusters, and started the process of identifying superclusters.The �rst redshift survey to cover a large fraction of the sky was that of the Revised Shapley-Ames GalaxyCatalog (Sandage & Tammann 1981), consisting of all galaxies with BT < 13:2 and with Galactic latitudejbj > 30�. The sample contains 1191 galaxies covering 6.29 ster, and has a median redshift of 1500 km s�1.Major analysis papers of this dataset include Davis, Geller & Huchra (1978), Sandage, Tammann, & Yahil(1979), and Yahil et al. (1980). Much of the early work is reviewed in Oort (1983).Kirshner, Oemler, & Shectman (1978), and Kirshner et al. (1981; 1983; 1987) carried out a seriesof pencil beam surveys, with the original purpose of studying the galaxy luminosity function. Three suchpencil beams in the region of the constellation Bo�otes found a common gap in the redshift distribution.This so-called Bo�otes void is now known to have a diameter of 6000 km s�1 (Kirshner et al. 1987; Strauss& Huchra 1988; Dey, Strauss, & Huchra 1990). At the time it was �rst discovered, such vast regions ofspace substantially underdense relative to the mean were a great surprise to the community, although afew workers, notably Einasto and colleagues (Einasto, Joeveer, & Saar 1980), had been pointing out theexistence of �lamentary structure and voids in galaxy maps for some time.The Center for Astrophysics (CfA) redshift survey (Huchra et al. 1983) includes all galaxies in theCGCG with mz � 14:5 mag in the region of sky de�ned by � > �2:5� and b < �30�, and � > 0� andb > +40�. The sample contains 2417 galaxies over 2.67 ster, with a median redshift of 3300 km s�1. Thissurvey showed a galaxy distribution in which voids and �laments were ubiquitous, although none of thevoids seen matched that in Bo�otes void discovered by Kirshner et al. (1981). Major early analysis papersof the CfA survey include Davis et al. (1980), Davis & Huchra (1982), Davis et al. (1982), and Davis23



& Peebles (1983b), but this workhorse of redshift surveys has been analyzed in detail in dozens of otherpapers by many authors over the years.Fisher & Tully (1981) used the Green Bank and E�elsburg radio telescopes to carry out the �rstsystematic redshift survey of galaxies using the HI 21 cm line. Their aim was to include all galaxies withredshifts less than 3000 km s�1, and thus their selection criteria are somewhat ill-de�ned. Their originalsurvey included data for 1787 galaxies; it has since been extended to 2367 galaxies with cz < 3000 km s�1,and published in tabular and graphical form by Tully & Fisher (1987) and Tully (1987).The Southern Sky Redshift Survey (SSRS; da Costa et al. 1988, 1991) consists of all galaxies in theESO catalog with B band diameters (corrected to face-on) greater than 1.9', and with � < �17:5� andjbj > 30�. The sample consists of 1963 galaxies covering 1.96 ster; 12% do not have redshifts (these arelargely galaxies with very low central surface brightnesses). The median redshift is 4000 km s�1. Analysispapers include Davis et al. (1988), Park, Gott, & da Costa (1992), Maurogordato, Schae�er, & da Costa(1992), and Lachi�eze-Rey, da Costa, & Maurogordato (1993).Giovanelli & Haynes have used the Arecibo radio telescope to carry out an HI survey of galaxies with� � 0� and b < 10� from the CGCG and UGC catalogs; early-type galaxies without detectable HI haveredshifts measured optically. Their sample contains � 5000 galaxies, and is centered on the Pisces-Perseussupercluster. Reviews of their work include Giovanelli & Haynes (1988) and Giovanelli & Haynes (1991).In 1986, de Lapparent, Geller & Huchra published their �rst 6� wide slice of a deeper extension ofthe original CfA survey. The galaxy distribution in this two-dimensional slice is shown in Fig. 3, fromthe data in Huchra et al. (1990a). Redshift is the radial coordinate, and right ascension is the angularcoordinate; declination is suppressed. This �gure, which is often compared to a slice through a network ofbubbles, shows clearly that voids like that in Bo�otes are ubiquitous, and that galaxies are aligned alongsheet-like structures.The structure stretching across the entire slice at cz � 8000 km s�1 has been calledthe Great Wall (Geller & Huchra 1989), and is the largest structure known to exist (cf., Di Nella & Paturel1994). Geller, Huchra, and collaborators are extending the original CfA survey to mZ = 15:5, over the fullarea covered by the CGCG. The survey is nearing completion, and will contain roughly 15,500 galaxies athigh latitudes and another 3000 in regions near the Galactic plane. The median redshift is � 7500 km s�1.The results from this survey are reported in de Lapparent et al. (1986a, 1988, 1989, 1991), Huchra et al.(1990a), Vogeley et al. (1991, 1992, 1994), Ramella et al. (1992), and Park et al. (1994).The Infrared Astronomical Satellite (IRAS) ew in 1983, and did a full-sky survey with � 10 reso-lution in four broad bands centered at 12, 25, 60, and 100�m. Because infrared radiation is not impededby Galactic extinction, galaxy samples selected from the IRAS database are well-suited for full-sky red-shift surveys. They do have the drawback, however, that early-type galaxies have very little dust or starformation, and thus are not represented in IRAS galaxy samples.The �rst major redshift survey of IRAS galaxies (Soifer et al. 1987) consisted of the 324 galaxies withf60 > 5:4 Jy with jbj > 30� in the Northern sky. Strauss and collaborators carried out a survey covering11.06 ster (88% of the sky, missing only regions at very low Galactic latitudes and areas not surveyed byIRAS) and including all 2658 galaxies to f60 = 1:936 Jy. Fisher et al. (1995) followed this up with a deepersurvey over the same region of sky to f60 = 1:2 Jy, for a total of 5339 galaxies; redshifts are 99.6% complete.The median redshift of this survey is 5800 km s�1. Scienti�c results from this survey include Strauss et al.(1990, 1992abc), Yahil et al. (1991), Fisher et al. (1992, 1993, 1994abcd), Bouchet et al. (1993), and Dekelet al. (1993).A parallel e�ort led by Rowan-Robinson consisted of a sparse sample of one in six IRAS galaxiesto a ux limit of f60 = 0:6 Jy. The selection criteria di�ered in detail from the IRAS surveys mentionedbefore, and covered a solid angle of 10.3 ster with 2184 galaxies. This survey is deeper but sparser than thecomplete IRAS surveys, with a median redshift of 8400 km s�1. This survey is nicknamed QDOT, afterthe institutions of the investigators. Major papers include Rowan-Robinson et al. (1990), Efstathiou et al.24



Fig. 3. The galaxy distribution from the survey of de Lapparent et al. (1986a), using the data of Huchra et al.(1990a). Redshift is plotted in the radial direction, and right ascension is the angular coordinate. Declination issuppressed. The prominent structure in the center of the �gure is the Coma cluster.(1990), Saunders et al. (1990), Saunders et al. (1991), Kaiser et al. (1991), and Lawrence et al. (1994).Loveday et al. (1992a, b, 1994) have carried out a redshift survey following up the APM photometricsurvey of Maddox et al. (1990abc). They measured redshifts for one in twenty of galaxies brighter thanbJ = 17:15 over 1.3 steradians centered on the Southern Galactic Cap. The sample contains 1787 galaxieswith a median redshift of 15,200 km s�1.Although not a redshift survey itself, the e�ort of Hudson (1993ab, 1994ab) should also be mentioned.He calculated the redshift incompleteness (using the compilation of Huchra et al. 1992) of the UGC andESO catalogs as a function of diameter and position on the sky, and statistically corrected the redshift mapsaccordingly, allowing him to recreate the full optical galaxy density �eld, which he used for comparison topeculiar velocity studies (x 8.1).There are also a number of redshift surveys in progress or in the advanced planning stages (see thevolume edited by Maddox & Arag�on-Salamanca 1995 for papers on these and other surveys in progress):{ Strauss and collaborators have completed a redshift survey of optically selected galaxies (the ORS) to25



roughly the CfA depth from the UGC and ESO galaxy catalogs. In the declination strip not coveredby either of these two catalogs (�17:5� < � < �2:5�) they use the recently completed diameter-limitedExtension to the Southern Galaxy Catalog (Corwin & Ski� 1994). The sample is limited by Galacticextinction to jbj > 20�, covers 8.09 ster, and contains 8457 galaxies, of which redshifts are availablefor 8286. The median redshift is 3900 km s�1. The sample and the resulting galaxy distribution arepresented in Santiago et al. (1995ab) and Santiago (1994).{ Freudling, da Costa, & Pellegrini (1994) have compiled a similar optically selected sample of galaxiesbased on the CfA and SSRS surveys, and the Morphological Catalog of Galaxies (MCG) in the declinationstrip not covered by either survey (Huchra et al. 1993). Their zone of avoidance is more extensive thanthat of the ORS. Preliminary results can be found in Freudling & da Costa (1994).{ The collaboration which carried out the QDOT IRAS redshift survey is in the process of extending theirsurvey to include every galaxy brighter than 0.595 Jy at 60�m within their surveyed area. The surveyshould be completed in fall 1994, and will contain � 15; 000 galaxies. A parallel e�ort is using the IRASFaint Source Survey to push to 0.2 Jy at 60�m over a much smaller area of sky (cf. Lonsdale et al. 1990).{ da Costa and collaborators are carrying out a redshift survey in the Southern Hemisphere of comparablescope to the CfA2 in the North (although over a somewhat smaller solid angle). As there exists no galaxysample equivalent to the CGCG in the South, the galaxy selection and photometry is being carried outfrom photo-densitometer scans of photographic plates. The sample consists of 3600 galaxies over 1.13ster. First results are in da Costa (1994) and da Costa et al. (1994a, b).{ Geller & Huchra are measuring redshifts for all galaxies to r = 16:5 in a strip 1� � 100� centered onthe original CfA \slice" (de Lapparent et al. 1986a). The sample includes 2400 galaxies with a medianredshift of 20,000 km s�1, and is called the \Century Survey".{ The team that carried out the Bo�otes Void survey discussed above is conducting an extensive redshiftsurvey from the Las Campanas Du Pont 2.5m telescope, using a multi-object spectrograph with 100�bers. Their sample is limited inR band CCD magnitude in the range 15:0 < R < 17:7, using photometrythey obtain themselves on the Las Campanas 4000 telescope. Their survey area is 1000 square degreesin a series of constant declination strips, and they expect to include 25,000 galaxies in their completedsurvey. The median redshift is � 30; 000 km s�1. Preliminary results are discussed in Shectman et al.(1992), and the PhD. theses of Tucker (1994) and Lin (1995).The more ambitious surveys mentioned here are going deeper than existing catalogs of galaxiesextend. Thus workers are being forced to de�ne galaxy samples themselves. This turns out to be a boon(although a great deal more work) as now the galaxy selection criteria can be �ne-tuned for the purposesof redshift survey work and large-scale structure studies. In addition, the modern automated methods ofgalaxy selection and photometry yield more reliable catalogs with much more robust magnitudes thanthose measured by eye. Two further redshift surveys in the advanced planning stages are discussed in a�nal concluding section (x 9.7).3.3 The Measurement of Galaxy RedshiftsThe majority of the redshift surveys discussed above have redshifts measured in the optical part ofthe spectrum. This is done typically with telescopes of aperture between one and �ve meters, attached tolow- or medium resolution (R � ��� � 1000) spectrographs. At much higher resolution, one resolves theinternal motions of the galaxies themselves; at much lower resolution, individual spectral features begin toblend with one another.The optical spectra of the vast majority of galaxies fall into one of several types:{ A pure absorption line spectrum characteristic of G and K stars. This type of spectrum is associatedwith quiescent early-type galaxies without a recent history of star formation.26



{ An absorption-line spectrum showing features characteristic of A and F stars (in particular, HydrogenBalmer line absorption) in addition to lines from G and K stars, and emission lines characteristic of HIIregions of ionized gas. Such spectra are often associated with late-type galaxies with star formation. Insome extreme cases (the so-called extragalactic HII regions), almost no stellar continuum at all is seen,but the emission lines are very strong.{ Galaxies harboring an active nucleus, in which strong emission lines of high ionization species are seen.Strongly active galaxies represent only a few percent of the galaxy population, but are the focus ofintense study; see Osterbrock (1989; 1991) for detailed reviews.The measurement of redshifts of low-surface brightness galaxies is always di�cult. If the object is toofaint to measure a continuum with enough signal-to-noise ratio to detect absorption lines, one can either\pray for H�", hoping that an HII region will fall on the slit, or observe these objects in the radio, lookingfor 21 cm transition of HI; late-type low-surface brightness galaxies are often rich in HI, and surveys of theseobjects have been carried out with radio telescopes (Bothun et al. 1985, Schneider, Thuan, & Mangum1992).The measurement of emission-line redshifts is straightforward, and is usually done by �tting multipleGaussians to the lines that are seen. Absorption-line redshifts require more subtlety: the absorption linesare typically of lower signal-to-noise ratio, and the features that are seen often consist of blends of lines,making it impossible to assign the feature to a unique redshift. A redshift is measured by comparing thespectrum of the galaxy in question to that of a star of known (small) radial velocity, typically a K0-K3giant taken with the same instrumental setup. Heuristically, one slides the spectrum of the stellar templateback and forth until it matches the spectrum of the galaxy, the amount of the shift being a measureof the redshift. In practice, this is done by taking cross-correlating the spectra of the galaxy and thestellar template in either Fourier or real space, and �tting the peak with a smooth function (Sargent et al.1977; Tonry & Davis 1979; Heavens 1993). Using such techniques redshifts of nearby galaxies are typicallymeasured with � 50 km s�1 accuracy (e.g., Huchra et al. 1983).In the days when blue-sensitive photographic plates were the detecting element in spectrographs,spectra for redshifts of nearby galaxies were often taken in the blue region of the spectrum covering theregion around 4000�A, in order to detect the Calcium H and K lines. Modern CCD detectors are moresensitive in the red, and spectra are typically taken centered on the 5175�A Mg b feature, or, for galaxiesthat are likely to have strong emission lines, centered on H� and the [N II] doublet at � 6550�A. CCDdetectors on most modern spectrographs have of the order of 800 pixels along the dispersion direction,with roughly two pixels per dispersion element, implying a spectral coverage of 2000�A for R = 1000. AsCCDs get larger, it is becoming possible to cover more of the visible part of the spectrum, and doublespectrographs which use a dichroic to split the light into red and blue halves, each going to a separatecamera, are now operating on the Palomar 5m, Lick 3m, ARC 3.5m, Keck 10m, and other telescopes.Most of the redshift surveys listed above have been carried out by observing one object at a time.However, now that multi-object spectrographs exist on many of the world's largest telescopes, it is possibleto obtain spectra for many galaxies in a single exposure. In practice, the size of the telescope determinesthe faintness of the galaxies for which one can obtain redshifts in a reasonable exposure time, and thisfaintness limit in turn determines the mean number density of galaxies on the sky. Thus one designs amulti-object spectrograph with a number of �bers and �eld of view with these considerations in mind.This is the approach taken by the Kirshner et al. Las Campanas survey and the Sloan Digital Sky Survey(x 9.7), among others.Redshift surveys are also carried out in the radio, where one looks for the HI 21 cm line in emission.As elliptical galaxies tend to be gas-poor, such surveys are limited to later-type galaxies. The largest suchredshift surveys have been done at Arecibo Observatory in Puerto Rico, and with the 140-foot and the late300-foot telescopes at Green Bank, West Virginia. These surveys are carried out at much higher resolution27



than in the optical, typically R = 30; 000. Thus radio redshifts are typically measured to much higheraccuracy than optical redshifts, with quoted errors of 5{10 km s�1. The combination of loss of sensitivity,and the fact that the 21 cm line is redshifted into an unprotected band, means that radio surveys areunable to probe redshifts much beyond 10,000 km s�1, although the Giant Metrewave Radio Telescopenear Puna, India, will be able to get around these problems with its enormous collecting area and relativeisolation. In some of the older HI redshift literature, the redshift was not de�ned by Eq. (8), but byz = �0 � �(t)�0 ; (53)which agrees with Eq. (8) only for in�nitesimal z. The reader of the older literature must be aware of thispotential for confusion, although modern workers consistently use the \optical de�nition" of z, Eq. (8).Redshifts are measured, by necessity, on a telescope attached to the Earth. The Earth takes partin many motions: it is rotating on its own axis (0.3 km s�1 at the equator), and it is orbiting aroundthe Sun (30 km s�1). For extragalactic work, the former correction is negligible, but redshifts are usuallypublished with the correction to the heliocentric frame. However, the Sun is in orbit around the center ofthe Milky Way (� 225 km s�1), the Milky Way is falling towards our nearest large companion, M31 at 119km s�1 (Binney & Tremaine 1987), and the whole Local Group of galaxies takes part in the larger-scalevelocity �eld which we will discuss in detail below. Because motions on scales smaller than that of the LocalGroup are very non-linear, we will not include them in our models, but rather refer to redshifts relativeto the barycenter of the Local Group. Estimates for the correction from the heliocentric to Local Groupbarycentric frame have been given by Yahil, Tammann, & Sandage (1977), de Vaucouleurs, de Vaucouleurs,& Corwin (1976) and Lynden-Bell & Lahav (1988). These three determinations are consistent with oneanother; for example, Yahil et al. quote the motion of the sun relative to the barycenter as 307 km s�1towards Galactic coordinates l = 105�, b = �7�.3.4 Determination of the Luminosity and Selection FunctionsRedshift surveys have the property that the number density of sample objects is a decreasing functionof redshift. We quantify this in terms of a selection function �(r), de�ned as the fraction of galaxies atdistance r which meet the sample selection criteria. In order to use the galaxies in a sample as tracers ofthe general galaxy distribution, we must correct for the fact that the galaxies represent an increasinglysmaller proportion of the parent population at larger and larger distances. We do this by giving sampleobjects weights proportional to 1=�(r) in order to account for the galaxies below the ux limit at distancer. The selection function is closely related to the luminosity function �(L), which gives the number densityof galaxies of luminosity L, per unit luminosity. The relationship between �(r) and �(L) is most easilyseen in the case of a survey in which the sample is de�ned by a minimum energy ux fmin; the derivation tofollow may be trivially modi�ed for a survey limited by apparent diameter or other photometric quantity,or for direction-dependent selection (as in the case of samples a�ected by Galactic extinction; cf., Santiagoet al. 1995b). In the latter case, one generalizes the selection function to a quantity depending on bothdistance and direction on the sky.The integral of �(L) over all L gives the total number density of galaxies, n. In practice, the luminosityfunction is poorly constrained at the faint end, and so we cut o� the integral at a lower limit Ls � 4�r2sfminfor some small rs (typically 500 km s�1), and reject galaxies with lower luminosities. At any distance r > rs,we can only observe galaxies with luminosities greater thanLmin = 4�r2fmin: (54)28



Consequently, the ratio of observable to total galaxies at distance r is�(r) = R14�r2fmin �(L) dLR1Ls �(L) dL : (55)At distances closer than rs, we set �(r) � 1. Note that the luminosity function is a property of the galaxiesthemselves, while the selection function depends on the photometric limits of the sample in question.The use of the selection function to weight galaxies in large-scale structure studies makes the assump-tion that the luminosity function is universal, independent of local density. This assumption means thatgalaxies of any luminosity are equally good tracers of the large-scale galaxy distribution (cf. x 5.10), orequivalently, that that bivariate distribution of galaxies in position and luminosity is a separable function.There are several methods for measuring the luminosity or selection function from redshift surveys.The simplest is called the 1=Vmax method, due to Schmidt (1968): the luminosity of a galaxy in the sampledetermines a maximum distance to which it could be placed and still remain within the sample:rmax = ri  fifmin! 12 ; (56)where ri and fi are the measured distance and ux of the source. We can then de�ne a maximum volume,Vmax = !r3max=3, where ! is the solid angle covered by the survey. The estimator for the luminosity functionis then�(L)�L = X 1Vmax ; (57)where the sum is over all galaxies with measured luminosities between L and L + �L. This method iseasily generalized to the case of a variable ux limit, caused, for example, by Galactic extinction. However,it makes the assumption that the mean underlying number density of galaxies is uniform, without anydensity inhomogeneities. This is a dangerous assumption, for we shall see that the inhomogeneities can besubstantial.There is an extensive literature of methods to derive selection functions in density-independent ways(Lynden-Bell 1971, Turner 1979, Kirshner et al. 1978, Sandage, Tammann, & Yahil 1979, Davis & Huchra1982, Nicoll & Segal 1982, Efstathiou, Ellis, & Peterson 1988, Choloniewski 1986, Binggeli et al. 1988, andYahil et al. 1991). We present here our own favorite, following the development of Yahil et al. (1991). Wephrase the problem in terms of likelihoods: given that a galaxy i is at distance ri, what is the probabilitythat it fall in the interval L < Li < L + dL? This probability is simply the luminosity function �(Li),normalized by the integral over all luminosities it could have at that distance, given the ux limit of thesurvey:F (Lijri) dL = �(Li) dLR1Lmin(ri) �(L) dL; (58)where Lmin(r) was de�ned in Eq. (54). Note that as written, F (Lijri) is a probability density, per unitluminosity. It will be convenient to rephrase Eq. (58) in terms of the selection function:F (Lijri) / � 1�(ri) @�(r)@r �����r=rmax i (59)where rmax was de�ned in Eq. (56). This is the likelihood for a single galaxy, given the selection function;the likelihood for the entire sample is then the product of F over all the galaxies in the sample. We then29



solve for the selection function by maximizing the likelihood with respect to the parameters in terms ofwhich we model �(r). Note that we need not worry about the constant of proportionality in Eq. (59), asit is independent of the selection function itself, and therefore is irrelevant when maximizing with respectto �. Note that the likelihood function is indeed independent of the underlying density distribution, asit is a conditional probability for the luminosities, given the distances to each object. In particular, thismethod is independent of the mean density of the sample, which drops out of the ratio in Eq. (58). Thuswe need an independent way to de�ne the mean density. Davis & Huchra (1982) discuss various methodsfor de�ning the mean density of a sample given the selection function. In general, the mean density is givenby a weighted sum over the sample:n = Pgalaxies iwiR dV �w : (60)In the presence of density inhomogeneities, the variance in n is minimized with the weights:wi = 11 + nJ3�(ri) ; (61)whereJ3 = 4� Z r2�(r) dr (62)is a measure of the density uctuations on the scale of the survey. Because of the presence of n in theexpression for the weights, one has to calculate n iteratively. In practice, one often uses the simplerestimator, given by wi = 1=�(ri), thus:n = 1V Xgalaxies i 1�(ri) : (63)In principle, one sums over all the galaxies of the survey, in which case V is the volume out to the mostdistant object of the sample. In practice, this would be horribly noisy, and one sums out to a radius beyondwhich the sample becomes so sparse that the shot noise of Eq. (63) dominates.Given a value of n, one can de�ne the luminosity function in terms of the selection function. Oneoften sees the luminosity function expressed in logarithmic intervals of luminosity, so that:�̂(L) � ln 10L�(L) = �1:15n r@�@r! �����r=rmax(L): (64)How in practice does one maximize the likelihood with respect to an unknown function? One approachis to use a parameterized form for the selection function, and maximize with respect to those parameters(Sandage et al. 1979, Yahil et al. 1991). It is easier to work with a parameterized form for � rather than� because it is always easier to di�erentiate than to integrate. Yahil et al. (1991) suggest a simple genericform for � with three parameters, which is applicable to a variety of situations:�(r) = � rrs��2�  r2� + r2r2� + r2s !�� : (65)Alternatively, one can write the luminosity function in the form of a series of steps:�(L) = �k; Lk < L < Lk+1; k = 1; : : : ; N: (66)30



The steps Lk are typically logarithmically spaced, and the aim is to solve for the parameters �k. Theselection function can then be written�(r) = PNi=1 �iHi[Lmin(r)]PNi=1 �i (67)where Lmin(r) was de�ned above andHi(L) = 8>>>>><>>>>>: 0; L > Li+1Li+1�LLi+1�Li ; Li < L < Li+11; L < Li (68)Setting the derivative of the likelihood function (Eq. 58) with respect to the �i to zero yields a series ofimplicit equations for the �'s which are solved by iteration (Nicoll & Segal 1982; Efstathiou et al. 1988).This method has two drawbacks (Koranyi & Strauss 1994). First, because the luminosity function is takento be constant over a �nite interval, the selection function has discontinuous �rst derivatives, and in fact isbiased upwards; this makes further analyses based on the selection function misleading. This can be �xedby �tting a smooth curve through the steps and calculating the selection function from this. Alternatively,one can use a generalization of Eq. (66), in which one linearly interpolates the luminosity function betweensteps. Second and more serious, when the number of steps becomes small, the luminosity function is biaseddownwards, especially at the faint end, an e�ect which requires a large number of steps (40 or more) tomitigate. We will discuss one e�ect of this bias in x 3.6.Maximum-likelihood methods in general, and the ones we have described here in particular, have thedisadvantage that there is no explicit measure of goodness-of-�t. Thus when �tting for a parameterizedform, one can be sure to get the best values of the parameters out, but one can never know whether the formitself is adequate. Sandage et al. (1979) and Yahil et al. (1991) have developed a simple a posteriori methodto test how well a given selection function �ts the sample. One can compare the observed distribution ofluminosities in a redshift sample with that expected, given the distances and a model for the luminosityfunction. Eq. (58) is the probability distribution function of luminosity for a galaxy at a given distance,with a sharp cuto� at Lmin(r). One can carry out this comparison for any well-de�ned subset of the data(de�ned by redshift, position on the sky, morphological type, local density, etc.) that does not have explicitselection on luminosity. Fig. 4 illustrates this for the IRAS 1.2 Jy survey: in each panel, the smooth curve isthe predicted luminosity distribution, while the histogram is that observed; the agreement is excellent. Thedi�erent panels show the luminosity distribution in di�erent redshift shells, indicating that there are nosystematic errors as a function of redshift. Actually, it remains unclear how useful this test is; experimentsshow that the luminosity function must be very seriously in error before this test shows disagreementbetween observed and predicted luminosity distributions.As discussed in x 3.1, the photometric data on which a redshift survey is based are not always of thehighest quality. This has two e�ects: objects will be scattered in and out of the sample by ux errors, anderrors in uxes will cause luminosities to be in error. Because there are many more faint than bright galaxies,the net e�ect of errors is to cause a systematic over-estimation of luminosities. It is straightforward to showthat constant fractional errors in the uxes result in a derived luminosity function that is a convolutionof the true underlying luminosity function with the ux error distribution. Monte-Carlo experiments bySantiago et al. (1995b) show that despite this e�ect, the density �eld derived from redshift survey datais quite robust to ux errors, if they are proportional to the uxes themselves. That is, the bias in theselection function caused by ux errors is very nearly cancelled by the bias in galaxy counts caused byobjects scattering across the ux limit. The density �eld is more robust than is the luminosity function31



Fig. 4. The luminosity distribution (histogram) of the IRAS 1.2 Jy sample in di�erent redshift ranges, togetherwith the predicted distributions, given the luminosity function. The values of �2=dof given in each panel refer tothe di�erence between the two curves, with errors given by Poisson statistics.itself to ux errors, as long as the selection function is measured from the same dataset.A comprehensive review of determinations of the luminosity function is given in Binggeli et al. (1988),cf. Felten (1977) for earlier work. Modern determinations of the luminosity functions of galaxies in opticallyselected bands include Efstathiou et al. (1988), Loveday et al. (1992b, 1994), de Lapparent et al. (1989),and Marzke, Huchra, & Geller (1994), while the IRAS luminosity function has been discussed by Saunderset al. (1990), Yahil et al. (1991), Spinoglio & Malkan 1989, and Soifer et al. (1989). The optical luminosityfunction is often �t to a form originally suggested by Schechter (1976):�(L) = �0L�� e�L=L�; (69)with free parameters � and L�; the sharp exponential cuto� means that galaxies with luminosities wellabove L� (the \knee" of the luminosity function) are quite rare. The 60�m luminosity function of IRASgalaxies does not show such a sharp cuto�, but rather is well-�t by two power-laws (cf. Eq. 65); thereis therefore a substantial population of ultraluminous IRAS galaxies, whose properties are the subject of32



much research (e.g., Sanders et al. 1989). This also means that the selection function of IRAS galaxies isnot as steep as that of optically selected galaxies, and thus IRAS redshift surveys include a much moreextensive tail of high-redshift galaxies than does an optically selected sample with the same median redshift(Figure 4 of Santiago et al. 1995a).3.5 Luminosity Functions: Scienti�c ResultsThe determination of the optical luminosity function of galaxies in optical bands has only been doneadequately in the photographic B-band, in which the comprehensive galaxy catalogs have been compiled.Indeed, much remains to be learned about the distribution of galaxy properties in quantities other thanluminosity. For example, Binggeli et al. (1988) stress that the luminosity function of galaxies is a strongfunction of galaxy morphology (cf. Loveday et al. 1992b, 1994), and although some work has been doneon the diameter function of galaxies (Lahav et al. 1988; Maia & da Costa 1990; Hudson & Lynden-Bell1991), the bivariate distribution of diameters and luminosities has barely been explored (Choloniewski1985; Sodr�e & Lahav 1993). Even less is known about the bivariate distribution of luminosities and galaxycolors. Proper analyses of these basic properties of galaxies will require large samples of galaxies withexcellent photometry in a variety of bands. This is one of the main scienti�c goals of the Sloan DigitalSky Survey. The galaxy luminosity function is a basic datum that any detailed model of galaxy formationmust match; theoretical papers addressing this include White et al. (1987), Schae�er & Silk (1988), White& Frenk (1991), Cen & Ostriker (1992a), Cole et al. (1994a), and White (1994).The measured luminosity function becomes very uncertain at the faint end (e.g., Efstathiou et al.1988). The faint-end slope of the luminosity function has important rami�cations for a number of issues inastrophysics. First, number counts of faint galaxies show an excess over the number predicted by simpleextrapolation of the galaxy luminosity function today (Tyson 1988; Cowie et al. 1989; Maddox et al.1990d; Ellis 1993); if there is a population of galaxies that were bright in the past but whose surfacebrightnesses dimmed substantially as star formation ceased, they could be hidden today in the faint endof the luminosity function (McGaugh 1994). As photographic and CCD surveys push to ever lower surfacebrightness levels, new populations of galaxies are appearing (Bothun et al. 1987; Schombert & Bothun1988; Schombert et al. 1992; Dalcanton 1994), including many galaxies of quite substantial luminosities.Understanding the low-luminosity population is also important for understanding the evolution ofmetals (i.e., elements beyond Helium in the periodic table) in the universe. Cowie (1988) shows that theintegrated surface brightness of galaxies in the sky is directly proportional to the total metal abundance:S� = c4���0�Z; (70)where �Z is the volume density of metals in the universe, and ��0 is the light emitted per unit frequency� per unit mass of metals returned to the interstellar medium. Quantifying the full galaxy population andtherefore the total surface brightness of the night sky due to galaxies (Spinrad & Stone 1978, Toller 1990)will thus give insights into the production of metals and the chemical evolution of the universe.The numbers of low-luminosity galaxies is also vitally important for quantifying the luminosity densityof the universe. The total emissivity of optical light per unit volume in the universe is given by R L�(L)dL,which diverges if the faint-end logarithmic slope of �(L) is steeper than � = 2 (Eq. 69) 13 . We observe adark night sky, which says that the luminosity density of the universe does not in fact diverge at the faintend, thus either the faint-end slope is somewhat shallower than � = 2, or there is a cut-o� at some point.The observational situation is still very much in a state of ux; this is an active area of research.13 Note that some workers use the luminosity function per unit log luminosity, for which the de�nition of � di�ersby unity from that here. See Eq. (64). 33



The optical luminosity density of the universe can be turned into a mass density of the stars if oneassumes a mass-to-light ratio for the stars. Alternatively, Loveday et al. (1988) calculate the mass-to-lightratio necessary to close the universe (i.e., such that 
0 = 1), given the measured luminosity density, as1580�190h in solar units. For comparison, standard spectral synthesis models give mass to blue luminosityratios of 4 � 7.The recent interest in low-luminosity and low surface brightness galaxies reminds us that the galaxysamples which form our basis for redshift surveys are likely to su�er from incompleteness (Disney 1976;McGaugh 1994). Even a survey limited at bright magnitudes or large diameters will miss a populationof low-surface brightness galaxies, some of which are quite luminous (Bothun et al. 1987), although thenumbers of luminous low-surface brightness galaxies seems to be quite small. There is also a bias against�nding compact galaxies of very high surface brightness; these galaxies can be di�cult to distinguishfrom stars (which are much more numerous than galaxies at all Galactic latitudes until one pushes to 22ndmagnitude and fainter) and thus will be missed from the survey. The extreme examples of compact galaxiesare the quasars: 3C 273 is bright enough to satisfy the selection criteria of the CfA redshift survey, butappears absolutely stellar on photographic plates; the host galaxy is apparent only with deep exposuresunder superb conditions (Hutchings & Ne� 1991; Bahcall, Kirhakos, & Schneider 1994).3.6 Testing the Hubble Law with Redshift SurveysThe observational evidence for the Hubble law (Eq. 1) for nearby galaxies is mostly based on distanceindicator relations for individual galaxies. These usually take the form of standard candles, whereby theabsolute luminosity of the galaxy or some well-de�ned part of it (e.g., Cepheid variables) are assumed tobe known a priori (x 6.1). Observation of its apparent luminosity gives the distance via the inverse-squarelaw. This can then be compared with the redshift as a check of Eq. (1). The history of this approach issummarized in Chapter 5 of Peebles (1993); see Lauer & Postman (1992) for a recent test of the Hubblelaw. There has been no strong evidence for deviations from Eq. (1) beyond that expected from peculiarmotions (Eq. 2). Nevertheless, one could imagine generalizing Eq. (1) to the formcz = Hprp; (71)Segal et al. (1993, and references therein) suggest a so-called Chronometric Cosmology, in which p = 2at low redshifts. Segal et al. (1993) suggest an intriguing measure of p from redshift surveys. Ratherthan using distance indicators to measure the distances to individual galaxies, one can use the luminosityfunction of galaxies as a distance indicator, assuming the luminosity function to be universal. In fact,luminosity function �tting has been used in the past to measure distances to galaxy clusters (Schechter1976; Schechter & Press 1976; Gudehus 1989); here we wish to use it to test the Hubble law. Imagine thatone interprets the results of a redshift survey using Eq. (71) with the incorrect value for p. One wouldexpect that the luminosity function determined from subsets of the sample in di�erent redshift rangeswould not be consistent with one another; agreement would be found only for the correct value for p, andthis then has the potential for distinguishing between di�erent cosmological models. Segal et al. (1993)use the IRAS 1.936 Jy redshift survey (Strauss et al. 1992b) to claim that the data are consistent withp = 2 and inconsistent with the conventional p = 1. However, the luminosity function in di�erent redshiftshells is a much less powerful statistic than Segal et al. claim. In the limit of thin redshift shells, it is justmeasuring the ux distribution of the sample, and in any redshift survey, the majority of the sources areclose to the ux limit, independent of cosmology. Koranyi & Strauss (1994) show that this distribution isalmost independent of p, if one self-consistently derives the luminosity function from the sample for eachvalue of p. Moreover, because Segal et al. use the step-wise luminosity function method described above,their luminosity function is systematically in error, the error being worse for smaller p than for larger.34



Therefore, their luminosity function for p = 2 is a better �t to the data than is p = 1, and they erroneouslyconclude that the Hubble law is ruled out by the data.Although the luminosity function is a poor discriminant of models, one can still use redshift surveysalone to put constraints on p. In a homogeneous universe, the number of galaxies in a redshift survey withredshift between r and r+ dr is n�(r)!r2 dr. The upper panel of Fig. 5 compares the observed histogramof redshifts of galaxies in logarithmic bins from the 1.2 Jy IRAS survey with that predicted for p = 1; 2;and 3. Note that this is an independent test from that of the density-independent luminosity functiondiagnostic described above. In the p 6= 1 models, the predicted and observed redshift histograms are inbad disagreement. The resulting density relative to the mean in shells (the ratio of the histogram to thesmooth curves) is shown in the lower panel. In the standard cosmology, the almost full-sky coverage of theIRAS survey averages over most density structures, meaning that the sample is close to mean density atall redshifts (cf. de Lapparent et al. 1988), although the overdensity associated with the Local Superclusteris apparent at cz = 1000 km s�1. However, for the p = 2 and p = 3 cosmologies, one must argue that theLocal Group lies in the middle of a void, surrounded by a vast spherical shell at the mean density between4000 and 10,000 km s�1, which is surrounded by another spherical void extending to the horizon.3.7 The Smoothed Density FieldWe have seen above that the number density of galaxies in a ux limited redshift survey is a decreasingfunction of distance. We correct for this by assigning each galaxy a weight given by the inverse of theselection function �(r). In order to de�ne the extent of the structures traced by the galaxies, we would liketo de�ne a continuous density �eld. This is done by smoothing (cf., Eq. 24):�(r) = 1n Xgalaxies i W (jr� rij=rsmooth)�(ri) � 1; (72)where the window function W is normalized to unit integral:Z d3rW (r=rsmooth) = 1: (73)Common window functions used are top-hat, parabolic, and Gaussian:r3smoothW (x) = 8>>>>><>>>>>: 34� ; x < 1 tophat158� (1� x2); x < 1 parabolic� 2�� 12 e� 12x2 Gaussian. (74)All that remains is to choose a smoothing radius rsmooth. Because the mean interparticle spacing of aredshift survey is an increasing function of distance from the origin (indeed, it is given by [4�n�(r)=3]�1=3)a smoothing length which shows full detail at small distances will contain increasingly fewer particles atlarger distances, with corresponding ever-increasing shot noise. For this reason, it is common to choose asmoothing length which grows with radius, proportional to the mean interparticle spacing. This has thedisadvantage of not being amenable to Fourier Transform techniques for carrying out the smoothing inEq. (72); more important, the smoothed density �eld has di�erent statistical properties at low and highredshift. Nevertheless, it is useful for qualitative and cosmographical description of the structures that areseen, and in some sense shows the maximum amount of information in the redshift survey.The smoothed density �eld will be subject to errors from a variety of sources. These include:35



Fig. 5. The upper panel shows the redshift distribution of the IRAS 1.2 Jy sample, together with the expecteddistributions in a homogeneous universe, for various redshift-distance relations. The lower panel shows the ratiobetween the observed and expected distributions, which is the radial density �eld. Note that p = 1 (the HubbleLaw) remains close to the mean density at all radii.{ Shot noise. The galaxy distribution is a point process, and one is always limited by the �nite number ofgalaxies within a smoothing length. The assumption of a universal luminosity function implies that thesubset of galaxies luminous enough to enter a ux-limited sample at a given redshift are fair tracers ofthe full population of galaxies. Under this assumption, the uncertainty in the density �eld due to shotnoise is simplyD�(r)2E1=2 = 1n 24 Xgalaxies i W (jr� rij)�(ri) !2351=2 ; (75)because the mean value of � is zero by de�nition. There is a further contribution to the shot noise in themass density �eld which depends on the variance in the mass-to-light ratio of galaxies, but this term isimportant only for nearby galaxies in typical redshift surveys, simply because 1=� grows so quickly (cf.36



Appendix A of Strauss et al. 1992c).{ The physically interesting quantity in most applications is the density �eld in real space, while redshiftsare the quantities that are measured. One can assume a model for the velocity �eld to map from one tothe other (as we will discuss in detail in x 5.9). Ignoring the problem altogether causes systematic errorsin the density �eld (Kaiser 1987). In practice, quantifying this source of error requires a speci�c modelfor the velocity �eld, although linear theory makes speci�c predictions for this distortion (x 5.2.1).{ The derived density �eld depends on the assumed selection function; a small error in the selection functioncauses a systematic error in the density �eld, which for simple ux-limited surveys, will be a functionof redshift. This source of error can only be quanti�ed with Monte-Carlo simulations. As mentionedabove, Santiago et al. (1995b) show that photometry errors are largely compensated for in the selectionfunction, in such a way that the derived density �eld is quite robust. One other way to get around thisproblem is to de�ne a volume-limited subsample of galaxies from a ux-limited survey. This is done bychoosing all galaxies in the sample with distances less than some value rmax, whose luminosities are suchthat they would enter the sample even if placed at rmax. For a sample with a uniform ux limit, thismeans that one chooses those objects with luminosities greater than Lmin(rmax). This has the additionaladvantage that it is robust to luminosity-dependent clustering (non-universal luminosity function). Ofcourse, volume-limiting a sample means throwing out the majority of the objects.{ There exists no redshift survey with complete sky coverage; there are always regions of the sky uncoveredby the survey. The IRAS survey of Strauss et al. (1992b) and Fisher et al. (1995) is the survey with themost complete sky coverage, 88%. These must be corrected for in Eq. (72). We discuss approaches tothis problem in x 3.8.One can �lter the data to minimize the shot noise. The Wiener Filter (cf. Press et al. 1992, x13.3)minimizes the variance between the measured and true density �elds. Let �(r) be the true underlyingfractional density �eld of galaxies, and let D(r) be the measured density �eld, with shot noise N included:D(r) = �(r) +N ; (76)We assume for simplicity that the shot noise is independent of position. Let us de�ne a �lter F such thatthe di�erence between the �ltered density �eld FD and the true density �eld � is minimized. In practice,we will work with Fourier Transforms, and write:variance = Z d3r [�(r)� F (r)D(r)]2 = Z d3k h~�(k)� eF (k) eD(k)i2 ; (77)by Parseval's Theorem. Substituting in Eq. (76) and minimizing with respect to the unknown functioneF (k), one �nds the Wiener �lter:eF (k) = D~�2(k)ED~�2(k)E+N2 ; (78)where D~�2(k)E is proportional to the power spectrum P (k) of the underlying density �eld 14 . The Wiener�lter requires a model for the underlying power spectrum. We will discuss methods for estimating the powerspectrum from redshift survey data in x 5.3. Note that the Wiener �lter is de�ned in k-space, because inreal space, the values of �(r) at di�erent r are correlated. Indeed, the Wiener �lter can be derived in realspace, in which case it is a matrix which takes this correlation directly into account (Zaroubi et al. 1994).14 Eq. (78) holds only in the situation in which the noise is assumed independent of position. In the more realisticcase of radially dependent noise, Eq. (78) generalizes to a two-dimensional matrix; cf., Fisher et al. (1994d) fordetails. 37



The number of elements in the matrix is the square of the number of points at which one wishes to de�nethe density �eld, which becomes a very non-trivial computational problem.In a ux-limited redshift survey with a constant smoothing length, the noise term is an increasingfunction of r. In this case, one can either apply a Wiener �lter in r space, as described above, or de�ne aseries of Wiener-�ltered density �elds at a range of values of N2, and interpolate between these at eachpoint.The Wiener �lter approaches unity when the signal-to-noise ratio is high. At low signal-to-noise ratio,it approaches zero; when there is no information on the underlying density �eld, the �lter returns the mostlikely value for the density, namely its mean. Thus the Wiener �lter has the disadvantage of biasing thecontrast in the density �eld downward. The expectation value of the square of the �ltered �eld isD eF 2(k) eD2(k)E=0@ D~�2(k)ED~�2(k)E+N21A2 D eD2(k)E=0@ D~�2(k)ED~�2(k)E+N21A2 �D~�2(k)E+N2�= eF (k) D~�2(k)E � D~�2(k)E ; (79)because eF (k) � 1 always. For comparison, the expectation value of the square of the un�ltered �eld isD~�2(k)E+N2 � P (k). Thus the Wiener �lter over-corrects the density �eld for shot noise. In the case of aredshift survey for a constant smoothing length, the signal-to-noise ratio is a decreasing function of r, andthus the contrast of structures decreases with r, just as we had in the variable smoothing mentioned above.Thus the Wiener �lter o�ers a natural way to invoke variable smoothing. For some problems, however, thislack of statistical similarity between the nearby and far-away parts of a redshift survey can be a drawback.In this case, one can de�ne an alternative �lter, the power-preserving �lter (Yahil et al. 1994):eFPP (k) = 0@ D~�2(k)ED~�2(k)E+N21A1=2 ; (80)just the square root of the Wiener �lter. This is just one of a entire family of generalizations of the Wiener�lter, as discussed in, e.g., Andrews & Hunt (1977). If we substitute the power-preserving �lter into Eq. (79),we �nd DF 2PP (k) eD2(k)E = D~�2(k)E, thus the name power-preserving. Of course, this �lter does not sharethe minimum variance property of the Wiener �lter, but it is easy to show that for signal-to-noise ratiosgreater than one, the root-mean-square di�erence between the �ltered and true density �elds is at most10% larger for the power-preserving �lter than for the Wiener �lter. As with the Wiener �lter, Eq. (80) onlyholds in when the noise is independent of position; Yahil et al. (1994) interpolate between maps �lteredwith Eq. (80) at di�erent noise levels for the ux-limited case of noise increasing as a function of distance.Although the power-preserving �lter indeed preserves the second moment of the density distributionfunction, it does not do a good job of preserving higher-order moments at low signal-to-noise ratio (inparticular, the skewness gets exaggerated), with the consequence that the �ltered maps show sharperpeaks in regions of low signal-to-noise ratio than in high. Work is ongoing to quantify this e�ect andcorrect for it. 38



3.8 Filling in the Galactic PlaneWith the advent of galaxy surveys covering all of the sky outside of the Galactic plane, there hasbeen a great deal of recent work expended on \�nishing the job", that is, either extrapolating the density�eld at high latitudes to lower latitudes, or actually surveying in the zone of avoidance itself (Balkowski &Kraan-Korteweg 1994). There are two strong motivations for this. The �rst of these is cosmography: Wewould like to have a complete map of of the structures of the local universe. The two largest superclustersin our immediate neighborhood, the Pisces-Perseus Supercluster and the Hydra-Centaurus Supercluster,both lie at low Galactic latitudes, and in both cases, there are overdensities on the opposite side of theplane (Camelopardalis and Pavo-Indus-Telescopium, respectively) to which they are plausibly physicallyconnected.The second reason for mapping the galaxy distribution at low latitudes is for dynamical studies.Peculiar velocities and densities are related in linear theory by Eq. (33); if we wish to use this equation asa test of gravitational instability theory or to measure 
0, we need as complete a map of the density �eldas possible.Simply leaving unsurveyed regions un�lled causes systematic errors in any dynamical modeling. Theabsence of galaxies does not correspond to absence of structure; indeed, the un�lled regions will act asa void with negative �, from which Eq. (33) predicts a systematic outow. Filling the un�lled regions ofa survey with the average density of galaxies corrects for this. The next order of approximation involvesinterpolating the density �eld from higher-latitude regions. The IRAS 1.936 Jy redshift survey has a low-latitude excluded zone that is only 10� wide; for this, Yahil et al. (1991) advocate a linear interpolationof the density �eld across the Galactic plane. Lynden-Bell, Lahav, & Burstein (1989) have a 30� wideexcluded zone at low Galactic latitudes in their survey of optically selected galaxies, and an additional15� wide zone in the gap between the areas of sky covered by the UGC and ESO catalogs. They use acloning procedure, in which galaxies are duplicated from adjacent high-latitude regions into the excludedzones. A more elaborate interpolation scheme was used by Scharf et al. (1992) who expanded the angulardistribution of IRAS galaxies in spherical harmonics, and extrapolated them into the excluded zone. Theyfound a prominent overdensity in Puppis (which had been recognized independently by Kraan-Korteweg& Huchtmeier 1992 and Yamada et al. 1993), which Lahav et al. (1993b) was able to show was a poorcluster at roughly the distance of Virgo. Lahav et al. (1994) advocate �ltering the spherical harmonics witha Weiner �lter to reduce the noise; they show with N -body simulations that the resulting reconstructionis quite robust for excluded zones less than 30� wide.The observed velocity �eld at high latitudes depends on the density �eld at low latitudes. Using adensity �eld reconstruction called POTENT (x 7.5), Kolatt, Dekel, & Lahav (1994) have reconstructed thevelocity �eld in the Zone of Avoidance. We will compare the results of this reconstruction to the density�eld of galaxies in x 8.An alternative approach to the various interpolation schemes discussed here is to survey the low-latitude sky directly. It is di�cult to do quantitative work here, as the extinction is large and very variable.In regions that the extinction is not too strong (say, less than AB = 0:5 mag), one can correct for extinctionstatistically in the selection function, following the methods of Santiago et al. (1995b); the fewer galaxies inregions of high extinction are simply given greater weight to compensate. However, this process introducesa much larger shot noise. Various ongoing low-latitude searches for galaxies in the optical bands, andredshift surveys thereof, are summarized in the volume edited by Balkowski & Kraan-Korteweg (1994).One can also select galaxies in wavebands that are less a�ected than the optical by Galactic extinction.Galaxy catalogs selected at 60�m from the IRAS database have been used for redshift survey work. Theprincipal limitations here are that any infrared color scheme that selects galaxies from stars and otherGalactic objects becomes severely contaminated at low Galactic latitudes by emission nebulae and infrared39



cirrus (which has the same infrared colors as quiescent galaxies). At very low Galactic latitudes, the veryhigh source density starts causing systematic errors in the IRAS uxes. Finally, it becomes increasinglydi�cult to optically identify the galaxies in order to obtain redshifts when the optical extinction becomestoo high. Despite these problems, the redshift surveys of Strauss et al. (1992b), Fisher et al. (1995), andLawrence et al. (1994) extend down to within 5� of the Galactic plane. Low-latitude galaxy catalogs selectedfrom the IRAS survey have also been published by Ichikawa & Nishida (1989) and Yamada et al. (1993).Neutral hydrogen 21 cm emission is also una�ected by Galactic extinction. Lu et al. (1990) have doneHI surveys of IRAS sources, although Strauss et al. (1990) show that optical surveys are more e�cient.But 21 cm surveys can also be done blindly, independent of any other catalog. Kerr & Henning (1987) usedthe late Green Bank 300 ft telescope to point to 1900 points; they discovered 16 previously uncataloguedgalaxies. Kraan-Korteweg et al. (1994b) announce the discovery in HI of a new member of the group ofwhich Ma�ei 1, Ma�ei 2, and IC 342 is a part. This is the �rst published result of a dedicated survey ofthe Northern Galactic plane (jbj < 5�) with the 25m Dwingeloo radio telescope, which is surveying out toa redshift of 4000 km s�1 with a resolution of 4 km s�1 and a beam size of 0:5� (FWHM).Sky surveys at K band (2.2�m) are planned by both American and European teams. The extinctionin this waveband is appreciably smaller than that in the optical bands, meaning that galaxy catalogsselected from this database will be able to penetrate to much lower Galactic latitudes. The Two MicronAll Sky Survey (2MASS; Kleinmann 1992) will indeed cover the entire sky, and thus the galaxy sampleselected from this survey will be ideal for measuring the dipole moment of the galaxy distribution (cf.,x 5.7). The Deep Extragalactic Near Infrared Survey (DENIS; Deul 1992), is planned only for the SouthernHemisphere, but will have superior angular resolution to the 2MASS survey.4 Redshift Surveys: A Cosmographical TourAs discussed in the Introduction, much of the work of redshift surveys has been cosmographical inorigin, in which workers have explored the variety of structures that are traced by the large-scale galaxydistribution, and have de�ned the structures that are visible. We have traced out the history of the processby which structures have been explored above. Until the late 1970's, the mental image of the galaxydistribution that a majority of workers in the �eld had was an approximately uniform distribution, withrandomly placed clusters embedded in it. When the distribution of galaxies on the sky from the Shane-Wirtanen (1967) counts were published by Seldner et al. (1977), people started becoming aware of therichness of the structures that the galaxies traced. The discovery of the Bo�otes Void by Kirshner et al.(1981), and the publication of the redshift maps of the CfA1 survey (Davis et al. 1982), and the Pisces-Perseus region (Giovanelli et al. 1986) brought the message of the Lick maps home, although it was thepublication of the CfA2 slice (de Lapparent et al. 1986a; Fig. 3 above) that really captured the community's(and the public's) imagination. The CfA2 survey, now extended over a volume ten times that of the �rstslice, has been pivotal in characterizing the variety of structures in which galaxies are found. The galaxydistribution shows structures on all scales that our surveys have probed, from pairs and small groups ofgalaxies on 1h�1 Mpc scales, to the Great Wall (Geller & Huchra 1989) which has an extent of at least150 h�1 Mpc.Much of this review is devoted to a quantitative study of the structures that are seen. Before launchinginto this, we would like to briey familiarize ourselves with the speci�c features in the Galaxy distribution.The process of mapping structures and giving them names has been carried out recently by Tully (1987b),who emphasizes the structures within 3000 km s�1; Pellegrini et al. (1990), who trace structures in theSouthern Hemisphere, Saunders et al. (1991), which is the best reference for the nature of galaxy structureson very large scales, Giovanelli & Haynes (1991), which shows the distribution of galaxies projected onthe sky, Strauss et al. (1992a), Hudson (1993a), Santiago et al. (1995a), and Fisher et al. (1995). The best40



Fig. 6. The density �eld of IRAS galaxies in the Supergalactic plane. A 500 km s�1 Gaussian smoothing has beenapplied. Prominent structures are labeled: V=Virgo, GA=Great Attractor, P-P=Perseus-Pisces, Co=Coma-A1367Supercluster, Sc = Sculptor Void, and Ce=Cetus Wall.existing survey for tracing the full extent of the local structures (at least within 10,000 km s�1) is the 1.2Jy IRAS redshift survey of Fisher et al. (1995), given its close to full sky coverage and moderate sampling.Because the sampling is not very dense, it is not ideal for de�ning individual structures on the smallestscales; see the references above for more detailed mapping of individual structures.The density �eld of the 1.2 Jy IRAS survey, with a Gaussian smoothing of rsmooth = 500 km s�1 andwith the power-preserving �lter applied (x 3.7), is shown in a series of slices in Fig. 6 through 8. The density�eld is that obtained by a self-consistent correction for peculiar velocities, as detailed in x 5.9 below, with� = 1. The slices shown in these �gures are made parallel to the principal planes de�ned in Supergalacticcoordinates. de Vaucouleurs (1948) pointed out that distribution of nearby galaxies (cz < 3000 km s�1) islargely con�ned to a planar structure, which he called the Supergalactic plane, or the plane of the LocalSupercluster. The Supergalactic plane is almost perpendicular to the Galactic plane.The slice through the Supergalactic plane (Supergalactic Z = 0) is shown in Fig. 6. The contoursare of the galaxy density �eld � (Eq. 24). The heavy contour is at the mean density, � = 0, while the41



dashed contours are at � = �1=3 and �2=3. The solid contours represent positive values of � and arelogarithmically spaced in 1 + �, with three contours corresponding to an increase of a factor of two. One's�rst visual impression from these maps is the irregularity of the shapes of the largest structures. One seesimmediately that modeling superclusters as uniform spheres can be misleading! One also notes the roughsymmetry between the high and low-density regions. If the distribution function of the primordial density�eld is symmetric between under-dense and overdense regions, then linear theory predicts this symmetryto be preserved. However, because � is has a strict lower limit of �1, while there is no corresponding upperlimit, we expect a positive skewness to develop for late enough times and small enough smoothing scalesthat h�2i approaches unity (x 5.4). This is evident in the maps here, although there is still a rough balancebetween the volume of space occupied by over- and under-dense regions. One can do statistics with thetopology of the isodensity contours; we will discuss this in x 5.6.In this �gure, the Local Group sits at the origin. Some of the prominent structures are labeled withidentifying ags. The nearest substantial overdensity is found at X = �250 km s�1; Y = 1150 km s�1;this the Virgo Cluster 15 (V), the nearest large cluster of galaxies. The Ursa Major cluster, a somewhatmore di�use and spiral-rich cluster, is too close to Virgo to be resolved as a separate structure with thissmoothing. The traditional de�nition of the Local Supercluster refers to it as a attened structure inthe Supergalactic plane of extent � 2000 km s�1, with the Virgo cluster at its center (indeed, one oftenhears the Local Supercluster referred to as the Virgo Supercluster), but as this �gure shows, the LocalSupercluster is far from an isolated structure. In particular, at this smoothing, it joins with the GreatAttractor (GA), which is the large extended structure centered at Z = �3400 km s�1; Y = 1500 km s�1.The Great Attractor is often referred to as two separate superclusters, the Hydra-Centaurus (positivesupergalactic Y) and Pavo-Indus-Telescopium (negative supergalactic Y) Superclusters, although thatdivision is somewhat arti�cial, being imposed by the zone of avoidance. The IRAS survey clearly showsthe two superclusters to be contiguous (the e�ective smoothing length is greater than the width of theexcluded zone). The Great Attractor was �rst named as such by Dressler (1987b), when peculiar velocitysurveys showed a convergence in the galaxy velocity �eld towards a point corresponding to the Hydra-Centaurus supercluster (Lilje, Yahil, & Jones 1986; Lynden-Bell et al. 1988) as we discuss in x 7.1.2 below.Subsequent redshift surveys (cf. Strauss & Davis 1988; Dressler 1988; 1991) mapped the full extent of theoverdensity of galaxies associated with the Great Attractor. See Lynden-Bell, Lahav, & Burstein (1989)for a brief history of de�nitions of the Great Attractor. In the context of redshift surveys, we de�ne theGreat Attractor as the extended overdensity of galaxies that dominates the left hand side of Fig. 6.On the opposite side of the sky, there is an extended chain of galaxies with two distinct density peaks,at X = 4300 km s�1; Y = 1300 km s�1, and X = 4750 km s�1; Y = �2000 km s�1. This is the Perseus-Pisces Supercluster (P-P), the Northern part of which is sometimes referred to as the CamelopardalisSupercluster. These contour plots do not give justice to the remarkable tightness and coherence of thegalaxy distribution here; Giovanelli et al. (1986) show that the structure lies nearly in the plane of the sky,and displays a remarkably �lamentary structure, with rich clusters embedded in it. There is a void in theforeground of the Perseus-Pisces supercluster centered at X = 2000 km s�1; Y = �1400 km s�1. There isalso a void beyond the Virgo cluster, which stretches to the Coma-A1367 supercluster (Co), centered atX = 0; Y = 7100 km s�1. This supercluster is embedded in the Great Wall (Fig. 3), although the Great Wallitself lies beyond the boundaries of this �gure for the most part. The void centered at X = �4000 km s�1,Y = �4000 km s�1 was discovered by da Costa et al. (1988); Dekel & Rees (1994) refer to it as the SculptorVoid (Sc). Finally, the radially directed structure centered at X = 1800 km s�1; Y = 5000 km s�1 is theCetus Wall (Ce), discovered by the SSRS.Fig. 7a is a slice at Z = 3000 km s�1, and shows that the region above the Supergalactic plane15 It is standard practice to name clusters and superclusters after the constellations in which they are found.42



Fig. 7. The density �eld in various slices in Supergalactic coordinates a: Z = +3000 km s�1. b:Z = �3000 km s�1. c: Y = 0. d: X = 0. Prominent structures marked include H-C=Hydra-Centaurus, andP-I-T=Pavo-Indus-Telescopium.is marked by an extensive void. This void extends almost to the Local Group, and is apparent in thedistribution of galaxies very near us as the Local Void (cf. Tully 1987b). The overdensity extending acrossthe top of the �gure is a piece of the Great Wall. Below the Supergalactic plane (Fig. 7b Z = �3000 km s�1),one sees the extensions of the Great Attractor (in the form of the Pavo-Indus-Telescopium supercluster,P-I-T) and the Pisces-Perseus Superclusters.Panel c of Fig. 7 is the Y = 0 slice. This slice lies almost in the Galactic plane, and cuts cleanly throughthe Great Attractor (negative X) and the Northern part of the Pisces-Perseus Supercluster (positive X).The Great Attractor is seen to be bimodal in this cut, and we label the Hydra-Centaurus (H-C) and P-I-Tsuperclusters separately. The extent of the void above the Supergalactic plane (Fig. 7a) is now clear; itoccupies the entire upper part of this �gure. A slice at X = 0 (Fig. 7d) passes through the Virgo cluster,and the Coma-A1367 superclusters. The Great Wall is apparent at Y = 7000 km s�1 in this slice.The slice at Y = 3000 km s�1 (Fig. 8a) shows no dramatic structures, and is largely dominatedby the void that lies between the Local and Coma-A1367 superclusters. The slice at Y = �3000 km s�143



Fig. 8. The density �eld in various slices in Supergalactic coordinates a: Y = +3000 km s�1. b: Y = �3000 km s�1.a: X = +3000 km s�1. b: X = �3000 km s�1.(Fig. 8b) cuts through the southern (i.e., smaller Y ) part of the Pisces-Perseus supercluster, and shows itto be extended in the Supergalactic Z direction. The region south of the Great Attractor is dominated bythe Sculptor Void (Sc).X = 3000 km s�1 (Fig. 8c) slices through the Pisces-Perseus supercluster, showing it to be multi-modal. Indeed, there is a void between the Perseus-Pisces Supercluster in the Supergalactic plane, and itscounterpart at Z = �3000 (Fig. 8b). Finally, the slice at X = �3000 (Fig. 8d) cuts through the GreatAttractor. The bimodality apparent in the Y = 0 slice is apparent here as well. The Sculptor Void appearshere, bracketed by a remarkable wall of galaxies extending from the Great Attractor to the upper left handcorner of the �gure.In this brief overview of the galaxy distribution as seen by IRAS, we have not been comprehensive:we have not endeavored to give every structure that is visible a name, nor have we given justice to thedetailed mapping that has been done by a large number of people (see the references above). Moreover,with our 500 km s�1 Gaussian smoothing, we have washed out some of the more remarkable structuresthat are apparent in the redshift data: the very thin walls and �laments, and the tight clusters. However,44



the main emphasis in this survey is on quantitative and statistical analyses of the galaxy distribution,and thus we now move beyond cosmography, to see what quantitative science we can do with the datapresented here.5 Redshift Surveys: Galaxy ClusteringThis chapter will discuss quantitative measures of galaxy clustering, and how we might use the resultsto put constraints on cosmological models for structure formation. Much of the background material hasbeen introduced earlier in x 2, although we will �nd ourselves introducing new concepts as we go along. Weare not exhaustive in this section, and do not attempt to describe every statistic that has been used as ameasure of galaxy clustering. In particular, we do not survey the work done with multi-fractal measures orpercolation methods; these approaches have been thoroughly reviewed in this journal by Borgani (1994).We start with a discussion of the two-point correlation function �(r) in x 5.1. Before going onto thepower spectrum in x 5.3, we discuss the e�ects of redshift space distortions and non-linear e�ects in x 5.2.Non-linear e�ects give non-zero high-order correlations, which we discuss in x 5.4 and x 5.5. Topologicalmeasures of large-scale structure are discussed in x 5.6.The dipole moment of the galaxy distribution is closely related to the motion of the Local Group(x 5.7). One can expand the density distribution in higher-order multipoles as well, as discuss in x 5.8. Wereturn to the subject of redshift-space distortions with methods to correct for them in x 5.9. We �nish thischapter with a discussion of the relative distribution of di�erent types of galaxies, in x 5.10.5.1 The Two-Point Correlation FunctionThe two-point correlation function was introduced in Eq. (44) as the autocorrelation function of the(continuous) density �eld. As it is the Fourier Transform of the power spectrum P (k) (Eq. 46), it also givesa complete statistical description of the density �eld to the extent that the phases are random. Althoughone can always de�ne a smoothed density �eld as described in x 3.7, and then apply Eq. (44), the resultingcorrelation function would be cut o� on scales smaller than the smoothing length. Instead, we simply applyEq. (45), which we rewrite as follows: the joint probability that galaxies be found at positions r1 and r2within the in�nitesimal volumes dV1 and dV2 isdP = n2 dV1 dV2�(r1)�(r2) [1 + �(r12)] ; (81)where r12 = jr1 � r2j. In the case of a volume-limited sample (� � 1) we thus �nd�(r) = N(r)4�r2n2V � 1; (82)where N(r) dr is the number of pairs found in the sample with separations between r and r + dr, and4�r2n2V is the number expected in a uniform distribution of galaxies. This expression is appropriateonly for the case of a volume-limited sample of galaxies, and ignores edge e�ects. In practice then, onedoes the following (Davis & Peebles 1983b): one generates on the computer a sample of points with nointrinsic clustering, but with the same selection criteria as those of the real galaxies. Thus the mock catalogmatches the true catalog in the solid angle coverage and in the selection function. One then counts pairswith separation between r and r + dr both in the real data (call this quantity NDD(r), with D standingfor data), and between the real data and the mock catalog (NDR(r), with R standing for random). The45



correlation function is then estimated as:�(r) = NDD(r)NDR(r) nRnD � 1; (83)where nD and nR are the mean number densities of galaxies in the data and random samples. One usuallymakes the number of random galaxies much larger than that of the real sample so that additional shotnoise is not introduced. In general, one can weight the pair counts any way one wants:NDD(r) = Xij w(ri; r)w(rj; r); (84)with a similar equation for NRR, where the sum is over pairs of galaxies at positions ri and rj such thatr < jri�rjj < r+ dr. For ux-limited samples, weighting by the inverse of the product of selection functionsfor the two galaxies gives equal volume weighting. Saunders, Rowan-Robinson, & Lawrence (1992) showthat the variance in �(r) is minimized for the weights:w(ri; r) = 11 + 4�nJ3(r)�(ri) ; (85)where J3(r) was de�ned above (Eq. 62). Note that Eq. (85) bears a resemblance to the minimum varianceweights for the mean density, Eq. (61).The accuracy of Eq. (83) is limited by the accuracy of the estimate of the mean number density ofgalaxies; one cannot measure �(r) on scales beyond that on which it falls below the fractional uncertaintyin the mean density of the sample. The mean density is uncertain due to the possibility of large-scalestructure on the scale of the survey itself. That is, one never knows the extent to which a given volumeis a fair sample of the universe. The rms uctuations in the density on the scale of a survey are given byEq. (37), but of course, in order to estimate this, we need to know P (k), which is what we are trying to�nd in the �rst place. However, there exist estimators of �(r) whose sensitivity to uncertainties in the meandensity is appreciably weaker than that of Eq. (83) (Landy & Szalay 1993; Hamilton 1993b). In particular,Hamilton (1993b) shows that the fractional error in the estimator:�(r) = NDD(r)NRR(r)N2DR � 1 (86)is proportional to the square of the fractional error in the mean density. This advantage of Eq. (86) overEq. (83) actually only holds for weighting w(ri) 6= 1=�(ri); otherwise, the two estimators give quite similarresults. In any case, the di�erences between the two become apparent only on very large scales, where thecorrelation function is quite weak.There has been a great deal of confusion over the proper estimation of the error in the correlationfunction. There are two sorts of statistical error one could try to calculate:(i) The di�erence between the true correlation function of galaxies in the volume surveyed, and thatmeasured. This error arises from the �nite number of galaxies in the sample.(ii) Even if one could measure the correlation function in the volume surveyed without error, it will di�erfrom the true correlation function of the entire universe of galaxies, due to power on scales larger thanthe sample.Many of the analyses in the literature consider only one of these two e�ects. The problem is inherentlydi�cult because the variance in the two-point correlation function necessarily depends on the three- andfour-point correlation functions (to be discussed in x 5.4). In addition, there exists strong covariance between46



the estimate of the correlation function on di�erent scales, which of course is strongest for estimates attwo closely spaced scales.Peebles (1973) and Kaiser (1986) calculate the shot noise contribution to the correlation functionerrors in terms of a cluster model: if we think of the galaxy distribution as a smooth �eld with clustersembedded, the number of galaxies associated with each cluster is 1 + 4�nJ3 (we restrict ourselves for themoment to the case of a volume-limited sample). The number of independent pairs of galaxies at a givenseparation is the number of observed pairs, NDD, divided by the number associated with the clusters. Thatis, because galaxies are clustered, a majority of the galaxy pairs are redundant. The resulting error in thecorrelation function is then just given by Poisson statistics:�(�) = 1 + 4�nJ3N1=2DD (87)Kaiser (1986) notes that NDD / n2, and thus for 4�nJ3 � 1, �(�) is independent of n. Thus he arguesthat given a �nite amount of telescope time, one wants to sparse-sample to the level that 4�nJ3 � 1 (i.e.,roughly one galaxy per cluster), maximizing the volume covered to minimize the e�ect of power on scaleslarger than the sample. This is a meaningful strategy, if in fact one's primary motivation is to measure�(r) on large scales. This is the motivation behind the 1-in-6 sampling of the QDOT survey (Lawrence etal. 1994), and the 1-in-20 sampling of the APM survey (Loveday et al. 1992ab).Ling, Frenk, & Barrow (1986) argue that the e�ect of shot noise can best be estimated by makingbootstrap realizations of a given sample, and calculating the scatter in the determination of �(r) from eachof these. Although the mean �(r) over the bootstraps is unbiased, this results in an overestimation of theerrors, as shown by Mo, Jing, & B�orner (1992) and Fisher et al. (1994a). Fisher et al. (1994a) describea brute-force way to make realistic estimates of the correlation function error covariance matrix: make aseries of independent N -body realizations of a given sample, and calculate the scatter of the estimates of�(r) from each of these. Of course, this estimate will be only as good as the power spectrum assumed forthe simulation itself, although it is probably not terribly sensitive to the details. Existing redshift surveysare not large enough to be able to a�ord to split the surveys up into pieces and compute errors from thevariance in the estimated correlation function in each, although Hamilton (1993b) describes a practicalmethod to estimate correlation function errors from one's dataset itself, by considering the contributionthat each subvolume in a sample makes to the correlations.The two-point correlation function can be applied not only to redshift data, but also to surveyscontaining only angular data. The angular correlation function can be de�ned in analogy with Eq. (81):the joint probability that galaxies be found at angular positions r̂1 and r̂2 within the in�nitesimal solidangles d!1 and d!2 isdP = N 2 d!1 d!2 [1 + w(�12)] ; (88)where �12 is the angle between r̂1 and r̂2, and N is the number density of galaxies on the sky. Groth& Peebles (1977) calculated the angular correlation function of the Shane-Wirtanen Lick galaxy counts(cf., the beginning of x 4); they found that w(�) is well �t by a power law of slope 0.77 for scales smallerthan about 2�, with a sharp break on larger scales (cf, the challenge to their results by Geller, Kurtz, &de Lapparent (1984) and de Lapparent, Kurtz, & Geller (1986) over the issue of plate matching). Morerecently, the angular correlation function of the APM galaxies has been calculated by Maddox et al. (1990a),who reproduce the Groth & Peebles (1977) results on small scales; however, the APM correlation functionbreaks on a somewhat larger scale than that of the Lick counts. The APM data are of higher photometricaccuracy than the Lick data, and because the catalog was generated automatically it is immune fromthe inevitable systematic e�ects that counting galaxies by eye entails. Other recent determinations of47



the angular correlation function include Picard (1991) and Collins, Nichol, & Lumsden (1992). Bernstein(1994) has carried out a detailed analytic analysis of the error in the angular correlation function (using theestimator of Landy & Szalay 1993), including the covariance terms, and using the hierarchical hypothesis(Eq. 120) to include the e�ects of three-point and four-point correlations. The resulting expressions are toocomplicated to reproduce here, but do an excellent job of matching the errors measured from Monte-Carlosimulations.The angular correlation function w(�) for a ux-limited sample is related to the spatial correlationfunction by Limber's (1953) equation (cf. Rubin 1954):w(�) = R d3r1 d3r2�(r1)�(r2)�(r12)[R d3r�(r)]2 ; (89)where � is the selection function, r12 � jr1� r2j, and � is the angle between r1 and r2. It is straightforwardto show from Eq. (89) that a power-law spatial correlation function of logarithmic slope  correspondsto an angular correlation function with logarithmic slope  � 1. Thus we expect the spatial correlationfunction to be a power law with slope  = 1:77, at least on small scales. The spatial correlation functionhas been determined for essentially all the large redshift surveys discussed above in x 3.1; important papersinclude Davis & Peebles (1983b), Bean et al. (1983), Shanks et al. (1983), Davis et al. (1988), de Lapparent,Geller, & Huchra (1988), Strauss et al. (1992a), Fisher et al. (1994a), Moore et al. (1994), and Loveday etal. (1994). Because of the much smaller number of galaxies included in redshift surveys than in the angularcatalogs, the spatial correlation function is determined with lower accuracy on large scales. However, thesestudies and others have demonstrated convincingly that the spatial correlation function is indeed a power-law on small scales, with a break at approximately 2000 km s�1. The much quoted relation of Davis &Peebles (1983b),�(r) =  r5:4h�1 Mpc!�1:8 ; (90)is consistent with the observed power-law behavior of w(�). Eq. (90) also implies that the rms galaxyuctuations within spheres of radius 8 h�1 Mpc are unity (Eq. 37) 16 . This is a scale below which theclustering is clearly strongly non-linear, and much of the formalism developed in x 2.2 becomes irrelevant.A primordial power spectrum of power law slope greater than zero implies that P (0) = 0. It thenfollows from Eq. (46) that the volume integral of the spatial correlation function over all of space must bezero, meaning that the correlation function must go negative at some point. Given a power spectrum, forexample, that of Standard Cold Dark Matter, one can use Eq. (46) to predict that the correlation functiongoes negative on scales above 33 h�1 Mpc, and reaches a minimum at 46 h�1 Mpc with an amplitude of�1:5 � 10�3. This is too small an e�ect to have been measured in any existing galaxy sample. Indeed, ifone de�nes the mean density of a sample from the sample itself (as is usually done), the integral of thecorrelation function over the volume of the survey is forced to zero. This e�ect tends to bias the correlationfunction low, at least when it is estimated for small volumes.The power-law nature of the correlation function has prompted some workers to suggest that galaxiesfollow a fractal distribution, with no preferred scale (e.g., Coleman & Pietronero 1992). In such a model,it would not be possible to de�ne a mean density of the universe; it would be a function of the scale onwhich one measured it. However, the correlation function is de�ned in terms of �, which has the meandensity subtracted already. The correlation function of 1+ � predictably is not scale-free (e.g., Guzzo et al.1991; Calzetti, Giavalisco, & Meiksin 1992). Peebles (1993) shows that the observed scaling of the angular16 Eq. (90) has been corrected for redshift space distortions; see x 5.2.1.48



correlation function with depth rules out simple fractal models (cf. Davis et al. 1988). More complicated,multi-fractal models have been proposed; they are reviewed thoroughly in Borgani (1994).5.2 Distortions in the Clustering StatisticsThe next logical topic to discuss would be the determination of the power spectrum of the galaxydistribution. Before we do so, however, we outline the principal e�ects which cause the observed correlationfunction and power spectrum to di�er from those which held following the epoch of radiation-matterequality, extrapolated via linear theory to the present. These are:(i) The galaxy distribution may be biased with respect to the underlying mass distribution. If linearbiasing holds (Eq. 48), the correlation function and power spectra of galaxies di�er from that of theunderlying dark matter by a constant factor b2; the shape of these functions is una�ected. However,if the biasing is a (a priori unknown) function of scale, then the power spectrum of galaxies gives usno information of that of dark matter.(ii) We measure redshifts, not distances of galaxies. As Eq. (2) shows, the two di�er from one anotherbecause of peculiar velocities.(iii) Although in linear theory, the shape of the power spectrum does not change as clustering grows(simply because the growth rate is independent of scale), this is not true on scales that have gonenon-linear, on which the rms mass uctuations are not much less than unity.We will discuss the redshift space distortions and the non-linear e�ects here.5.2.1 Redshift Space DistortionsThe e�ect of peculiar velocities on the shape of structures can be understood heuristically by imag-ining the gravitational inuence of a rich cluster of galaxies. On small scales, within the virialized clusteritself, galaxies have peculiar velocities of 1000 km s�1 or more, which causes a characteristic stretching ofthe redshift space distribution along the line of sight. This is called the \Finger of God", which pointsdirectly at the origin in a redshift pie diagram; the Finger of God associated with the Coma cluster isapparent in Fig. 3. Thus a compact con�guration of galaxies is stretched out along the line of sight, greatlyreducing the correlations: the small-scale velocity dispersion of galaxies causes the correlation function tobe underestimated in redshift space.On larger scales, a di�erent e�ect operates: galaxies outside the cluster itself feel the gravitationalinuence of the cluster, and thus have peculiar velocities falling into it. A galaxy on the far side of thecluster will thus have a negative radial peculiar velocity, and appear closer to us in redshift space than inreal space, while a galaxy on the near side will have a positive peculiar velocity, and appear further awayfrom us. Thus the gravitational inuence of a cluster causes a compression of structures, thus enhancingthe correlation function.These two e�ects can be quanti�ed. The e�ect of the large-scale motions can be calculated via lineartheory, as was �rst done in the present context by Kaiser (1987; cf. Sargent & Turner 1977). In brief, onecalculates the change in the Jacobian of the volume element in going from real to redshift space. The resultis that in linear theory, both the power spectrum and correlation function are enhanced in redshift relativeto their real space counterparts by a factor:K(�) = �1 + 23� + 15�2� ; (91)where � was de�ned above in Eq. (51). For � = 1, K = 1:87, so this is not a small e�ect. This calculationis done in the \distant observer approximation", in which the volume surveyed is supposed to subtend asmall angle from the point of view of the observer. For further discussion of this approximation, see Cole,49



Fisher, & Weinberg (1994), and Zaroubi & Ho�man (1994).One way to disentangle the e�ects of peculiar velocities from true spatial correlations is to divide thevector separating any two galaxies into components in the plane of the sky (rp in the notation of Fisher etal. 1994a), and along the line of sight (�). The e�ects of redshift space distortions are purely radial, andthus the correlation function projected onto the plane of the sky is a measure of the real space correlationfunction. In practice, then, we measure �s as a function of both rp and �. The subscript s reminds thatthis is a quantity measured in redshift space. The projection of �s(rp; �) onto the rp axis yields a quantityclosely related to the angular correlation function (Davis & Peebles 1983b):wp(rp) � 2 1Z0 d��s(rp; �) = 2 1Z0 dy �r h(r2p + y2)1=2i ; (92)where here �r is the desired real space correlation function, as indicated by the subscript r. For a power-lawcorrelation function �r(r) = (r=r0)� , the integral can be done analytically, yieldingwp(rp) = rp �r(rp)�(1=2)�[( � 1)=2]�(=2) : (93)This is the approach that Davis & Peebles (1983b) took to �nd the result in Eq. (90); Fisher et al. (1994a)used this method to �nd�r(r) =  r3:76h�1 Mpc!�1:66 (94)for IRAS galaxies. Saunders, Rowan-Robinson, & Lawrence (1992) measured �r(r) for IRAS galaxies usinga related approach: they cross-correlated the QDOT redshift survey with its parent 2D catalog (Rowan-Robinson et al. 1991) to suppress the redshift spacing distortions; they �nd results in excellent agreementwith Eq. (94) (cf. Loveday et al. 1994 for a measurement of the APM correlation function using the sametechnique). The signi�cance of the discrepancy in the amplitudes and slopes between the IRAS (Eq. 94)and optical (Eq. 90) correlation functions will be discussed in x 5.10.If we could measure the Kaiser e�ect of Eq. (91) directly, we could constrain the parameter �. Thedi�culty is that Eq. (91) is only valid on large scales where linear theory is valid, and where the competinge�ect of small-scale velocity dispersion is unimportant. But of course, the correlations are small and di�cultto measure on these large scales. Gramann, Cen, & Bahcall (1994) and Brainerd & Villumsen (1994) pointout that if the small-scale velocity dispersion were as large as predicted by standard CDM, then the Kaisere�ect would be swamped by the suppression of the correlation function due to the velocity dispersion untilone gets to truly enormous scales. Nevertheless, several groups have attempted to measure the Kaiser e�ectdirectly from redshift survey data. Fry & Gazta~naga (1993) compared the correlation function measured inredshift space for various redshift surveys to the angular correlation function of the same samples (whichare free from redshift space distortions). They found � = 0:53 � 0:15 for the CfA survey, � = 1:10 � 0:16for the SSRS, and � = 0:84�0:45 for the IRAS 1.936 Jy survey. Alternatively, one looks for the anisotropyof �s(rp; �) in the radial and transverse directions. Hamilton (1992) de�nes the angular moments of thecorrelation function as�`(r) � 12 1Z�1 �s(rp; �)(1 + 2`)P`(�) d�; (95)where P` is the `th Legendre polynomial and � is the cosine of the angle between the line of sight and the50



redshift separation vector. He then shows that:�2(r)��0(r) + 3r3 R r0 �0(s)s2 ds = 43� + 47�21 + 23� + 15�2 (96)in the linear regime. Hamilton (1993a) applies this to the IRAS 1.936 Jy sample to �nd � = 0:69+0:28�0:24.Fisher et al. (1994b) took a somewhat di�erent approach, including the e�ects of both the small-scalevelocity dispersion and large-scale Kaiser e�ect, and �tting directly to �s(rp; �). Following Peebles (1980),the relation between the real and redshift space correlation functions can be written as1 + �s(rp; �) = Z dw3f(w3jr)�1 + �r �hr2p + (� �w3)2i1=2�� ; (97)where the integral is over possible values of the radial peculiar velocity di�erence w3, and f(w3jr) is thedistribution function of w3 at a given separation r. An exponential distribution is a good approximation tothe distribution function found in N -body simulations; Fisher et al. (1994b) show that it gives a better �tthan does a Gaussian to the real data. Taking the shape of the �rst and second moments of f as a functionof r from N -body models, Fisher et al. were able to reduce the model-�tting to two free parameters: theamplitude of the second moment � (i.e., the pairwise velocity dispersion) at r = 100 km s�1, and theamplitude of the �rst moment v12 (i.e., the mean pairwise streaming of galaxies) at r = 1000 km s�1. Theyshow, in analogy with Eq. (91), that linear theory predicts the following form for the �rst moment:v12(r) = 2�H0r2[1 + �r(r)] rZ0 dr0r02�r(r0): (98)Thus the measurement of v12 = 109+64�47 km s�1 at 1000 km s�1, together with the real-space correlationfunction (Eq. 94), directly yields a value for �; they �nd � = 0:45+0:27�0:18. Although this statistic is shown tobe unbiased with the help of N -body simulations, its power is limited by the volume of the sample. Weassume that any anisotropy measured in the sample is due to redshift-space distortions, but the real spacecorrelation function will be isotropic only to the extent that the sample includes enough volume to averageover the orientation of elongated superclusters.It is not a priori obvious that the approach of writing the e�ect of the redshift space distortions asa convolution with the velocity distribution function (Eq. 97) is consistent with linear theory in the formof Eq. (91); linear theory predicts covariance between the velocity and density �elds that is not includedin Eq. (97). However, Fisher (1995) has been able to reproduce Eq. (91) by expanding Eq. (97) to secondorder, assuming that f(wjr) is Gaussian, with mean value and dispersion as given by linear theory.The Fisher et al. (1994b) analysis also measures the distortions on non-linear scales to derive thepair-wise velocity dispersion at 100 km s�1, � = 317+40�49 km s�1. This is to be compared with the Davis& Peebles (1983b) value of 340 � 40 km s�1 from the CfA survey, also measured by looking at redshiftspace distortions 17 . The predicted values of � for di�erent power spectra (as calculated with N -bodysimulations) are quite di�erent, so this quantity is of great interest for constraining models. High resolutiondissipationless simulations of Standard CDM indicate � � 1000 km s�1 for the dark matter (e.g., Davis etal. 1985; Gelb & Bertschinger 1994b), far in excess of what is observed. However, this number has beencontroversial: it is the velocity dispersions of galaxies, not dark matter particles, which are observed. Thevelocity dispersion of halos of dark matter particles in simulations (Brainerd & Villumsen 1993; Gelb &Bertschinger 1994) are smaller than that of the dark matter itself, although these simulations su�er from17 A recent reanalysis of the CfA sample by Davis (private communication) �nds � = 380 km s�1 after correctionof a small error in the original code. 51



the so-called over-merging problem, in which groups of galaxies merge in enormous supergalaxies, whichhave no counterparts in the real world. Because � is weighted by pairs of galaxies, such over-merging tendsto cause the estimate of � to be biased low. Hydrodynamical simulations of CDM, which tend to avoidthe over-merging problem, radiatively dissipate some of the energy that would otherwise go into galaxymotions, and in fact �nd a lower value for � (e.g., Cen & Ostriker 1993), although still not low enough tomatch the observed value above. Weinberg (1994) shows that the velocity dispersion is very sensitive tothe details of the biasing model used to de�ne galaxies from the distribution of dark matter.Velocity dispersion analyses of other redshift surveys (Mo et al. 1994) show a larger � for somesamples, although the pair-weighting nature of � makes it quite sensitive to a few rare clusters in a surveyvolume (Zurek et al. 1994). What is needed to settle this controversy is a new statistic which is less weightedby the rare high velocity-dispersion clusters, and thus more strongly reects the velocity dispersion in the�eld. The small-scale velocity dispersion can also be used to apply the Cosmic Virial Theorem (Peebles1976ab; Peebles 1980): if one assumes statistical equilibrium of clustering on small scales, and takes thecontinuum limit, one can show that�2(r) = 9H20
04�b �r(r) 1Zr drr Z d3zr � zz3 �(r; z; jr� zj); (99)where � is the three-point correlation function, to be discussed in x 5.4. This equation can be simpli�edassuming a hierarchical model for the three-point correlation function (Eq. 118), and a power-law form forthe two-point correlation function (Eq. 75.14 of Peebles 1980). In practice, the application of this equationis hampered by our poor knowledge of the three-point correlation function. More importantly, the linearbiasing model assumed in Eq. (99) is questionable at best on these very inhomogeneous scales. Finally,Carlberg, Couchman, & Thomas (1990) argue that galaxies may not be fair tracers of the velocity �eld onsmall scales, a form of velocity bias. The Cosmic Virial Theorem has been used to argue for a small value of
0 = 0:2 e�0:4 (Davis & Peebles 1983b), but if dark matter is not clustered with galaxies on the very smallscales of 100 km s�1, Eq. (99) will return an underestimated value of 
0 (Bartlett & Blanchard 1994).Cole, Fisher, & Weinberg (1994) take a parallel approach to Hamilton (1992; 1993a), based on thepower spectrum. Just as we can separate the vector between two galaxies into parallel and perpendicularcomponents, we can separate a wave vector k into parallel and perpendicular components, if we work witha subsample of a survey with small total opening angle with respect to the observer, the distant observerapproximation discussed above. In analogy with Eq. (95), they de�ne angular moments of the powerspectrum:P`(k) = 2` + 12 1Z�1 d�P (k; �)P`(�); (100)and show that the rational expression in Eq. (96) can be expressed as P2(k)=P0(k). Applying this to the1.2 Jy IRAS redshift survey, they �nd � = 0:35 � 0:05, although they emphasize that non-linear e�ectscause this to be a lower limit. A recent re-analysis by Cole, Fisher, & Weinberg (1995) parameterizes thee�ects of non-linearity in the velocity �eld by including a small-scale velocity dispersion in their model, inanalogy to the analysis by Fisher et al. (1994b). They �nd � = 0:52 � 0:13 for the IRAS 1.2 Jy sample,and � = 0:54 � 0:3 for the QDOT survey.As in all these methods, non-linear e�ects have the potential to break the degeneracy between 
0and b. Non-linear e�ects make the e�ective value of � as derived from this method grow as a function ofscale until the linear regime is reached; the scale at which the curve asymptotes is thus a measure of the52



strength of the mass clustering, and can be used to put constraints on the bias parameter. Unfortunately,existing redshift surveys are not extensive enough to measure this e�ect with con�dence.5.2.2 Non-linear E�ectsIn linear perturbation theory, the real space density �eld di�ers from the primordial density �eld onlyby a universal scaling factor. However, this is no longer true when non-linear e�ects become important.There has been a great deal of work in recent years on non-linear extensions to Eq. (30) (Bernardeau 1992a;Gramann 1993a; Nusser et al. 1991; Giavalisco et al. 1993; Mancinelli & Yahil 1994; cf. Mancinelli et al.1994 for a comparison of these techniques), and various approximate non-linear schemes to bridge the gapbetween linear theory and N -body simulations (Peebles 1989a, 1990, 1994; Weinberg 1991; Matarrese etal. 1992; Brainerd, Scherrer, & Villumsen 1993; Bagla & Padmanabhan 1994). Here we wish to concentrateon methods to take redshift surveys back in time to their initial conditions. Weinberg (1989; 1991) adoptsthe assumption that the initial density distribution function is Gaussian, and notes that the rank orderof densities is likely to be preserved even as non-linear e�ects skew the distribution function. Thus heapplies a technique called Gaussianization, whereby the rank order of the densities at di�erent points isconserved, but the densities are reassigned to �t a Gaussian form. The details of this method dependon assumptions about galaxy biasing and the power spectrum. The idea is to apply the Gaussianizationtechnique to redshift survey data, measure the power spectrum of the resulting density �eld, and thenevolve the resulting initial conditions forward in time again using an N -body code. To the extent thatthe assumed and measured power spectra match, and the �nal results agree with the original data, onehas demonstrated consistency with the input model. Weinberg (1989) applied this technique on a volume-limited subsample of the Pisces-Perseus survey of Giovanelli & Haynes (1988). The power spectrum wasconsistent with that of standard CDM. Unbiased models did not work, not reproducing the �lamentarystructure of the real data; b = 2 was a better match to the real data. Most importantly, the analysis tests,and �nds consistency, with the assumptions of Gaussian initial conditions and gravitational instability.Nusser & Dekel (1992) have developed a time machine to take the observed density �eld (as derivedfrom a redshift survey or the POTENT method; cf. x 7.5 below) back in time. The equations of motionallow a decaying mode (Eq. 26), which gets ampli�ed if one simply reverses the density evolution equations.Nusser & Dekel (1992) instead start with the Zel'dovich equation (Eq. 34), which when expressed inEulerian coordinates yields a �rst-order di�erential equation for the velocity potential which only allows agrowing mode:@'v@D1 � 12 �r2'v�2 = 0; (101)where 'v is the potential associated with the scaled velocity �eld v � v=a _D1. This Zel'dovich-Bernoulliequation can be integrated backwards in time from observations of the density �elds; N -body tests showthe results to reproduce the initial conditions better than does linear theory.Gramann (1993a) shows that consideration of the continuity equation in the context of the Zel'dovichequation yields a correction term Cg to the right hand side of Eq. (101), given by:r2Cg �Xi 6=j @2'g@x2i @2'g@x2j �  @2'g@xi@xj!2 ; (102)where 'g is the gravitational potential.N -body tests show this equation reproduces the non-linear evolutionbetter than does Eq. (101), although this approach has not been applied to redshift surveys yet.Nusser & Dekel (1993) have used the Zel'dovich approximation in another version of their timemachine. Assuming laminar ow, one can write down the eigenvalues of the space derivatives of the initial53



velocity �eld in Lagrangian space in terms of the eigenvalues of the space derivatives of the observedvelocity �eld in Eulerian space @vi=@xi. Assuming further that linear theory holds in the initial conditions(as it should), one can derive the initial density �eld via Eq. (30); the �nal result is�initial = �D 3Xi=1 @vi=@xi1� (@vi=@xi)=(H0
0:60 ) ; (103)where D is the time dependence of the growing mode of gravitational instability (Eq. 27). They use theIRAS 1.936 Jy redshift survey and the methods of x 5.9 to generate the predicted velocity �eld and thusthe initial density �eld, from which they determine the initial density distribution function. They �nd it tobe accurately Gaussian. Application of their technique to the observed velocity �eld is described in x 7.5.1.Another approach to non-linear gravitational evolution was taken by Peebles (1989a; 1990), andampli�ed by Giavalisco et al. (1993). One can derive the exact equations of motion for a multi-bodygravitating system by �nding the stationary points of the action S:S � t0Z0 Ldt = t0Z0 dtXi �12mia2 _x2i �m�(xi)� ; (104)where the sum is over the particles in the system, mi are their masses, xi are their comoving positions,and � is the gravitational potential. Giavalisco et al. then expand the positions xi in a Taylor series, ofwhich the Zel'dovich equation (Eq. 34) is the �rst two terms:xi = xi;0 +Xj [D(t)�D0]jCj;i; (105)where the Cj;i are coe�cients to be determined. Setting the derivative of the action S with respect to theCj;i yields the set of equationst0Z0 dt [D(t)�D0]j "� ddt(a2 _xi) + ar�(xi)# = 0; (106)which can be solved for the unknowns Cj;i. This method is exact except in regions in which multi-streaminghas occurred, that is, where a single point in Eulerian space corresponds to more than one point inLagrangian space. Giavalisco et al. (1993) have tested this approach against spherical infall models, andshow that it converges very quickly. Peebles (1989a; 1990) has used this method in the analysis of thedynamics of the Local Group, and the �rst attempts to extend this method to redshift surveys can befound in Peebles (1994), and Shaya, Peebles, & Tully (1994).Hamilton et al. (1991) have taken an empirical approach to non-linear evolution of the power spec-trum. Considerations of galaxy conservation within a radius r0 �xed in Lagrangian space around a galaxyin an 
0 = 1 universe yields the hypothesis that the quantity a2J3(r0)=r30 is invariant with time, where J3is given by Eq. (62). Tests with N -body models show this in fact to be the case, and that this quantityis independent of the initial power spectrum, allowing the initial correlation function to be read o� thatmeasured. Using this method on the IRAS, CfA, and APM correlation functions allowed them to reproducethe initial correlation function, which they found to be best �t by a model invoking a mix of cold andhot dark matter. Extensions of their method can be found in Peacock & Dodds (1994), discussed furtherbelow, and Mo, Jain, & White (1995). 54



5.3 The Power SpectrumIn principle, the correlation function should contain all the information about the power spectrum,given that the two are a Fourier Transform pair (Eq. 46). However, there are two strong reasons to calculatethe power spectrum directly from redshift surveys:(i) Determination of the correlation function on large scales depends on the calculation of the di�erence oftwo numbers close to unity (Eq. 83), while errors in the mean density of a sample a�ect the amplitudebut not the shape of the power spectrum.(ii) The error analysis and covariance between the determination of the power spectrum on di�erent scalesis more straightforward than for the correlation function.The power spectrum can be calculated from a galaxy redshift survey as follows. The unsmoothed density�eld is given by a sum over Dirac delta functions:�(r) = 1nV Xi �D(ri)�(ri) � 1: (107)Taking the Fourier Transform of this yields�̂k = 1nV Xi 1�(ri) eik�ri �W (k); (108)whereW (k) � 1V ZV d3r eik�r : (109)Our estimator of the power spectrum is then�(k) � V �̂k �̂�k; (110)where the factor of V on the right hand side gets the units right. Several lines of algebra (Fisher et al.1993) show that the expectation value of this estimator is given byh�(k)i = Z d3k0P (k0)G(k� k0) + 1nV Z d3r 1�(r) ; (111)whereG(k� k0) � V(2�)3 jW (k� k0)j2: (112)Thus the power spectrum estimator is given by the true power spectrum convolved with an expressioninvolving the Fourier Transform of the volume, plus a shot noise term. In the limit of an in�nitely largevolume, G approaches a Dirac delta function.The power spectrum as so de�ned is a function of the direction of k. In practice, one averages h�(k)iover 4� steradians in k-space. Fisher et al. (1993) introduce the trick of measuring the power spectrumwithin cylinders embedded within the survey volume, whose long axis of length 2R is parallel to the vectork. If one then chooses kR = n� with n a positive integer, the window function W vanishes (Eq. 109).This has two bene�ts: �(k), and therefore the power spectrum now scale exactly with mean density, andthus errors in the mean density a�ect only the amplitude, and not the shape, of the power spectrum. In55



addition, the values of the power spectrum at di�erent values of k are uncorrelated; there is no covariancebetween them.Feldman, Kaiser, & Peacock (1994) have taken a slightly di�erent approach. They include a weightfunction in Eq. (108), and derive an expression for the variance in the power spectrum estimator, assumingthat the error distribution of P (k) is exponential (which follows from a Gaussian distribution of �(r)).Minimizing the ratio of this variance to P 2 gives the optimum weight function for galaxy i:wi = 11 + n�(ri)P (k) ; (113)which is of a similar form to the optimum weight for the mean density (Eq. 61) and the correlation function(Eq. 85). With this weight function, the variance in the estimate of the power spectrum is given by�2[P (k)] = (2�)3Vk R d3r [nw�(r)]2 ; (114)where Vk is the volume in k-space occupied by the bin in question. This expression assumes that the bins arespaced far enough apart that the covariance is negligible (this happens roughly for separations �k > 2�=R,where R is the characteristic dimension of the volume surveyed). They also derive an expression for theo�-diagonal terms of the covariance matrix; see their paper for details.The power spectrum of galaxies has been calculated for a number of redshift surveys (Baumgart& Fry 1991; Peacock & Nicholson 1991; Park, Gott, & da Costa 1992, Vogeley et al. 1992; Fisher et al.1993, Feldman et al. 1994; Park et al. 1994; da Costa et al. 1994b; Lin 1995). Although there is reasonableagreement in the literature now about the shape of the power spectrum on small scales, its amplitude,especially on large scales, remains uncertain. The data are consistent with a slope of P (k) / k�1:4 onsmall scales, and several authors (e.g., da Costa et al. 1994b) show an abrupt change of slope at 2�=k =50h�1 Mpc. All theoretical power spectra show a turnover on scales of 100 h�1 Mpc or more (Fig. 2); thishas not yet been seen unequivocally in the data. A number of authors (Peacock 1991; Torres, Fabbri, &Ru�ni 1994; Kashlinsky 1992; Branchini, Guzzo, & Valdarnini 1994; Padmanabhan & Narasimha 1993)have derived empirical power spectra to �t the various data sets. The most thorough of these analyses isthat of Peacock & Dodds (1994), who have combined a number of the above datasets, together with thereal-space correlation function (from the angular correlation function; Baugh & Efstathiou 1993). Theycorrect each for the Kaiser e�ect (Eq. 91) on large scales, and the e�ects of small-scale velocity dispersion,following Peacock (1991). Moreover, they correct for non-linear e�ects using the approach of Hamilton et al.(1991) (x 5.2.2), extending the formalism to the 
0 6= 1 case. They combine the di�erent samples, asking forconsistency while adjusting �ve free parameters: four bias values (for Abell clusters, radio galaxies, opticalgalaxies, and IRAS galaxies), plus 
0, which determines the strength of the Kaiser e�ect (Eq. 91). They�nd that 
0:60 =bIRAS = 1:0� 0:2. The small errors on this number imply that the redshift space distortionis unambiguously detected, largely based on the comparison with the real-space correlation function ofBaugh & Efstathiou (1993). The constraint on bIRAS separately is less strong, but is consistent with unity.The ratios of the various bias factors are:bAbell : bradio : boptical : bIRAS = 4:5 : 1:9 : 1:3 : 1: (115)Their results on the reconstructed linear power spectrum are shown in Fig. 9. The points are meansof the power spectrum from the various data sets, for 
0 = bIRAS = 1. The two curves are standard CDM(dashed), and � = 0:25 CDM, normalized to the power spectrum implied by the CMB anisotropies asmeasured by the COBE satellite (indicated by the box on the left-hand side of the �gure). The data areclearly far more consistent with the � = 0:25 CDM model than with standard CDM, both in amplitude56



Fig. 9. The power spectrum as derived from a variety of redshift surveys, after correction for non-linear e�ects,redshift distortions, and relative biases; from Peacock & Dodds (1994). The two curves show the Standard CDMpower spectrum, and that of CDM with � = 0:25. Both are normalized to the COBE uctuations, shown as thebox on the left-hand side of the �gure.and in shape (indeed, Peacock & Dodds come to this conclusion without consideration of the normalizationa�orded by the COBE data). This result is consistent with the conclusions of a number of workers in the�eld; we discuss the issues further in x 9.1.The second moment of the density distribution function is directly related to the power spectrum viaEq. (37). It can be calculated directly from redshift surveys as the second moment of the count distributionfunction (after correction for shot noise; cf., Peebles 1980; Saunders et al. 1991), and thus represents anotherhandle on the power spectrum itself. This has been done by Efstathiou et al. (1990), Saunders et al. (1991),Loveday et al. (1992a), Bouchet et al. (1993), and Moore et al. (1994), among others; the results they �ndare consistent with those shown in Fig. 9. A compilation of second moment results for IRAS galaxies isshown in Fisher et al. (1994a). It makes the qualitative point that the variance drops as the scale increases,as is required by the Cosmological Principle, and follows for any power spectrum with n > �3 (Eq. 39).57



5.4 Higher-Order StatisticsAs we have mentioned above, the power spectrum, or its Fourier Transform, the two-point correlationfunction, is a complete statistical description of the density �eld � only to the extent that the phases ofthe Fourier modes of � are random, implying that the one-point distribution function of the density �eldis Gaussian. Even if this condition holds for the density �eld in the early universe (as is predicted byinationary models), it begins to break down as soon as non-linear e�ects start to develop. We discussedtheoretical approaches to this problem in x 5.2.2. In this and the following section, we discuss methods ofmeasuring these non-linear e�ects from the data.One can obviously extend the de�nition of the two-point correlation function to higher order. We cande�ne the three-point correlation function for the continuous density �eld as�(r; z; jr� zj) = h�(x)�(x+ r)�(x+ z)i : (116)However, the practical de�nition in terms of the point distribution is more complicated, because of theneed to correct for the contribution due to the fact that galaxies have a two-point correlation function. Inanalogy to Eq. (81), the probability of �nding a galaxy at distinct positions r1; r2, and r3 within volumeelements dV1; dV2, and dV3 is:dP = n3 dV1 dV2 dV3�(r1)�(r2)�(r3)� [1 + �(ra) + �(rb) + �(rc) + �(ra; rb; rc)] ; (117)where ra; rb and rc are the sides of the triangle de�ned by the three points. One can immediately see thedi�culty in measuring �, as it requires subtracting four terms from the triple counts. In addition, the three-point correlation function is now a function of three numbers, not just one. The problem only gets worsefor higher-order correlation functions; the equivalent expression to Eq. (117) for the four-point correlationfunction has �fteen terms on the right hand side (Eq. 35.1 of Peebles 1980). Despite these di�culties,the three- and four-point correlation functions have been measured for the Shane-Wirtanen counts (Fry& Peebles 1978; Fry 1983; Szapudi, Szalay, & Boschan 1992), the CfA redshift survey (Bonometto &Sharp 1980; Gazta~naga 1992), and the IRAS samples (Meiksin, Szapudi, & Szalay 1992; Bouchet et al.1993). These samples have measured non-zero three- and four-point correlation functions on small scales,indicating that the phases are indeed not random. More importantly, they have shown that the three-and four-point correlation functions display a certain symmetry with respect to the two-point correlationfunction:�(ra; rb; rc) = Q [�(ra)�(rb) + �(ra)�(rc) + �(rb)�(rc)] (118)where Q is independent of scale and triangle con�guration, to the level that the data can distinguish thesethings. In particular, there are no \loop terms", proportional to �(ra)�(rb)�(rc), which puts strong con-straints on the form of biasing (e.g., Szalay 1988). A similar expression holds for the four-point correlationfunction. It has therefore been hypothesized that Eq. (118) can be generalized to the N th order correlationfunction, indicated as �N (not to be confused with the �` of Eq. 95!). Balian & Schae�er (1989) assumethat the N -point correlation function shows scale invariance:�N (�r1; : : : ; �rN ) = ��(N�1)�N (r1; : : : ; rN) ; (119)for any �. They show that this allows one to write�N(V ) = SN �2N�1(V ); (120)58



where the constants SN uniquely de�ne the hierarchical scaling, and the correlation functions averagedover a sphere are given by:�N(V ) � 1V N ZV d3r1 d3r2 : : : d3rN �N (r1; r2; : : : ; rN): (121)This volume-averaging integrates over the shape information in the high-order correlation function. Al-though there is much that can be learned from the dependence of the high-order correlations on the anglesbetween the N points (Suto & Matsubara 1994; Fry 1994), the volume-averaged statistic is much morerobust for small datasets. Moreover, the �N (V ) are equal to the irreducible N th-order moments of thedensity distribution function: the skewness is �3(V ) = h�3i, the kurtosis is �4(V ) = h�4i � 3 h�2i2, and soon (Peebles 1980). For a power-law correlation function, the relation between �(r) and its volume averagecan be calculated analytically (Peebles & Groth 1976):�2 = 72�2(3 � )(4 � )(6� ) 2 : (122)There has been a great deal of interest in recent years to calculate the hierarchy of SN , both fromthe theoretical and observational sides. The use of volume averaging mitigates the need to calculate theN -point correlation function with its dependence on N(N � 1)=2 separations. In practice, one calculatesthe moments �N of the galaxy count distribution function, which are then corrected for shot-noise e�ectsfollowing x 36 of Peebles (1980; cf. Szapudi & Szalay 1993; Gazta~naga & Yokohama 1993) to yield �N .This only works for volume-limited samples, or angular data; ux-limited samples require a more elaboratecorrection (Saunders et al. 1991). One can then compare the observations with the predicted scaling,Eq. (120). As we will see momentarily, this scaling holds remarkably well, giving support to the scaleinvariant hypothesis (Eq. 119).However, Eq. (119), or equivalently, Eq. (120), seems to have been pulled out of a hat. Before we showthe observational evidence for them, let us discuss their theoretical motivation. For initial conditions withrandom phases, all SN for N � 3 are zero initially. However, as clustering grows and becomes non-linear, thedensity distribution function becomes non-Gaussian, and higher-order moments become non-zero. Peebles(1980) �rst calculated the skewness (i.e., third moment) of the unsmoothed density �eld in second-orderperturbation theory for an 
0 = 1 universe, and showed that�3 = 347 �22; (123)in agreement with Eq. (120). However, observationally, we are always limited to the smoothed density �eld,for which the quantity S3 depends on the power spectrum (Juszkiewicz, Bouchet, & Colombi 1993):S3 = Z d3kd3k0�4(2�)6 P (k)P (k0)W (k)W (k0)W (jk� k0j)� "347 � 6� kk0 + 87P2(�)#= 347 � (1 + 3); (124)where � is the cosine of the angle between k and k0, W is the Fourier Transform of the window (cf. Eq. 38),59



and n � dn logP (k)d log kn ; (125)where the derivative is calculated at the smoothing scale. Eq. (124) is valid for �3 � 1 < 1. Thecalculations get more di�cult for increasing N ; calculation of SN requires the application of N � 1-orderperturbation theory. One can show straightforwardly, however, that in every case, the scaling of Eq. (120)holds (Fry 1984ab; Bernardeau 1992b). In a mathematical tour-de-force, Bernardeau (1994b) has set up aformalism for calculating the SN for all N for a tophat window function, and presents expressions up toN = 7 as a function of the i; i = 1; : : : ; N . It turns out that it is more di�cult mathematically to do thecalculations for Gaussian smoothing, although the cases N = 3 (Juszkiewicz et al. 1993) and N = 4 ( Lokaset al. 1994) have analytic solutions. Analogous calculations have been done for the non-linear evolution ofthe power spectrum by Juszkiewicz (1981), Makino, Sasaki, & Suto (1992), Jain & Bertschinger (1994) andothers. Feldman et al. (1994) examine the cumulative distribution function of j�2(k)j, and show it to beaccurately exponential, as expected in a Gaussian �eld. However, the expected distribution in the mildlynon-linear regime in the presence of shot noise has not yet been calculated.The results quoted thus far are for an 
0 = 1 universe in real space. The dependence of the SN on
0 is extremely weak (Bouchet et al. 1992, 1994), and is also insensitive to the transformation from realto redshift space. Moreover, it can be shown that the scaling relations Eq. (120), continue to hold underarbitrary local biasing transformations (Eq. 50), although the values of the SN themselves change (Fry& Gazta~naga 1993; Juszkiewicz et al. 1994; Fry 1994). Biasing models which are non-local, in which theprobability that a galaxy be formed at a given point is a function of events removed by tens of Mpc fromthat point, have been invoked to explain the mismatch of the observed power spectrum with Standard CDM(e.g., Babul & White 1991; Bower et al. 1993). However, such models break the scale-invariant hierarchy byadding loop terms (e.g., Szalay 1988), and Frieman & Gazta~naga (1994) have used the excellent agreementwith the scale-invariant predictions (e.g., Fig. 10) to rule out a wide class of these models.The calculation of S3 and S4 has been done for the CfA and SSRS samples (Gazta~naga 1992) andthe IRAS 1.2 Jy sample (Bouchet et al. 1993), as well as for various angular catalogs (Szapudi, Szalay, &Boschan 1992; Meiksin, Szapudi, & Szalay 1992; Gazta~naga 1994; Szapudi et al. 1995). All these authorshave found beautiful agreement with the predicted scaling relation: the results from the IRAS survey areshown in Fig. 10. Gazta~naga (1994) �nds that the value of S3 varies slightly with scale; this is expected byEq. (124) if the power spectrum is not a pure power law. Inserting the power spectrum for the APM countsof Baugh & Efstathiou (1993) in Eq. (124) gives beautiful agreement with the observed values, implyingthat the biasing is very weak. This conclusion depends on the biasing being linear; non-linear biasing canmimic absence of biasing in the dependence of S3 on scale.Thus the scaling relations Eq. (120) were originally hypothesized on largely aesthetic grounds. Theywere found to be predicted by perturbation theory assuming Gaussian initial conditions, and growth ofstructure via gravitational instability. Indeed, calculations of the skewness in initially non-Gaussian models(Fry & Scherrer 1994; Bouchet et al. 1994) show that the leading behavior goes like �23=2, rather than �22as observed. May we therefore conclude that we can rule out non-Gaussian models? Unfortunately, theanswer is no. First, the �23=2 term decays with time, and at late times, may be negligible. Moreover, asmany have quipped, referring to non-Gaussian models is a little like referring to non-elephant animals; therange of possible non-Gaussian models is vast. Weinberg & Cole (1992) set up a series of non-Gaussianmodels by skewing the density distribution function of an initially Gaussian model, but the resulting non-Gaussianity exists only on the smoothing scale on which � is de�ned. On scales appreciably larger thanthis, the Central Limit Theorem guarantees that the distribution is Gaussian again, and the scaling lawsbetween the various moments will continue to hold. Thus one needs to examine each speci�c non-Gaussian60



Fig. 10. The skewness (upper panel) and the kurtosis (lower panel) of the IRAS density �eld for various smoothinglengths, as a function of the variance. The plots are logarithmic. The lines drawn are least-square �ts, with slopes1:96� 0:06, and 3:03� 0:18, respectively. This �gure is taken from Bouchet et al. (1993).model in turn, ask for its predictions for the scaling either using analytic techniques or N -body simulations(Moscardini et al. 1991; Weinberg & Cole 1992), and compare with the data. This process has not beencarried out in detail at this writing.Finally, Fig. 10 shows that the scaling relation between the moments predicted by second-orderperturbation theory holds well into the highly non-linear regime, where it has no right to hold (althoughthis has been a working hypothesis for the closure of the so-called BBGKY equations; cf., Davis & Peebles1977). Similar behavior has been seen in N -body simulations (e.g., Juszkiewicz et al. 1994). There iscontroversy about the e�ect of redshift space distortions in these analyses: Lahav et al. (1993a), Suto &Matsubara (1994), and Matsubara & Suto (1994) argue on the basis of N -body simulations that redshiftspace distortions make the SN closer to constant than in real space in the non-linear regime, a conclusionsupported by the analytic calculations of Matsubara (1994a), and the observations of the Pisces-Perseusregion by Ghigna et al. (1994). However, Fry & Gazta~naga (1993) �nd that the SN are remarkably constantin both redshift and real space on small scales, in a variety of redshift surveys. In any case, there exists noanalytic argument as to why hierarchical scaling should hold into the non-linear regime.61



5.5 The Density Distribution Function and Counts in CellsOne of the striking features of the galaxy distribution is the presence of voids as much as 6000 km s�1in diameter. The statistical tools that we have presented thus far do not clearly indicate their presence; wesee no feature in the correlation function on such scales. Thus we look for a statistic that is more speci�callyoriented to describing the visible structures that we see. One such statistic is the void probability function.Imagine laying down a series of spheres of radius r randomly within a large volume populated with galaxies.De�ne the void probability function P0(r) as the fraction of those spheres which contain no galaxies. Inthe absence of clustering, Poisson statistics yieldsP0(r) = e�nV ; (126)where n is the mean density of galaxies and V = 4�r3=3 is the volume of a sphere. In the clustered case,P0 depends on the whole hierarchy of correlation functions, as shown by White (1979):P0(r) = exp" 1XN=1 (�nV )NN ! �N (r)# ; (127)where the volume-averaged correlation functions were introduced in Eq. (121). Thus the void probabilityfunction is a complementary statistic to the correlation functions. One can compute not only P0, but alsothe probability of observing N galaxies within a sphere; it is related to P0 as:PN (r) = (�n)NN ! @NP0(n; r)@nN : (128)The void probability function is clearly a strong function of the sparseness of a given sample, and thusmasks to a certain extent the underlying galaxy distribution. One way around this is to de�ne a samplingindependent quantity �:�(r) = � 1nV lnP0(r); (129)so that a Poisson distribution gives � = 1 (Eq. 126). If the hierarchical hypothesis Eq. (120) holds, thenEq. (127) implies that � is a universal function, independent of the sampling; indeed, this is observedfor the IRAS galaxies (Bouchet et al. 1993, but see Vogeley et al. 1991). �(r) is a smooth monotonicallydecreasing curve with no features; no particular scale is picked out.The void probability function is potentially a useful discriminant of cosmological models. However,Weinberg & Cole (1992) and Little & Weinberg (1994) found that the void probability function is insensitiveto the power spectrum or the density parameter, and is more sensitive to the details of the biasing schemethan to the bias value itself.Under the scale-invariant hypothesis (Eq. 119), one can make quite detailed predictions for the formof the PN (Balian & Schae�er 1989). Indeed, the density distribution function is given by (cf. Bernardeau& Kofman 1994):f(�) = 12�i�2 +i1Z�i1 dy exp24 1Xp=1 Sp(�)(�1)p�1yp�2p! + (1 + �)y�2 35 ; (130)62



which is an exact expression to the extent that the Sp are exact 18 . The PN follow from this after convolvingwith a Poisson distribution to include the e�ects of shot noise.The various predictions developed by Balian & Schae�er (1989) based on the scale-invariant hypoth-esis have been checked in N -body simulations (Bouchet et al. 1991; Bouchet & Hernquist 1992), althoughvery dense sampling is required to test the full suite of predictions. The PN have been derived observa-tionally for various data sets (Alimi, Blanchard, & Schae�er 1990; Maurogordato, Schae�er, & da Costa1992; Lahav & Saslaw 1992; Bouchet et al. 1993). The latter authors compare the observed counts in cellswith various models, and �nd that a range of models (including those of Carruthers & Shih 1983; Saslaw& Hamilton 1984; Coles & Jones 1991) become degenerate at the sparse sampling of existing surveys, andthe data cannot distinguish between them.Another approach to the density distribution function (which is just PN (r) at constant r) was intro-duced by Juszkiewicz et al. (1994). On large scales, where the second moment of the distribution function�2 � h�2i is small, the deviation of the distribution function from a Gaussian is expected to be small. Thusit makes sense to expand the distribution function in orthogonal polynomials relative to the Gaussian. TheEdgeworth expansion does this:f(x) = 1(2�)1=2 e� 12x2� �1 + 16S3H3(x)� + � 124S4H4(x) + 172S23H6(x)��2 + � � �� ; (131)where the HN (x) are the Hermite polynomials, and x = �=�. This is found to give an excellent �t to thedistribution function in N -body models for small �, although for � � 0:5 the Edgeworth expansion startsgoing unphysically negative at moderate values of x. Maximum-likelihood calculations of SN using �ts ofEq. (131) to the observed PN may be more robust than calculation of the moments directly. Indeed, theresults of the moments method are heavily weighted by the tails of the distribution. This is dangerouswhen working within a �nite volume, because one is sensitive to the rare dense clusters (Colombi, Bouchet,& Schae�er 1994ab).We motivated this section by pointing out that standard correlation statistics do a poor job of quanti-fying the largest scale features that are apparent to the eye in redshift maps. The void probability functiongoes part of the way in �lling this need, although it is not as discriminating a statistic between di�er-ent cosmological models as was hoped. There have been a number of papers discussing various statisticsto capture the largest-scale features apparent in the redshift maps (Tully 1986, 1987a; Broadhurst et al.1990; Babul & Starkman 1992), although again the robustness of these statistics, and their discriminatorypower, have been questioned (Postman et al. 1989; Kaiser & Peacock 1991). One of the most successfulstatistics to describe large-scale structure in a way complementary to correlation functions uses conceptsfrom topology, to which we now turn.5.6 Topology and Related IssuesWhat is the mental picture we should have of the topology of the galaxy distribution? Is it a uniformsea of galaxies punctuated by rich clusters embedded in it, like meatballs in a bowl of spaghetti? Dramaticvoids are what catch the eye in Fig. 3; would a better picture be a uniform distribution with voids scoopedout of it, like a piece of swiss cheese? If the density distribution is Gaussian, then there should in fact be a18 That is, if one wants a result accurate to N th order, one needs the Sp, p < N calculated to N th order as well;it is not adequate to calculate the Sp to lowest non-vanishing order. The higher-order corrections to the Sp havenot yet been calculated. 63



topological symmetry between underdense and overdense regions, like a piece of sponge. Motivated by theseconsiderations, Gott, Melott, & Dickinson (1986), who are responsible for these food analogies, suggestedmeasuring the topology of the galaxy isodensity surfaces. In particular, given a surface in three-space, onecan de�ne the principal radii of curvature a1 and a2 at every point. By the Gauss-Bonnet theorem, theintegral of the Gaussian curvature K � 1=a1a2 over the surface is given byC � Z K dA = 4�(1� g); (132)where g is the genus number of the surface (the number of holes minus the number of disjoint pieces,plus 1). Thus measurements of the Gaussian curvature give the genus of the surface. A plot of genusof the isodensity surface as a function of density thus tells us the change in the topology at di�erentcontrast levels. What do we expect in the Gaussian model? At very high density contrasts, the isodensitycontours will surround isolated clusters, and thus the genus will be negative. Similarly, for � close to �1, theisodensity contours will surround isolated voids, and again the genus will be negative. The mean isodensitycontour will be multiply connected and sponge-like, and thus have a positive genus. One can calculateanalytically the genus number in the Gaussian case (Doroshkevich 1970; Bardeen et al. 1986; Hamilton,Gott, & Weinberg 1987; cf. Coles 1988 for speci�c non-Gaussian models):g � 1 = V4�2  hk2i3 !3=2 (1 � �2) e� 12�2 ; (133)where V is the volume of the survey, � = �=� is the level of the density in units of the rms of the density�eld,Dk2E � R d3k k2W (k)P (k)R d3kW (k)P (k) (134)is the second moment of the smoothed power spectrum, and W (k) is the Fourier Transform of the smoothingwindow. Measurements of the genus as a function of � thus characterize the general topology of the density�eld. In particular, we can test the Gaussian hypothesis by comparing the observed form to Eq. (133).To the extent that the observed genus curve is well-�t by the Gaussian form, the amplitude of the curveis a measure of the shape of the power spectrum at the wavelength of the smoothing. The amplitude ofthe power spectrum cancels out of Eq. (134). Gott and collaborators use a volume-weighting techniqueto reduce the sensitivity of the topology statistic to non-linear evolution and to separate the topologicalinformation from that carried by the density distribution function. Calculations of the genus curve fromredshift surveys have been carried out by Gott et al. (1989), Moore et al. (1992), and Vogeley et al. (1994),using a tessellation technique for measuring the genus number (Gott et al. 1986; cf. Weinberg 1988 for thesource code). Unfortunately, the volume of existing surveys is small, and thus for smoothing lengths in thelinear regime, the maximum genus levels are � 20. The results show a slight \meatball" shift relative tothe Gaussian case; that is, the overdense contours show larger values of g than Eq. (133) would predict.This is in the sense expected from non-linear evolution (Matsubara 1994b). The amplitude of the genuscurve as a function of smoothing scale is in rough agreement with that predicted by CDM, although Mooreet al. (1992) �nd some evidence for power in excess of CDM predictions on large scales. Statistical errorsof the measurement of genus are usually calculated using bootstrap techniques, although these su�er fromthe same drawback as bootstraps for correlation functions (x 5.1). At the moment, there is no rigorouserror analysis of the genus statistic, nor any calculation of the e�ects of shot noise (which will tend to makethe distribution function look more Gaussian). Very recently, Matsubara (1995) has studied the e�ect ofredshift space distortions on the genus statistic. 64



A related statistic was invented by Ryden (1988): the area of the isodensity surfaces. For a Gaussian�eld, one again expects a symmetric function, which again peaks at the mean density. The area is givenby A = 2V�  hk2i3 !1=2 e� 12�2 : (135)Ryden et al. (1989) invented a clever technique to measure this statistic, involving counting how oftenskewers put randomly through the survey volume intersect the isodensity surface, and applied this to theCfA survey and the Giovanelli & Haynes Perseus-Pisces survey. At 1200 km s�1 Gaussian smoothing, theresults closely matched the linear theory predictions. At 600 km s�1 smoothing, however, the data showedstronger deviations from Gaussianity than did any of the models examined. However, their models wereprobably not evolved forward to become su�ciently non-linear on 600 km s�1 scales; this remains a problemfor further investigation.5.7 The DipoleOne of the early motivations behind redshift surveys of the full sky was to apply Eq. (33) to the LocalGroup. The CMB shows a dipole anisotropy of amplitude �T=T � 10�3 (Kogut et al. 1993, and referencestherein), which is interpreted as a Doppler e�ect due to the motion of the earth relative to the rest frameof the last scattering surface. When transformed to the barycenter of the Local Group following Yahil etal. (1977), this motion is 627�22 km s�1 towards l = 276�3�, b = +30�3� (Galactic coordinates). Givena full-sky redshift survey, a comparison of this motion with the dipole moment of the galaxy distributionis a direct measure of �. In fact, because both gravity and received light obey the inverse-square law, ifone assumes a constant mass-to-light ratio for the galaxies, there is a direct proportionality between thepeculiar velocity and the ratio of the dipole and monopole moments of the light distribution, allowingEq. (33) to be applied using angular data only (Gott & Gunn 1973). The angular dipole moment of thegalaxy distribution has been measured by a number of authors using a variety of galaxy catalogs (Meiksin& Davis 1986; Yahil, Walker, & Rowan-Robinson 1986; Villumsen & Strauss 1987; Lahav 1987; Harmon,Lahav, & Meurs 1987; Lahav, Rowan-Robinson, & Lynden-Bell 1988; Plionis 1988; Lynden-Bell, Lahav,& Burstein 1989; Kaiser & Lahav 1989; Scharf et al. 1992). The �rst impressive result of these analysesis that the vector direction of the light dipole agrees with that of the CMB dipole to within 10 � 30�,depending on the speci�c sample and analysis used. There is greater disagreement in the amplitude of thedipole, with results varying from � = 0:3 to � = 1:2. Rather than discuss the details of this here, let usmove to the application of Eq. (33) using redshift surveys.The �rst measurement of the gravitational dipole from a redshift survey was by Davis & Huchra(1982), using a combination of the CfA and Revised Shapley-Ames (Sandage & Tammann 1981) surveys.Given the limited sky coverage of their sample, they were able only to measure the component of theacceleration towards the Galactic poles, which they compared to measured Virgocentric infall (x 8.1.1), to�nd values of � 19 ranging from 0.38 to 0.74, depending on exactly what assumptions were made. Morerecently, Pellegrini & da Costa (1990) combined redshift survey data from several di�erent surveys, andcarried out a similar comparison to the Virgocentric infall; they found � in the range 0.24 to 0.56. Furtherprogress had to await the completion of redshift surveys of the entire sky. The dipole moment of the IRASQDOT redshift surveys was calculated by Rowan-Robinson et al. (1990), who found convergence of thedipole only beyond 10,000 km s�1. The amplitude of the dipole implied � = 0:82 � 0:15. Hudson (1993b)19 This paper was written before the concept of biasing was formulated, and so the results are quoted in terms of
0, not �. 65



used his reconstruction of the optical galaxy density �eld to calculate the galaxy dipole; assuming that thedipole converges within 8000 km s�1 allowed him to conclude that � = 0:80+0:21�0:13.We cannot simply calculate the right hand side of Eq. (33) given a redshift survey. The quantity thatwe do calculate is the dipole moment of the galaxy distribution:Dipole = �4�nXi W (ri) r̂i�(ri) r2i : (136)This di�ers from the dipole integral because of a number of e�ects, which we need to quantify:(i) Shot noise, which of course gets worse as the sample gets sparser at greater distances. In addition,Eq. (136) assumes a constant mass per galaxy, independent of the luminosity. It is straightforward torecast Eq. (136) in terms of luminosities, which is more appropriate for a luminosity measured in theoptical than the IRAS bands (cf., Hudson 1993b). Appendix A of Strauss et al. (1992c) shows thatthe shot noise is a more important e�ect than mass-to-light ratio for all but the nearest galaxies.(ii) The integral extends over all of space, while the galaxy dipole is necessarily measured through awindow W (r), with cuto�s at both large and small distances, to minimize shot noise. Juszkiewicz,Vittorio, & Wyse (1990), Lahav, Kaiser, & Ho�man (1990), and Peacock (1992) point out that thecontributions to the dipole due to material outside of the window can be substantial.(iii) Eq. (33) assumes linear theory, while non-linear e�ects also come into play on small scales.(iv) No redshift survey truly covers the whole sky. We discussed this issue in x 3.8.(v) As Kaiser (1987) pointed out, redshift space distortions cause systematic errors in the derived dipole.In particular, if redshifts are corrected for a value of the Local Group peculiar velocity in error by anamount v, the derived dipole will have a spurious contribution (the rocket e�ect) given by�v3 Z drr  2 + d ln�d ln r! : (137)Strauss et al. (1992c) develop a maximum likelihood analysis that allows them to take the �rst three ofthese e�ects into account. A power spectrum must be assumed in the analysis in order to quantify thee�ect of density uctuations outside the assumed window. Indeed, one can include parameters of the powerspectrum in the maximum likelihood analysis, although in practice, the constraints one can put on modelsare not very strong. The rocket e�ect is minimized using self-consistent solutions for the velocity �eld (cf.x 5.9). The IRAS data imply � = 0:55+0:20�0:12, where the angle between the acceleration and velocity vectorsis 18 � 25�, depending on which self-consistent velocity �eld is used.In models without large amounts of power on large scales, one expects the dipole to converge withinthe volumes probed by redshift surveys; that is, the contribution to the dipole on large scales should benegligible. The Strauss et al. results are consistent with the dipole converging within 4000 km s�1, althoughthis depends on which self-consistent density �eld is used, and how one corrects for the Kaiser e�ect. Inaddition, there is a substantial dipole moment contributed by galaxies between 17,000 and 20,000 km s�1,aligned with the low-redshift dipole, although the sample is so sparse at those redshifts as to make thissigni�cant at only the 2 � level. If this large additional contribution to the dipole is found at highersigni�cance level with deeper redshift surveys, this will imply large amounts of power on large scales, anda smaller value of � than inferred above.5.8 Spherical HarmonicsAn approach to quantifying the galaxy density �eld complementary to correlation functions uses themethod of spherical harmonics. The Fourier components of the density �eld that are used in the power66



spectrum are orthonormal within a cube. Spherical harmonics are an orthonormal set of functions on asphere, and thus are especially appropriate for full-sky samples. They o�er a natural way to smooth thedata; if one expands to a given order in l, the smoothing length is an increasing function of distance fromthe observer, mimicking the drop-o� in the sampling in a ux-limited sample.Spherical harmonics are simply the generalization to higher order of the dipole analysis discussed inthe previous section. They have been used for many years to describe the distribution of galaxies in thecelestial sphere, when redshift information was unavailable (Peebles 1973; Peebles & Hauser 1973, 1974;Fabbri & Natale 1989; Scharf et al. 1992). One can express the galaxy density �(�; �) on the sky in sphericalharmonics as�(�; �) = Xl=0 m=+lXm=�l clmYlm(�; �); (138)where the coe�cients of the observed dataset are given byclm = Xi Y �lm(�i; �i)� N!sample Z!sample d!Y �lm(!): (139)The sum is over the N galaxies in the sample, and the integral is over the solid angle subtended by thesample !sample. For an exactly full-sky sample, the second term vanishes.The spherical harmonics can be related to the power spectrum straightforwardly. Scharf et al. (1992)show that the expectation value of the square of the coe�cients in a Gaussian model with power spectrumP (k) is given by:Djclmj2E = Xl0;m0(l6=0) jWll0;mm0 j2 Djal0m0j2E ; (140)whereWmm0ll0 � Z!sample d!Ylm(!)Y �l0m0(!) (141)is a tensor which couples together di�erent modes in the case of incomplete sky coverage, and the sphericalharmonics in the case of complete sky coverage are given byDjaml j2E = 2� Z k2P (k) dk ����Z r2�(r)jl(kr) dr����2 + N!sample : (142)Scharf et al. (1992) used the angular distribution of the IRAS 1.936 Jy sample to put limits on the powerspectrum, parameterized by an amplitude and a shape parameter, � � 
0h (Eq. 42). A maximumlikelihoodanalysis yields 
0h = 0:25, �8 = 0:8, with remarkably tight error bars.Scharf & Lahav (1993) have extended this analysis using the redshift information of the 1.936 Jysample as well. Much the same formalism is used, with the addition of a redshift weighting factor f(r) in theexpansion of the density �eld (Eq. 138). In analogy to the dipole analysis described in the previous section,the growth of all the multipole moments with redshift is used as a diagnostic of the power spectrum. Theresulting constraints on the power spectrum are similar to those which Scharf et al. (1992) found from theangular data alone, although Scharf & Lahav point out that redshift space distortions are a non-negligiblee�ect. 67



Fisher, Scharf, & Lahav (1994) have calculated these redshift space distortions in linear theory. They�nd that the rms spherical harmonic amplitudes for a full sky redshift survey (i.e., !sample = 4�), asmeasured in redshift space, isDjalmj2E = 2� Z k2P (k) dk� �����Z r2�(r)f(r)jl(kr) dr + �k Z r2�(r) dfdr �j 0l(kr) � 13�l1� dr�����2 ; (143)compare with Eq. (142). When measured for a real data set, there is of course an additional term due toshot noise. The � dependence of Eq. (143) means that one can use the redshift distortions to measure �, inexact analogy to the analyses of redshift space distortions of the correlation function and power spectrum.Of course, the shape and amplitude of the power spectrum also come into play; using a generic CDMspectrum (Eq. 42), Fisher (1994) �nds � = 0:94� 0:17 and � = 0:17� 0:05. A similar analysis by Heavens& Taylor (1994) yields � = 1:1� 0:3.5.9 Recovering the Real Space Density FieldAs we have emphasized throughout this review, redshifts are not equivalent to distances; the twodi�er due to peculiar velocities. However, to the extent that peculiar velocities are due to gravity, andthat linear theory holds, we can use Eq. (33) to estimate these peculiar velocities. Of course, this requiresknowledge of the density �eld, of which have a distorted view due to peculiar velocities. Thus we look fora self-consistent solution to the density and velocity �eld, given redshifts and positions for a ux-limitedredshift survey of galaxies, and assuming a value of �. In practice, this is doable only for full-sky redshiftsurveys, for which the integral in Eq. (33) can be carried out.Yahil et al. (1991) describe an iterative technique to �nd this optimum solution. We describe it herein its latest incarnation (Willick et al. 1995d), as applied to the IRAS 1.2 Jy sample:(i) Galaxies are initially placed at their redshift space positions. The selection function is calculated bythe methods of x 3.4. The 10� wide zone of avoidance centered on the Galactic plane is �lled withgalaxies at a density interpolated from higher-density regions (x 3.8).(ii) A smoothed density �eld is de�ned by assigning the galaxies to a grid, weighting by 1=�, and smoothingwith a Gaussian using FFT's. The resulting density �eld is �ltered with the power-preserving �lter(x 3.7), taking into account the increased shot noise as a function of distance from the origin.(iii) Eq. (30) is solved for the velocity �eld, again using FFT techniques.(iv) Given the density �eld �(r) and velocity �eld v(r) along the line of sight r̂ to a given galaxy withLocal Group redshift cz and ux f , one can calculate the probability P (rjcz; f) dr that it have distancebetween r and r + dr:P (rjcz; f) dr/ [�(r) + 1] r2 dr�(4�r2f)� exp8<:�12 "cz � fr + r̂ � [v(r)� v(0)]g�v #29=; ; (144)where � is the galaxy luminosity function, v(0) is the peculiar velocity at the origin, and �v is ameasure of the small-scale velocity dispersion not included in the smooth velocity �eld model. Thismethod is inspired by the analysis discussed in x 8.1.3 below. If the velocity �eld model were perfect,the exponential would be replaced by a delta function at cz = r+r̂�[v(r)�v(0)]; the Gaussian includedhere parameterizes our ignorance about the velocity �eld on scales smaller than the smoothing length.68



In the presence of clusters, there are regions in which the peculiar velocity changes with distance fastenough that one �nds triple-valued zones, in which a given redshift can correspond to three distances.This is illustrated in Fig. 11, which shows the relation between redshift and distance along a line ofsight which intersects a large cluster. Infall into the cluster causes the dramatic S-curve. A galaxy ata redshift of 1200 km s�1 could lie at any of the three distances. The probability function of Eq. (144)is shown as well; it correctly parcels the probability among these three solutions. In particular, thenearest crossing point is most strongly favored, given the luminosity function weighting.(v) The density �eld is recalculated using the distribution function above and it and the velocity �eld areoutput. The value of � is incremented on each iteration so that the e�ects of peculiar velocities growgradually, the selection function is recalculated, and the iterations start again at step (iii) above.This is the method used to generate Figs. 6-8 above. This basic approach of an iterated solution to thevelocity �eld via Eq. (33) has been used by Yahil et al. (1991), Strauss et al. (1992c), Hudson (1993ab),and Freudling et al. (1994).Nusser & Davis (1994a) take a di�erent approach to the problem. They point out that the di�er-ence between the redshift and real space position of galaxies is directly related to the displacement of agalaxy from t = 0 to the present (the Zel'dovich approximation, Eq. 34). Conservation of galaxies, and theassumption that the velocity �eld is irrotational, allows them to write down a Jacobian for the transfor-mation from the initial conditions in real space to the �nal con�guration in redshift space, which yields adi�erential equation for the velocity potential �. Expanding � and the density �eld �(s) in redshift spaceon a given shell in spherical harmonics yields the equation:1s2 dds  s2 d�lmds !� 11 + � l(l+ 1)�lms2 = �1 + �  �lm � 1s d ln�d ln s d�lmds ! ; (145)where � is the selection function, and s is the redshift coordinate. This equation can be integrated for �lmusing standard numerical techniques, and the radial velocity �eld can then be derived by di�erentiation.This method has the advantage that it does not require iteration (every term in Eq. (145) is in redshiftspace), but because it requires a one-to-one correspondence between real and redshift space, it does notallow the existence of triple-valued zones.A similar approach is taken by Fisher et al. (1994d). They decompose the density �eld with sphericalharmonics and spherical Bessel functions for the radial component:�(r) = lmaxXl=0 +lXm=�l nmax(l)Xn=1 Clnjl(knr)Ylm(r̂): (146)They use the fact that for a survey with full-sky coverage, redshift space distortions couple onlymodes with a given l but with di�erent n's, but there is no coupling between di�erent angular modes. Thecoupling matrix is analytic, and its inverse allows the real space � to be calculated from the redshift space �,one spherical harmonic at a time. The velocity �eld then follows directly from Eq. (33). In practice, Fisheret al. (1994d) use the Wiener �lter to suppress shot noise. This method also does not require iteration.Fisher et al. (1994d) test the three methods presented here with the aid of a mock IRAS 1.2 Jy redshiftsurvey drawn from an N -body simulation; all three give residual rms errors in the radial peculiar velocity�eld in the Local Group frame for galaxies within 6000 km s�1 of � 200 km s�1. These comparisons haveonly been made at the positions of the galaxies used in the analysis; there is a need to compare the fullvelocity and density �elds on a uniform grid.Other approaches to real space reconstruction of redshift surveys include Kaiser et al. (1991), Taylor& Rowan-Robinson (1994), Gramann (1993b), & Tegmark & Bromley (1994).69



Fig. 11. An illustration of a triple-valued zone. The S-shaped curve shows the relation between redshift and distancealong the line of sight to a cluster. A galaxy with a redshift of 1200 km s�1 can lie at three distinct distances.When the small-scale noise inherent in any velocity �eld model, as given by the scattered points, is taken intoaccount, the distribution function of distances for a given redshift gets smoothed out, as shown as the three-peakedcurve at the bottom.5.10 Clustering of Di�erent Types of GalaxiesGalaxy formation is a very poorly understood process. Our di�culties in understanding it stem bothfrom our ignorance of the nature of dark matter, which presumably forms the potential wells within whichthe baryons that eventually form the stars of the galaxy fall, and the extreme complexity of the diversehydrodynamic and stellar dynamic e�ects that become important as gas begins to radiate and stars form.In the context of this review, our principal concern is to gain some understanding of the relative distributionof the dark matter and galaxies, because it is the sum of the two which gravitates, while we can observeonly the latter directly. In x 2.4, we introduced the concept of biasing, and discussed the various contextsin which we might imagine that the distributions of galaxies and dark matter might di�er. Here we askhow we might �nd observational evidence for biasing.70



We observe that galaxies come in a variety of types, de�ned morphologically: from elliptical galaxies,through lenticulars, and then spirals both barred and unbarred, and �nally irregulars and dwarfs of varioussorts. If galaxies as a whole are biased relative to the dark matter, in the sense that the large-scaledistributions of the two di�er on large scales, one would expect that the process of galaxy formation causedthe distribution of each of the galaxy types to be biased with respect to one another. Again, because galaxyformation is a poorly understood process, we do not have an accepted model for the Hubble sequence ofmorphological types, and we cannot be much more speci�c than this at this stage of our understanding.Nevertheless, this o�ers a well-posed observational problem: if we can measure biasing of one galaxy typerelative to another, we have the potential of constraining biasing models.One form of relative biasing has been known about since the time of Hubble: the cores of rich clustersare preferentially rich in elliptical galaxies. This was put on a �rm quantitative basis by Dressler (1980ab;1984) and Postman & Geller (1984), who showed that the relative fraction of elliptical galaxies rose from itsmean of � 15% in the �eld starting at overdensities of � � 200, to nearly unity in the highest-density regionsof clusters. This means that redshift maps of elliptical galaxies in redshift surveys look qualitatively verydi�erent from those of spiral galaxies: the clusters are much more prominent in the former (cf. Giovanelliet al. 1986; Huchra et al. 1990a). This dramatic segregation of ellipticals and spirals does not extend intothe �eld, but subtle relative biasing on large scales between the two have not yet been ruled out.A number of workers have looked for such e�ects in the correlation statistics (Davis, Geller, & Huchra1978; Giovanelli, Haynes, & Chincarini 1986; Santiago & da Costa 1990; Einasto 1991). One of the morepowerful statistics for this purpose is the cross-correlation function �12(r) for two populations of galaxies 1and 2. The number of galaxies of type 2 within a shell a distance r from a galaxy of type 1 is n2 dV [1+�12(r)].One can compare the cross-correlation function with the auto-correlation function of either galaxy type;the ratio of the two is a measure of the relative bias of the two types of galaxies. This approach is especiallyappropriate when one of the two types of galaxies is quite a bit rarer than the other; the cross-correlationfunction is much more robust than the auto-correlation function of the rarer sample. The literature onsearches for relative biases in di�erent populations is vast: in addition to the morphology surveys discussedabove, people have looked for segregation as a function of surface brightness (Davis & Djorgovski 1985;Bothun et al. 1986; Mo & Lahav 1993; Mo et al. 1994), luminosity (Hamilton 1988; Davis et al. 1988; Valls-Gabaud, Alimi, & Blanchard 1989; Thuan, Gott & Schneider 1987; Eder et al. 1989; B�orner, Mo, & Zhou1989; Salzer, Hanson, & Gavazzi 1990; Bouchet et al. 1993; Park et al. 1994; Loveday et al. 1994, Marzkeet al. 1994), emission-line properties (Salzer et al. 1988), and even mass (White, Tully, & Davis 1988).In addition, there have been comparisons of the distributions of galaxies selected in di�erent wavebands,including IRAS vs. optical (Babul & Postman 1990; Lahav, Nemiro�, & Piran 1990; Strauss et al. 1992a),and radio vs. optical (Shaver 1991; Peacock & Nicholson 1991; Mo, Peacock, & Xia 1993).The results of these various studies are often contradictory, but can be summarized as follows: onsmall scales, the correlation functions of late-type, lower surface brightness galaxies are weaker than that ofearly type galaxies by a factor of 1.5 to 2, depending on the exact sample used. There is also evidence thatthe later-type galaxies show a shallower slope. There is a similar relation between the IRAS and opticalcorrelation functions (Eqs. 90 and 94); this is not surprising, given that IRAS galaxies tend to be late-typespirals. There is a weak dependence of the correlation strength on luminosity in both optical and IRASbands, in the sense that more luminous galaxies show stronger correlation. This is worrisome, as it is aviolation of the universal luminosity function assumption (x 3.4). In particular, it means that clusteringstatistics derived from ux-limited samples will have systematic errors. The correlation function on smallscales is heavily weighted by pairs of galaxies nearby, where the sampling is higher and thus there are morepairs. However, the nearby objects have lower luminosity in the mean than those galaxies further away,and if the correlations of the former are indeed weaker, the derived slope of the correlation function will betoo shallow. With these e�ects in mind, some workers (e.g., Park et al. 1994) have restricted themselves71



to volume-limited samples in calculating clustering statistics from redshift surveys.One of the most striking features of the observed galaxy distribution is the presence of voids. Modelswith little power on small scales have galaxies forming from the fragmentation of pancakes, and thusnaturally predict voids. Explosion models (Ikeuchi 1981; Ostriker & Cowie 1981) naturally evacuate largeregions of space in which galaxies will not form. Alternatively, models that exhibit strong biasing predictthat very few galaxies form in underdense regions, naturally creating voids. However, one would expectthat in these various scenarios, those few galaxies within voids should have di�erent physical propertiesfrom galaxies in the denser regions (Dekel & Silk 1986; Ho�man, Silk, & Wyse 1992; Brainerd & Villumsen1992). A number of workers have compared the redshift maps of bright galaxies with dwarf galaxies (Ederet al. 1989; Thuan, Gott, & Schneider 1987), low surface brightness galaxies (Bothun et al. 1986; Mo et al.1994), emission-line galaxies (Salzer et al. 1988), HI-rich galaxies (Weinberg et al. 1991), and IRAS galaxies(Babul & Postman 1990; Strauss et al. 1992a); no distinct population of galaxies that \�lls the voids" hasyet been found. Alternatively, a number of workers have looked for distinguishing physical properties ofthose galaxies in voids and in more normal environments (Ho�man, Lu, & Salpeter 1992; Szomoru et al.1994b); no strong e�ects are seen, in contrast to the situation in clusters, where dramatic di�erences inmean galaxy properties are seen as a function of local density. Peebles (1989; 1993) argues that this lackof physical di�erences between void galaxies and those in mean density environments is a strong failingof the biasing model. Santiago & Strauss (1992) do a point-by-point comparison of the density �elds astraced by di�erent galaxy types in the CfA survey; the di�erences they see between ellipticals and spiralsare statistically signi�cant, with spirals being over-represented relative to ellipticals in the intermediate-density region (� � 2) around the Virgo cluster. Con�rmation of this result will require larger sampleswith more accurate Hubble types; this is one of the principal motivations of the Optical Redshift Survey(Santiago 1993; Santiago et al. 1995a, b).6 Peculiar Velocity Fields: Techniques of Measurement and AnalysisWe have learned a great deal about the large-scale structure of the Universe from the redshift surveysdiscussed in preceding chapters. In these surveys we have generally taken the measured redshift cz as adistance indicator, enabling us to construct three-dimensional maps of the distribution of galaxies. We havealso gone one step beyond this, combining theory with observations to use the redshift maps as a means ofstudying the origin of large scale structure, and the value of the cosmological density parameter 
0. Theseanalyses have been premised on the gravitational instability paradigm, according to which structure growsdue to gravitational ampli�cation of initial density perturbations (x 2.2). But redshift measurements donot, by themselves, lead to a conclusive test of the gravitational instability paradigm. Such a test requiresthe additional information we gain from what we broadly refer to as peculiar velocity surveys.The limitations of redshift surveys stem from their inability to separate the two contributions to agalaxy's observed redshift: the cosmological component associated with the expansion of the Universe, andthe peculiar component associated with the galaxy's proper motion with respect to the local rest frame (seeEq. 2). Such a separation is possible only if, in addition to the redshift cz, one has a redshift-independentdistance measurement d. Peculiar velocity surveys are based on data sets consisting of redshifts and redshift-independent distance measurements, or \redshift-distance samples." From these two measurements onereadily obtains the radial component of each galaxy's peculiar velocity,u(d) = cz �H0d ; (147)where we have used Eq. (2) and de�nedu(r) = r̂ � [v(r)� v(0)] : (148)72



Note it is only the radial component of the peculiar velocity that we can measure. We discuss an indirectmeans of reconstructing the transverse components of the peculiar velocity �eld in x 7.5 below.The gravitational instability paradigm requires that the linear peculiar velocity and density uctu-ation �elds be related to one another according to the local expression Eq. (30), or the global expressionEq. (33). Those formulations of the velocity-density relation contain the Hubble constant H0. In actualpeculiar velocity analyses, explicit dependence on the Hubble constant is avoided, by working in a systemof units in which distances are expressed as velocities|i.e., in which the Hubble constant is de�ned to beunity. Eqs. (30) and (33) also involve actual mass density uctuations, whereas redshift surveys providegalaxy density uctuations only. We thus rewrite the two equations as they appear in an actual analysis:r � v = ���g (149)and v(r) = �4� Z d3r0 �g(r0)(r0 � r)jr0 � rj3 ; (150)where � = f(
0;�)=b (Eq. 51) and b is the biasing parameter. It is understood that the derivatives inEq. (149) and the integral in Eq. (150) are with respect to spatial variables expressed in km s�1.A proper analysis of redshift-distance samples will yield v(r), while we derive �g(r) from redshiftsurvey data. We can thus test the validity of the gravitational instability paradigm by seeing whetherthese �elds obey Eqs. (149) and (150) 20 . Furthermore, to the extent that the data are consistent with thegravitational instability picture, the ratio of the galaxy density and velocity divergence �elds gives a directmeasure of �. Indeed, with data of su�cient quality and quantity, we might hope eventually to go beyondthe linear velocity-density relations, and thus break the degeneracy between 
0 and b.While con�rmation of the gravitational instability picture and determination of 
0 are their mostimportant goals, peculiar velocity surveys serve other purposes as well. One is to characterize the massdistribution on very large scales. Because of shot noise, existing wide-angle redshift surveys cannot ac-curately measure number density uctuations at distances much greater than � 15,000 km s�1. However,large-amplitude ( >� 500 km s�1) coherent peculiar velocities on very large scales can be detected at suchdistances with relatively modest samples (e.g., Lauer & Postman 1994; Dekel 1994). Velocity perturbationsdrop o� more slowly with increasing scale than do density perturbations, as we saw in Fig. 1; mass densityuctuations of a few percent on a 20,000 km s�1 scale|undetectable in present redshift surveys|can giverise to detectable bulk motions if 
0 is not much less than unity. For this reason, peculiar velocity mea-surements constitute one of the best methods of measuring mass density uctuations on very large scales;this quality makes them a powerful discriminant of rival cosmogonic theories (x 7.1).A related virtue of peculiar velocity surveys is their capacity to reveal mass uctuations independentlyof bias. Through redshift surveys we can map the number density uctuations �g, and derive the massdensity �eld � through an assumed model of bias. But if the relationship between luminous and darkmass is, in reality, far di�erent from the linear model we usually adopt|or worse, if that relationship haslarge variance (Cen & Ostriker 1992b) or is stochastic|redshift surveys may in fact tell us little aboutmass uctuations. If the gravitational instability picture is valid, however, peculiar velocities uniquelyreect the mass density �eld. This point has been emphasized in recent years by Dekel, Bertschinger, andcoworkers (e.g., Bertschinger & Dekel 1989; Dekel et al. 1990; Dekel 1994), who have developed a methodto reconstruct the mass density �eld from peculiar velocity measurements (x 7.5).20 Babul et al. (1994) point out that in certain scenarios of non-gravitational growth of structure, Eqs. (149)and (150) might apparently be satis�ed, yielding an incorrect value of � (x 8.2).73



The use of redshift-distance samples as described above appears straightforward in principle. Inreality, redshift-independent distances are far too inaccurate for Eq. (147) to be applied as written toreal data. Much of the complexity (and controversy) surrounding peculiar velocity surveys arises from thesteps needed to account for the consequences of distance measurement errors. In what follows we describehow workers in the �eld have attempted to deal with this complexity, and discuss the issues that remainunresolved. Still, it is worth emphasizing at the outset our optimism about the program of comparingthe peculiar velocity and galaxy density �elds in order to estimate �. Much progress has been made todate using existing large, fairly complete redshift-distance samples, and still larger and improved redshift-distance samples will soon become available. Redshift survey data yielding �g(r) for the local region aresimilarly improving. We consider it likely that within a decade or so, peculiar velocity analyses will haveprovided not only convincing substantiation of the gravitational instability picture, but also a believableestimate of �, and quite possibly, further insights into the subtle relationship between luminous and darkmass.We begin this chapter with a discussion of distance indicator relations, with emphasis on the Tully-Fisher and Dn-� relations for spiral and elliptical galaxies, respectively. x 6.2 briey discusses the evidencewe have that these distance indicator relations are universal, and x 6.3 covers other distance indicatorrelations that are likely to become important in coming years. The rest of the chapter is devoted to thetypes of analyses one does with peculiar velocity data, emphasizing the inherent pitfalls and biases. Thisis �rst done at a qualitative level in x 6.4, followed by a mathematical treatment in x 6.5. The scienti�cresults of peculiar velocity work are discussed in Chapters 7 and 8.6.1 Galaxian Distance Indicator RelationsWe obtain redshift-independent galaxy distances by means of distance-indicator relations, or DIs.The essence of a DI is an empirical correlation between two intrinsic properties of a galaxy, one of which isdistance-dependent (e.g., diameter) and one of which is distance-independent (e.g., surface brightness). 21Thus, for example, surface brightness might be known to correlate with absolute diameter; a comparison ofthe measured angular diameter with the inferred absolute diameter, obtained from this correlation, yieldsa distance estimate. In some cases the distance-independent property is simply the identi�cation of anobject as belonging to a particular class, such as Type 1a Supernovae (x 6.3.3); in that case a DI may becalled a \standard candle" or a \standard ruler," according to whether the distance-dependent propertyis luminosity or diameter.Long before their use in peculiar velocity surveys, DIs were employed in the quest to measure theHubble constant H0 and the acceleration parameter q0 (e.g., Weinberg 1972). Determination of H0 requiresabsolute calibration of a DI, which involves referencing DI measurements to a set of of �ducial galaxieswhose distances in Mpc are known. For peculiar velocity work, absolute calibration is unnecessary; the DImeasurements are instead referenced to a �ducial set whose distances in km s�1 are known. (We discusshow this is done in practice in x 7.2.) In this review, we speci�cally do not discuss e�orts to absolutelycalibrate DIs and apply them toward determination of H0; this subject has been recently reviewed byJacoby et al. (1992). Estimation of q0 does not require absolute calibration, but does entail observations ofgalaxies at substantial (z >� 0:2) redshifts. The peculiar velocity surveys we will discuss are strictly con�nedto z <� 0:06 and thus have no bearing on the q0 problem.While many empirical correlations between distance-independent and distance-dependent galaxian21 Often the \distance-independent" quantity is in fact weakly distance-dependent. An example is surface bright-ness, which falls o� with increasing redshift as (1 + z)�4. However, as in that example, it is usually the case thatthe weak distance-dependence is either exactly or adequately modeled in terms of the redshift alone, and thus iseasy to compensate for. 74



properties exist, not all are equally useful as DIs. In what follows, we describe in detail those DIs whichhave been most fruitfully applied to the study of peculiar velocities, as well as some likely to be so employedin the future.Both elliptical and spiral galaxies show correlations between galaxian luminosity and a relevantmeasure of internal velocity dispersion. In x 6.1.1, we discuss this correlation for spirals, the Tully-Fisher(TF) relation; x 6.1.2 discusses the corresponding correlation for ellipticals.6.1.1 The Tully-Fisher Relation for Spiral GalaxiesOrdinary spiral galaxies are, for practical purposes, the most suitable objects to use as tracers of thepeculiar velocity �eld in the local Universe. They are more numerous and more uniformly distributed thantheir luminous counterparts, ordinary elliptical galaxies (which tend to congregate in the cores of denseclusters). They are also bright enough to be carefully studied at fairly large distances, unlike the still morenumerous but faint dwarf galaxies. As a result, the TF relation, which is the main DI for spirals, has beenthe workhorse in peculiar velocity surveys to date.Since spiral galaxies are attened systems supported by rotation, the relevant measure of internal ve-locity for Tully-Fisher is rotation velocity. Because spiral galaxies have \at" rotation curves, their rotationvelocities are well-de�ned, as we discuss below. In practice, the luminosity-rotation velocity correlation iswell modeled as a power law,L(vrot) / v�rot : (151)Using the conventional notation of astronomers, which we will follow here, this equation may be rewrittenM(�) = A� b� ; (152)where M = const:� 2:5 log L is the absolute magnitude, and� � log(2vrot)� 2:5 ; (153)where vrot is measured in km s�1, is a convenient logarithmic measure of the rotation velocity. The nor-malization of � is such that its value lies roughly between �0:3 for most spirals. The quantities A and bare known as the \zeropoint" and \slope" of the TF relation; the slope is found to lie in the range b �5{10, depending on the details of how vrot and M are measured. Thus, the power-law exponent of theluminosity-rotation velocity relation is � � 2{4. The apparent magnitude m of a galaxy is the observedquantity; it is related to the absolute magnitude via the inverse-square law:m = M + 5 log r �M + �(r); (154)which de�nes the distance modulus �(r).The measurement of rotation velocities in TF studies has been carried out mainly through analysisof HI 21 cm pro�les, especially prior to 1990. These pro�les are derived from spatially unresolved data, andtherefore do not give rotation velocity per se, but rather total 21 cm intensity as a function of velocity.This has led to a variety of e�orts to de�ne a 21 cm pro�le width which most faithfully reects rotationvelocity (e.g., Tully & Fouqu�e 1985; Aaronson et al. 1986; Bicay & Giovanelli 1986ab). In recent yearssome workers have employed optical measures of rotation velocity, measured from the H� emission line(Dressler & Faber 1990b; Courteau 1992; Mathewson et al. 1992ab; Mathewson & Ford 1994), using along slit oriented along the major axis of the galaxy. Such measurements have become increasingly usefulas TF studies have been extended to the Southern Hemisphere, where fewer radio telescopes exist, andto larger distances, where confusion and sensitivity problems become severe in the radio. An alternative75



is to employ imaging Fabry-Perot spectroscopy in the H� line (Schommer et al. 1993), which allows oneto map out the rotation velocity �eld in two-dimensional detail. The optical, unlike the HI, measurementsare spatially resolved. Because 21 cm and optical measures of rotation can di�er systematically (Tully &Fouqu�e 1985; Pierce & Tully 1988), it cannot be assumed that the slope or zeropoint of the HI and opticalTF relations will be the same; recent work on combining the two types of data have addressed this issue(Mathewson et al. 1992b; Willick et al. 1995b).Regardless of how velocity width is measured, the raw measurement di�ers from the true width (whichenters into the TF relation) because of projection on the sky. The true width is estimated by dividing theraw value by the sine of the estimated inclination angle of the galaxy, obtained from the ellipticity of itsoptical image.The existence of a correlation between optical luminosity and HI velocity width had been recognizedsince at least the early 1970s (see, for example, Bottinelli et al. 1971; Balkowski et al. 1973; Sandage &Tammann 1976), but Tully & Fisher (1977) were the �rst to characterize this correlation by the linear rela-tion (Eq. 152), �nding a slope b � 6. Their work brought its potential for use as an important cosmologicaltool to the attention of the astronomical community. Early work with the TF relation used blue-bandpass(B) measurements of luminosity, which were by far the most readily available in the late 1970s. It wasrecognized early on, however, that such measurements were subject to extinction of starlight by dust inboth the source galaxy and in our own Galaxy. These e�ects represented systematic uncertainties in earlyapplications of the TF relation.An important advance was made in the late 1970's and early 1980's through the work of Aaronson andcollaborators (e.g., Aaronson, Huchra, & Mould 1979; Aaronson et al. 1982ab). They recognized that long-wavelength photometry would su�er less from internal and Galactic extinction than B band photographicor photoelectric data. The Aaronson group undertook a program of photoelectric H band (� = 1:6�m)photometry of spiral galaxies in the Local Supercluster. These measurements were made through apertureswhose size was dictated by instrumental constraints, and were subsequently scaled to a �ducial apertureroughly one-third the optical size of the galaxy. This awkward procedure was a drawback of the method,but the Aaronson group nonetheless found that the new infrared TF relation (IRTF) was tighter than theolder short-wavelength version. They also found that the IRTF required little or no correction for internaland Galactic extinction, and that its slope b was almost exactly 10, corresponding to a power-law exponent� = 4.The v4rot dependence of the IRTF was seen as favorable for two reasons. First, as we discuss furtherbelow, it drops out naturally from a simple theoretical \derivation" of the TF relation based on consid-erations of centrifugal equilibrium. Second, a v4 power law also described the analogous Faber-Jacksonrelation for elliptical galaxies (x 6.1.2). Since elliptical galaxies generally lack ongoing star formation, theirradiant output in the blue is produced by an old stellar population. The blue-light luminosities of spiralgalaxies, by contrast, may in some cases be dominated by the hot, massive stars which result from recentbursts of star formation. Aaronson et al. (1979) suggested that the H band photometry measured the lightof the old stellar population, presumably the most faithful tracer of the mass, and therefore correlatedbetter with the gravitational potential|and through it, the observed rotation velocity. The agreement inslope with that of the Faber-Jackson relation seemed to con�rm this notion.Attempts to explain the TF relation in terms of the composition and dynamics of spiral galaxiesbegin with the equation of centrifugal equilibrium,v2rot / MR : (155)If one then assumes a universal mass-to-light ratio (M=L), and a constant mean surface brightness �I for76



spirals, so thatL / �IR2 ; (156)one obtainsv2rot / LR / LqL=�I ; (157)or L / v4rot ; (158)precisely the exponent characterizing the IRTF. Aaronson et al. (1979) cited this consistency as evidencethat the near-infrared TF relation was more fundamental than shorter wavelength versions.While this explanation of the TF slope is not unreasonable, plausible \derivations" of quite di�erentslopes have been presented. For example, Sandage & Tammann (1976) began with Eq. (155), and also in-voked the presumed constancy of (M=L). They then supposed that the characteristic radius R at which theequation is to be interpreted is independent of luminosity, on average. This yields L / v2rot; correspondingto a TF slope b = 5, similar to the earliest estimates for the B bandpass (Tully & Fisher 1977; Bottinelliet al. 1983). Moreover, Burstein (1982) has argued on the basis of the observed slope of the TF relationand the relation between surface brightness and rotation velocity, that the assumption of a uniform mass-to-light ratio cannot hold true. The notion that one can straightforwardly derive the TF slope from �rstprinciples is now, in fact, considered dubious. It has become clear that the TF slope has more to do withtechnical issues of measurement than with the constancy of mass-to-light ratios or surface brightnesses.In particular, the size of the aperture and the photometric bandpass used materially a�ect the observedslope (Bottinelli et al. 1983; Pierce & Tully 1988; Willick 1991; Jacoby et al. 1992; cf. Fig. 12). Bernsteinet al. (1994), for example, found an H band TF slope of � 6, rather than the canonical 10, when they usedlarge apertures which encompassed essentially all of the light from a galaxy. Moreover, the assumptionthat spirals possess constant (M=L) in H band light, has been challenged. Bothun (1986), for example,has pointed out that small variations in heavy-element abundances can greatly alter the infrared energyoutput of a stellar population, in which case the age of a galaxy should a�ect (M=L). Pierce (1988,1991)has shown that, as measured in I band light, (M=L) ratios show strong variations with luminosity. Inshort, it appears that poorly understood issues pertaining to the nature and spatial distribution of stellarpopulations will be central to an eventual understanding of the TF relation.Beyond this, there is a fatal aw in any simple model of the TF relation based on the equation ofcentrifugal support. Spiral galaxies possess roughly exponential light pro�les (Freeman 1970) with a char-acteristic scale length. However, they have rotation curves which rise quickly from zero to a characteristicrotation speed that is observed to be remarkably constant out to many exponential scale lengths (e.g.,Rubin et al. 1980, 1982, 1985). This constancy of the rotation speed is one of the main pieces of evidencefor the existence of dark halos in spiral galaxies (Faber & Gallagher 1979). Indeed, it is only because of suchat rotation curves that a well-de�ned rotation velocity of spiral galaxies exists. Thus the characteristicscale of the mass distribution in spiral galaxies is appreciably larger than is that of the light, althoughthe two were equated in Eqs. (155){(157). Moreover, the TF relation applies equally well to all galaxies ofa given rotation speed, although their exponential scale lengths, as well as their bulge-to-disk ratios andmorphologies, may vary considerably (Han 1991; Willick 1991). Evidently, there is a complex interplaybetween luminous and dark mass which determines the �nal state of spiral galaxies. While some progresshas been made toward understanding these e�ects (e.g., Blumenthal et al. 1986), our understanding of the77



physical basis of the TF relation remains schematic at best. The origin of the TF relation is shrouded inthe mysteries of spiral galaxy formation.With the advent of CCD detectors in the 1980s, highly accurate galaxy photometry has becomeroutine. Two-dimensional digital detectors such as CCDs permit one to tailor the photometric aperture tothe galaxy image in a natural way, in contrast to the somewhat arbitrary scalings required in �xed-aperturephotoelectric photometry. CCDs are very sensitive in the R (� � 0:7�m) and I (� � 0:8�m) bandpasses,and most recent TF studies have been carried out in one of these bands (Bothun & Mould 1987; Pierce& Tully 1988; Willick 1991; Han 1991; Courteau 1992; Mathewson et al. 1992ab; Roth 1993; Mould et al.1993; Mathewson & Ford 1994; Haynes et al. 1995). Dust extinction is less of a problem in R or I than inB, though not negligible as it is at 1:6�m (a detailed discussion of models of internal extinction is givenby Giovanelli et al. 1994). With the advent of imaging detectors sensitive at � 2�m, a few workers arereturning to the near infrared for TF work (Peletier & Willner 1993; Bernstein et al. 1994).In Fig. 12 we plot B, R, and I TF relations obtained from the large data set of Mathewson et al.(1992b), and an H band TF relation from the Aaronson et al. (1982b) data set, as updated by Tormen &Burstein (1994, 1995). In each case a Hubble ow model of distances has been used; thus, the diagramscontain extra scatter due to the inaccuracy of the distance assignments, as discussed below. Nonetheless,the relation is well de�ned in all of the bandpasses, although the scatter in the R, I and H bandpassesis noticeably smaller than in the B bandpass. The B and R band data are photoelectric measurementstaken from the RC3 and Lauberts & Valentijn (1989) catalogs, respectively, as compiled by D. Burstein(private communication). The slopes of the �tted TF relations are indicated in the �gure; these TF �ts arecorrected for sample selection bias as described in x 6.5. As can be seen, the slope increases with increasingwavelength. The very large change from I to H is due only partially to wavelength increase; it stems mainlyfrom the small apertures within which the H band magnitudes are measured (the I band magnitudes are\total" magnitudes) and the di�erent de�nitions of velocity width used by Mathewson et al. vs. Aaronsonet al.In all cases, the absolute magnitudes are expressed in the units suitable to peculiar velocity work, inwhich distances are measured in km s�1.An important and unresolved issue is the rms scatter of galaxies around the mean TF relation, usuallyquoted in magnitude units and denoted �. The earliest estimates of the TF scatter were � � 0:5{0.6 magin B (Tully & Fisher 1977). The Aaronson group later found a somewhat tighter correlation, � ' 0:45{0.50mag, in the near infrared (e.g., Aaronson et al. 1986). However, Sandage, Tammann, and coworkers werecritical of these relatively low estimates, arguing that sample selection e�ects (x 6.4) were introducing grossbiases into estimates of the scatter. By enlarging the data sets studied by the Aaronson group in the Virgocluster, Sandage (1988) and Kraan-Korteweg, Cameron, & Tammann (1988) derived values ranging from� 0.7{1.0 mag, although Fukugita, Okamura, & Yasuda (1993) explain much of this increased scatter asdue to appreciable depth e�ects in the cluster. More recently, Federspiel, Sandage, & Tammann (1994)have claimed that while the most luminous galaxies may have � = 0:4 mag, the TF scatter for a typicalgalaxy is � 0.6{0.7 mag.On the other hand, recent years have seen ever-decreasing estimates of the TF scatter by groupsemploying CCD photometry. Bothun & Mould (1987) suggested that an appropriate adjustment of thephotometric aperture with rotation velocity width could reduce the scatter of the I band TF relation to� 0.20{0.25 mag. Pierce & Tully (1988) observed a scatter in the nearby Ursa Major cluster of � 0.30 mag,and calculated that the contribution of true cluster depth was such that the true scatter was 0.25 mag.Willick (1990,1991) studied a sample of relatively distant clusters and found an R band scatter of � 0.30mag. Courteau (1992) identi�ed a region of \quiet Hubble ow" within a larger �eld sample in which theR band TF scatter was 0.32 mag. Schommer et al. (1993) found a scatter of 0.25{0.3 mag for their I bandFabry-Perot sample (see above). Very recently, Bernstein et al. (1994) have studied a carefully selected Iband CCD sample in the Coma Supercluster region which exhibits an apparent TF scatter of � 0.10 mag.78
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Fig. 12. TF relations in the B, R, I, and H bandpasses. The B, R, and I TF relations are obtained from thedata set of Mathewson et al. (1992b). The B and R magnitudes for the Mathewson galaxies are photoelectricmeasurements obtained from the RC3 and Lauberts-Valentijn (1989) catalogs respectively; the I band magnitudesare from the CCD photometry, and the velocity widths from a combination of HI and optical measurements, carriedout by the Mathewson group. The H band magnitudes are from the local sample of Aaronson et al. (1982b), asupdated by Tormen & Burstein (1994, 1995). In each case the plotted absolute magnitudes are computed asM = m� 5 log(cz), where cz is the observed redshift, and are thus expressed in the units appropriate to peculiarvelocity studies. Further details are given in the text.The observed TF scatter comes from three sources: intrinsic or \cosmic" scatter, photometric andvelocity width measurement errors, and incorrect distance assignments. Cosmic scatter is the quantity ofgreatest interest astrophysically; because of uncertainties in the other two sources of scatter, however, itis not well-constrained at present. Photometric errors per se are very small ( <� 0:05 mag) when CCDs areused. However, the extinction corrections made to the apparent magnitudes, while accurate in the mean,may be incorrect by � 0.1 mag in individual cases due to variations in the dust content of spiral galaxies.Raw velocity width measurements contain � 5% errors, and comparable errors are incurred in makingthe inclination correction; resulting errors in the width parameter � must then be multiplied by the TF79



slope. Overall, measurement errors can account for � 0.15{0.30 mag, depending on bandpass, inclination,and quality of the HI or optical width determination. Cosmic scatter and measurement errors, added inquadrature, are what the quantity � is meant to signify. However, when a TF sample is used to estimatescatter, galaxies must be assigned distances; errors in these assignments contribute to the observed scatter.Minimizing this last contribution, and subtracting it from the observed scatter, is a tricky but necessarypart of estimating the true TF scatter.The observed value of the TF scatter is important not only in determining the size of random errors,but also of systematic errors due to statistical bias e�ects (x 6.4). The discrepancy among estimates ofthe TF scatter discussed above probably arises from a combination of two factors: small number statistics,and di�erent approaches to the problem of distance assignment errors. Large TF residuals that one authorattributes to an erroneous distance model, such as the misassignment of a galaxy to a cluster, another mightattribute to true scatter. In the �rst case the galaxy in question would be eliminated from the analysis anda relatively small scatter obtained, while in the second it is included and a higher value results. In manycases such a decision is subjective, and may depend on the worker's own biases with regard to the truescatter. As larger and more complete samples are studied, the importance of such subjective factors willdiminish, and it is likely that scatter estimates will converge. A recent study using a data set consisting ofover 3000 galaxies culled from �ve samples (Willick et al. 1995a,b,c; cf. x 7.2) �nds the CCD R and I bandscatters to be in the range 0.35{0.40 mag, and the H band scatter to be � 0.45 mag. A partly overlappingsample of � 2500 spirals analyzed by Mathewson & Ford (1994) estimated the I band scatter at 0.42 mag.Still, the issue is far from closed; claims of very small (� 0.25 mag) scatter, large TF data sets continue toappear in the literature (e.g., Haynes et al. 1995).6.1.2 The Faber-Jackson and Dn-� Relations for Elliptical GalaxiesThe elliptical galaxy DI �rst used in peculiar velocity studies was the Faber-Jackson (FJ) relation(Faber & Jackson 1976). Like the TF relation, FJ expresses a power-law relationship between luminosityand internal velocity. Unlike spirals, luminous ellipticals do not rotate (Kormendy & Djorgovski 1989),and the relevant measure of internal velocity is the rms dispersion of radial stellar velocities in the centralregions of the galaxy, �e. Thus the FJ relation is expressed asL / ��e : (159)Unlike the case with TF, early work with FJ (Faber & Jackson 1976; Schechter 1980; Tonry & Davis1981) produced reasonable agreement that the exponent of the power law was � ' 4, corresponding to theinfrared TF slope found by Aaronson and collaborators (see above). However, while early estimates of theTF scatter were � 0.45 mag, the scatter of the FJ relation was found to be roughly twice that. For thisreason, although FJ was used with some success in studies of the Virgocentric motion of nearby galaxies(Schechter 1980; Tonry & Davis 1981), it did not seem to hold great promise as a DI.The situation changed dramatically when two independent groups discovered that the addition of athird parameter signi�cantly improved the accuracy of the FJ relation (Djorgovski & Davis 1987; Dressler etal. 1987b 22 ). Working with newly acquired photometric and kinematic data for large samples of ellipticals,each group found that elliptical galaxies populate a planar region in a three dimensional parameter space.One expression of this fundamental plane describes the connection between the e�ective radius Re and the22 The members of this second collaboration were D. Burstein, R. Davies, A. Dressler, S. Faber, D. Lynden-Bell,R. Terlevich, and G. Wegner. As a group they became widely known among astronomers as the \7 Samurai"(hereafter 7S). 80



average stellar velocity dispersion and surface brightness interior to that radius:Re / ��e I��e ; (160)the dual power law maps to a plane when logarithmic quantities are considered. The two groups bothfound that � ' 1:4, � ' 0:9 (Faber et al. 1987). When using the fundamental plane as a DI, the 7S grouppreferred to incorporate the surface brightness and radius terms into a single photometric diameter theycalled Dn, the diameter interior to which the average surface brightness attained a �ducial value. In asubsequent study (Lynden-Bell et al. 1988a), the group provided a �nal calibration of the new DI:Dn / �e ; (161)where the exponent  ' 1:20 � 0:1. In this form the modi�ed FJ relation is known as the Dn-� relation.Dressler (1987a) has shown that the Dn-� relation also holds for the bulges of early-type spirals, althoughthis has not been exploited beyond his initial paper.Lynden-Bell et al. (1988a) found that the scatter in the Dn-� relation was ' 0:10 dex in logDn,corresponding to about 23% accuracy as a distance predictor. Thus, Dn-� was found to be about twice asaccurate as FJ, and compared favorably with TF. Indeed, the 7S group used the Dn-� distances to makeone of the earliest inferences of very large-scale deviation from Hubble ow (Dressler et al. 1987a), as wediscuss in greater detail in x 7.1. It is interesting to note, however, that while a fundamental plane ledto a tighter DI, it also implied less insight into elliptical galaxy formation. For, while a one-dimensionalrelationship (such as TF) requires special conditions to be imposed at galaxy formation, a fundamentalplane is simply a reection of gravitational equilibrium, with the additional (albeit ill-understood; cf.Renzini & Ciotti 1993) assumption that (M=L) be a function only of the other parameters in the relation(Faber et al. 1987; Gunn 1988). Thus the fundamental plane relations tell us little more than that ellipticalgalaxies are gravitationally bound structures, which is hardly surprising.6.2 Universality of the Distance Indicator RelationsThe measurement of redshift-independent distances by means of DIs such as TF and Dn-� assumesthat the galaxian properties they embody are universal, i.e., independent of spatial location or localenvironment. If, say, the zeropoint of the TF relation varied systematically from one place to another,then the distances inferred from it would carry a position-dependent error, giving rise to spurious peculiarvelocity measurements. Recognizing this, some astronomers have questioned the reality of detections oflarge-scale departures from Hubble ow (x 7.1)|or as one theorist asked in the provocative title to a paperon the subject, \Is Cosmic Drift a Cosmic Myth?" (Silk 1989).Silk (1989) suggested, on the basis of plausible (but speculative) scenarios of galaxy formation, thatboth the TF and Dn-� relations would show a systematic cluster vs. �eld o�set. Because the DIs aretypically calibrated using cluster observations, the measured peculiar velocities of �eld galaxies (whichdominate most analyses of large-scale motions) might then be invalid. de Carvalho & Djorgovski (1992)carried out a comparison of the properties of �eld and cluster ellipticals. They argued that as measured bythe relationship between several distance-independent indices (surface brightness, color, metallicity, andvelocity dispersion) the �eld and cluster galaxies di�ered systematically. The sense of these di�erences wasthat �eld galaxies were bluer, had higher surface brightness, and were more metal-poor than their �eldcounterparts of similar velocity dispersion. They proposed that these di�erences would follow logicallyfrom star-formation histories if the �eld ellipticals were typically younger than cluster ellipticals. A relatedstudy was carried out by Guzm�an and coworkers (Guzm�an 1994; Guzm�an & Lucey 1993; Guzm�an, Lucey,& Bower 1993; cf., Gregg 1992), who also concluded that metallicity inuences the fundamental plane81



relations (x 6.1.2). Guzm�an (1994) explicitly argued that this \age e�ect" induces a signi�cant di�erencebetween Dn-� distances for cluster and �eld galaxies, and that with appropriate corrections, the largepeculiar velocities obtained from Dn-� data (x 7.1) vanish.There are, however, good reasons to view the results of the previous paragraph with considerablecaution. The study by de Carvalho & Djorgovski (1992) mixed two data sets, those of Djorgovski & Davis(1987) and of the 7S group (Faber et al. 1989), which might well di�er systematically from one another.Indeed, it is primarily the Djorgovski & Davis (1987) data set which manifests a clear cluster/�eld o�set asmeasured by the distance-independent indices; no signi�cant e�ect is found in the 7S data set. The workof Guzm�an and coworkers has been questioned on a variety of grounds (D. Burstein, private communica-tion), in particular the use of an erroneous metallicity-velocity dispersion correlation and outdated stellarpopulation models. Finally, it should be noted that the 7S group tested for metallicity and color depen-dences of the Dn-� relations and found them to be statistically insigni�cant (Lynden-Bell et al. 1988b).The 7S group recognized the existence of a fraction (� 10{20%) of the total elliptical population in whichstellar population anomalies might be present, but showed that these objects did not strongly a�ect theirconclusions about the systematics of the ows (Burstein et al. 1990).Another means of assessing whether measured peculiar velocities could be due to DI non-universalityis to compare the velocity �eld in a given region of space obtained from di�erent DIs. Kolatt & Dekel(1994) compared the peculiar velocity �elds reconstructed by the POTENT technique (x 7.5) from spiral(TF) and elliptical (Dn-�) data separately, and found no statistically meaningful di�erences between thetwo. It is unlikely that zeropoint gradients would a�ect TF and Dn-� in precisely the same way. Anotherconsistency test derives from a comparison of Dn-� distances with distances obtained for the same galaxiesusing the Surface Brightness Fluctuation (SBF) technique (Dressler 1994; see x 6.3.1). This comparisonhas validated Dn-� peculiar velocity estimates for � 15 ellipticals in the Southern sky. Since the SBFtechnique is thought to be highly accurate, and involves measurements entirely unrelated to Dn-�, theseresults represent another encouraging (albeit preliminary) indication of Dn-� universality.In summary, then, there is no compelling evidence at present for substantial spatial or environmentalvariations in the TF or Dn-� relations. While there exist some indications that metallicity and/or age e�ectsenter into the fundamental plane relations for a fraction of elliptical galaxies, these e�ects apparently donot inuence the distance estimates obtained from Dn-� in a systematic way. As more data are acquiredin the coming years, using a multiplicity of DIs, intercomparisons will permit more sensitive tests of DIuniversality.6.3 Beyond TF and Dn-�: A Look to the Future?While the TF and Dn-� methods have been the workhorses in peculiar velocity surveys, there anumber of other promising distance indicators likely to play a role in coming years.6.3.1 Surface Brightness FluctuationsOver the last several years Tonry and collaborators (Tonry & Schneider 1988; Tonry, Ahjar, & Luppino1989, 1990; Tonry & Schechter 1990; Tonry 1991) have begun to exploit an old idea �rst discussed in detailby Baum (1955): a su�ciently high resolution image of an elliptical galaxy will reveal the discrete natureof the ultimate sources of luminosity|billions of individual stars. A �nite number of stars are includedin a single pixel of an image; this number is subject to Poisson uctuations, and therefore so is the pixelintensity. The farther away the galaxy is, the greater is the number of stars per pixel, and the smaller thePoisson uctuations; thus the uctuations are a measure of the distance of the galaxy. Tonry measures thesurface brightness uctuation (SBF) which characterizes an image. The mean SBF can in turn be relatedto the luminosity of the giant branch stars which dominate the light, which depends weakly on metallicity.82



The technique is applied to ellipticals rather than spirals because the latter are multicomponent, oftendusty systems in which the purely Poisson uctuations cannot easily be isolated.The uncertainty in SBF distance estimates varies in inverse proportion with the resolution of theimages obtained. For galaxies within � 3000 km s�1, SBF distances are estimated to have � 5% accuracyunder the best observing conditions. Ground-based resolution is limited by microturbulence in the atmo-sphere (\seeing"). In collaboration with Tonry, Dressler (1994) has undertaken a program to obtain SBFdistances for ellipticals studied with the Dn-� method using CCD images acquired at the du Pont Tele-scope in Chile, where the seeing is often <�100. This program promises to yield accurate distances for nearbyellipticals, and may signi�cantly improve our knowledge of the local peculiar velocity �eld. Extension ofthe SBF technique to distances of � 5000 km s�1 and beyond will require either a dedicated program ofspace-based imaging, or the use of adaptive optics technology for enhancing ground-based resolution.6.3.2 BCG L-� relationThe DIs discussed thus far apply to ordinary spiral or elliptical galaxies. There is also a class ofextraordinary galaxies, the most luminous objects in the centers of rich clusters (called \brightest clustergalaxies" or BCGs), which can be used as DIs. BCGs were originally of interest because they are easilyidenti�ed out to fairly large (z ' 0:2) redshifts. As a result, they were thought to be ideal tools for studyingproblems such as the linearity of the Hubble expansion (Sandage 1972; Sandage & Hardy 1973; Gunn &Oke 1975) 23 . In addition, because they are highly luminous objects and are unique in their environment,their study is not subject to the statistical biases associated with sample incompleteness we discuss inx 6.4.The studies just mentioned considered BCGs as standard candles, i.e., they assumed their luminositieswere independent of any other galaxian property. Later, Hoessel (1980) showed that BCG luminositycorrelates with the shape of the luminosity pro�le. Speci�cally, Hoessel de�ned a metric luminosity Lm asthe total light interior to the metric radius rm = 10h�1 kpc, and a luminosity shape parameter� = d log Ld log r �����rm ; (162)and found a linear correlation between Lm and �. Recently, the L-� relation has been exploited by Lauer& Postman (1994; LP), and Postman & Lauer (1995), who studied the BCGs in the 119 Abell (1958) andAbell, Corwin, & Olowin (1989) clusters with redshifts less than 15,000 km s�1. LP found a quadraticL-� relation with an equivalent distance error of � 16%, comparable to the TF scatter. The BCG L-�relation is perhaps the most promising technique for extending peculiar velocity studies to much largerscales (z >� 0:1) than is currently possible, although it requires further study to test its universality.6.3.3 Possible Methods of Future Peculiar Velocity WorkTwo other DIs have recently been the focus of intense observational work, but thus far in the contextof the distance scale (i.e., Hubble constant determination) rather than the velocity �eld. The �rst of theseis �tting the planetary nebula luminosity function (PNLF; Jacoby et al. 1989; Ciardullo et al. 1989ab;Jacoby et al. 1990; Ciardullo, Jacoby, & Harris 1991). \Planetary nebulae" are the luminescent ejectae ofdying stars soon to become white dwarfs. Planetary nebulae may be detected and photometered in nearby(cz <� 1500 km s�1) elliptical galaxies using narrow-band imaging in the light of twice-ionized oxygen at� =5007 �A. The PNLF in this emission line is observed to have a universal form, with a sharp cuto� at thehighest luminosities (Jacoby 1989; Ciardullo et al. 1989a). Fitting the observed distribution of planetary23 However, it was discovered that evolutionary e�ects are equally as important as those due to cosmology. SeeSandage (1988) for a review. 83



nebula brightnesses to the universal PNLF yields the distance to a galaxy with � 5% accuracy. The PNLFand SBF methods yield consistent distances for Virgo Cluster galaxies (Ciardullo, Jacoby, & Tonry 1993).At distances much greater than that of Virgo it is quite di�cult to reliably identify even luminous planetarynebulae using present techniques (Jacoby et al. 1992). As a result, the usefulness of the PNLF method forpeculiar velocity work is uncertain.A DI which has been around for some time, but which is currently undergoing a kind of renaissance,is the mean absolute luminosity of Type Ia Supernovae (Sne Ia). Of all the DIs discussed here, Sne Ia havethe best-understood physical basis. It is generally agreed that Sne Ia result from thermonuclear disruptionof a carbon-oxygen white dwarf that has accreted enough mass from a companion star to approach theChandrasekhar mass of � 1:4M� (e.g., Wheeler & Harkness 1990 and references therein). The radioactivedecay of 56Ni and 56Co following the explosion power the subsequent observable light curve. Theoreticalmodels suggest that the mass of the nickel ejectae is in the range 0.6{0.8M� (Arnett et al. 1985); whencombined with the observed rise time to maximumlight of� 17 days, an absolute luminosity of MB ' �19:6mag is predicted.There has been some controversy over their intrinsic scatter as standard candles. The discovery thatthe peak luminosity of SN 1a correlates with their rate of decline (Pskovskii 1977, 1984; Phillips 1993;Hamuy et al. 1995, but see Tammann & Sandage 1994) may tighten up the scatter considerably, to assmall as 0.1{0.2 mag (Hamuy et al. 1995; Reiss, Press, & Kirshner 1995).Sne Ia have been used almost exclusively for Hubble constant determination (e.g., Saha et al. 1994a,b).Indeed, their idiosyncratic nature as DIs|one must wait for a supernova to appear in a galaxy in order toestimate its distance, and their occurrence is both unpredictable and rare|limits their utility for peculiarvelocity work. However, they can be used as DIs to extremely large distances with relatively little lossof accuracy (e.g., Perlmutter et al. 1993), and may thus prove useful in extensions of peculiar velocityanalyses to large distances.Type II supernovae, which mark the end-point of the life of a massive star, can also be used asa distance indicator (Schmidt, Kirshner, & Eastman 1992; 1994). Spectroscopic observations yield thevelocity of the ejecta and the temperature of the outer layers, from which the absolute brightness can beinferred with the use of model atmospheres. Comparison with the apparent brightness yields a distance.This method requires extensive model calculations and detailed observations, and has thus far been appliedonly to a handful of objects.6.4 Statistical Bias and Methods of Peculiar Velocity AnalysisWith the possible exception of the SBF technique, the DIs used in peculiar velocity surveys arenot very accurate. The TF and Dn-� relations, for example, predict galaxy distances with only � 20%accuracy. In the volume within which we hope to study the peculiar velocity �eld in reasonable detail,typical galaxies may lie at distances of � 3000 km s�1. The rms peculiar velocity error for such a galaxy isthus on the order of 600 km s�1, which also happens to be the amplitude of typical peculiar velocities. Atinteresting distances, then, we cannot measure with any precision the peculiar velocity of a single galaxy.Meaningful analyses must use statistical techniques applied to large samples.At �rst glance, this might not be considered a major problem. There are, after all, thousands ofgalaxies in the local volume for which we have obtained, or soon hope to obtain, distance indicator data.We might expect that by virtue of pN statistics alone the signal-to-noise ratio of any statistical analysiscould be made rather high. However, this expectation is not realized in practice. The analysis of DI datais instead subject to statistical bias e�ects; these e�ects result in random errors dropping more slowlythan 1=pN , and also in the possibility of large systematic errors if the biases are not properly correctedfor. While there are a number of bias e�ects, all originate in a coupling of the DI scatter with external84



inuences on the makeup and spatial distribution of the redshift-distance sample. The goal of this sectionis to explore the nature and consequences of this coupling in a variety of circumstances.A peculiar velocity analysis has, logically if not sequentially, two steps. The �rst is calibration of theDI being used. If we assume for de�niteness that it is the TF relation, calibration means determinationof the zeropoint A, slope b, and scatter � which quantify the M{� relationship (x 6.1.1). The second stepin the analysis is the inference 24 of distances and thus peculiar velocities for sample objects. Each step ispotentially subject to biases. Those which enter into the calibration phase, if not corrected for, can leadto erroneous determinations of any or all of the parameters A, b, or �: This incorrect TF relation willproduce incorrect distances and peculiar velocities. Even with a properly calibrated TF relation, however,uncorrected biases in the distance-inference phase have the same result.The separation of bias e�ects into \calibration" and \inferred-distance" problems (Willick 1994) isuseful in emphasizing the di�erent ways bias can a�ect peculiar velocity analyses. However, it does notdistinguish the root causes of bias. These lie not in the goal but in the underlying assumptions of theanalytic approach, as we will clarify in x 6.4.1. With one set of assumptions, an analysis will be subjectto selection bias, which is intimately related (as the name implies) to observational selection criteria suchas a ux limit. With the second set of assumptions, Malmquist bias will result. As de�ned here (butsee next paragraph), Malmquist bias is not fundamentally related to a ux limit or any other selectioncriteria. It occurs because the true distance of a galaxy cannot be estimated from DI information alone, butrequires knowledge of the actual line of sight density distribution as well. Selection bias can a�ect eitherDI calibration or peculiar velocity measurement|or both, as they often are carried out simultaneously(x 6.4.3). Malmquist bias typically enters only when a calibrated DI is used to infer peculiar velocities;approaches to DI calibration which are subject to Malmquist bias are rarely used in practice and will notconcern us here.We organize our discussion mainly around the selection/Malmquist dichotomy, but we note that thisdistinction has rarely been maintained in the existing literature, where much confusion reigns. One sourceof confusion is the ambiguity surrounding the term \Malmquist bias," which historically has meant severaldi�erent things. The term originated with the work of Malmquist (1924), who showed that ux limitedsamples were subject to a luminosity bias|one which in fact resembles our selection bias more closelythan our Malmquist bias. Thus, early discussions of DI bias (Sandage, Tammann, & Yahil 1979; Teerikorpi1984,1987; Aaronson et al. 1986) typically refer to bias e�ects associated with ux limits as \Malmquistbiases." However, the distinct biases related to the line of sight galaxy density distribution were also referredto as \Malmquist" e�ects by Lynden-Bell et al. (1988a), who were the �rst to discuss them quantitativelyin the extragalactic context. The latter usage has gained widespread acceptance, and it is the one we adopthere. Even so the impression has persisted in some quarters that Malmquist bias thus de�ned relates to aux limit. One goal of the discussion to follow is to dispel this and related misperceptions brought aboutby conicting uses of this catch-all phrase.6.4.1 Selection vs. Malmquist Bias { Method I vs. Method IIBecause of DI errors, data from a large number of galaxies are needed if the estimated peculiarvelocity at a given point r is to be of value. Thus, in devising a method of analysis we must ask thequestion, \for what particular set of objects should data be averaged 25 to estimate peculiar velocity atposition r?". There are two methodologically orthogonal answers to this question:(i) the set of objects which redshift space information suggests are \near" r;24 We use the term \inference," rather than the stronger \prediction" (as is used, for example, by Burstein [1990]),to underscore the fact that redshift-independent distances are merely statistical estimators, obtained from morebasic measurements, of true distances|and not very accurate ones at that.25 Here we use \averaged" in its widest sense, including smoothing or modeling techniques.85



(ii) the set of objects which the DI information suggests are \near" r.A method based on the �rst answer will be subject to selection bias; one based on the second answerwill experience Malmquist bias. This holds true whether our goals are DI calibration, peculiar velocitymeasurement, or both.It will prove useful to have terms describing methods of peculiar velocity analysis, in addition toterms describing the types of bias to which they are subject. When redshift-space information is used asthe a priori indicator of true proximity, we will describe the analysis as belonging to \Method II." When DIinformation is used as the a priori indicator of true proximity, we will describe the analysis as belonging to\Method I." This terminology was originally introduced by Faber & Burstein (1988), although their usagewas somewhat less general than ours. In x 6.4.2 and x 6.4.3, we will show, using prototypical examples,why Method II is subject to selection bias and Method I to Malmquist bias, and clarify how these biasesa�ect the analysis. Later, in x 6.5 we will show how to quantify and correct for these biases. We will assumethroughout that the DI in question is the TF relation, but the concepts apply equally to DIs such as Dn-�.6.4.2 Bias in a Cluster SampleSuppose that a ux-limited Tully-Fisher sample consists of spiral galaxies thought to belong to anisolated rich cluster. A reasonable assumption to adopt in analyzing such a sample is that its members all lieat the same distance. This is an example of a Method II analysis: redshift-space information|from whichwe infer cluster membership|is treated as the a priori indicator of distance; the TF information has notentered into the assumption in any way. Let us further suppose that our goal is to calibrate the TF relation.Using the common distance assumption we may write the expected apparent magnitude of a cluster galaxywith velocity width parameter � as hm(�)i = A � b� + � (see Eq. 152), where � = 5 log rc is the clusterdistance modulus; for now suppose that the cluster distance rc, in km s�1, is independently known. Wealso expect that the observed apparent magnitudes will scatter about hm(�)i with rms dispersion �: Theseconsiderations seem to suggest that linear regression of m on � for the cluster sample will correctly givethe TF slope and zeropoint (after subtracting the distance modulus), and that the scatter about that �twill yield �:However, because we have made a priori distance assignments based on redshift-space information,the above exercise will be subject to selection bias. How, speci�cally, does the bias enter in? Let m` denotethe magnitude equivalent of the ux limit. Fig. 13 illustrates a Monte-Carlo simulation of a Tully-Fishersample at a common distance, with a scatter of 0.35 mag, and a magnitude selection at m` = 16. Thedashed line is the input TF relation. Consider a subset of sample galaxies with similar and relatively largevelocity width parameters ' �1 = 0:2 such that they are typically much brighter than the ux limit, i.e.,hm(�1)i � m`: Their observed apparent magnitudes m will be distributed uniformly about hm(�1)i withrms dispersion �: Now consider a second subset with relatively small width parameters ' �2 = �0:2 suchthat hm(�2)i � m`: They will exhibit a range of apparent magnitudes m � hm(�2)i : However, none willhave m > hm(�2)i : Such galaxies exist in the cluster, but are \missing" from the sample because theyare fainter than the magnitude limit. The mean apparent magnitude of the second subset will thereforebe brighter than hm(�2)i, as the solid line in the �gure shows. This is one de�nition of bias: the meanapparent magnitude does not conform to the TF prediction. A linear �t to the points which does not takeinto account the magnitude limit will be biased; as illustrated by the stars in Fig. 13: the slope of the �ttedline is atter (by 2 in this example), and the �tted zeropoint is brighter (by 0.3 mag in this example) thanthe true TF relation (the dashed line).Finally, the scatter about the �t will not equal �: because the faint part of the magnitude distributionat �2 is cut o�, the points cluster more tightly around the mean value. The at slope, bright zeropoint,and reduced scatter of the �t are all characteristic of how selection bias a�ects DI calibration.The calibration procedure itself was not, however, responsible for bias in the above example. Suppose86



Fig. 13. A Monte-Carlo simulation illustrating the e�ects of a magnitude limit on the derived TF relation. Pointswere assumed to be at a common distance, and assigned a TF relation (indicated by the dashed line) with a scatterof 0.35 mag. The sample was limited at apparent magnitude 16. The stars indicate the best-�t linear TF relationwhich does not take the magnitude limit into account; it is shallower, with a brighter zeropoint.that the TF parameters were known at the outset, and that instead it was the cluster distance modulus� whose value was sought. We could still make the assumption that the cluster galaxies lie at the samedistance. We would then seek to determine � by �tting a line of known slope �b to the TF data. Theintercept of that line would (apparently) be A+�: Yet even though A and b are known, the �tted line wouldstill be displaced from the correct (TF-predicted) one. Near the magnitude limit, the observed apparentmagnitudes are still brighter in the mean than hm(�)i : The derived value of � will thus be biased small;when combined with the cluster redshift, this will result in a too-positive radial peculiar velocity. Thesee�ects are, independently of calibration issues, also characteristic of selection bias.Central to the Method II analyses just described was the assumption that the cluster galaxies lie atthe same distance. This assumption, though plausible, is not self-evident; the galaxies might conceivablybe spread out over a range of distances. Following this line of reasoning we might, if our TF relationwere independently calibrated, neglect redshift space data initially and assign distances directly from theobservables m and �: These inferred distances d are derived by forming a distance modulus �(m; �) =m�M(�) and then taking d = 100:2�(m;�). Because of DI errors, the true distance r can di�er appreciablyfrom d: Still, a Method I analysis of the cluster would assume that only galaxies with similar values ofd|not all galaxies in the sample|may be treated as equidistant. The redshifts of galaxies with similarvalues of d would then be averaged together to obtain a mean value hcz(d)i, and a corresponding inferred87



peculiar velocity u(d) = hcz(d)i � d:Because we have now made a priori distance assignments based on the DI information, this analysiswill be subject to Malmquist bias. The speci�c manifestations of this bias are that d, hcz(d)i, and andu(d) are not equal to the average true distance, redshift, and radial peculiar velocity, respectively, of theset of objects with inferred distance d: The bias arises because objects with inferred distance d come, withvarying probability, from a range of true distances r as a result of DI errors. They are constrained to liewithin some vicinity of d; but their true distances are inuenced by another factor wholly unrelated to theDI information: where along this line of sight galaxies are intrinsically likely to be found. This is quanti�edby the number of galaxies per unit distance r2n(r); where n(r) is the galaxy number density. If galaxieswere in fact widely distributed along the line of sight (n(r) roughly constant), then because there is morevolume at larger distances (the r2 factor), d would underestimate the true distance. If on the other handthe common-distance model had been accurate in the �rst place, then regardless of the value of d thetrue distance is the cluster distance rc: Inferred distances d < rc would then necessarily underestimate,and d > rc necessarily overestimate, true distance. None of these considerations relates in any way to theselection criteria which de�ne the sample.When galaxies scatter from r to d because of DI errors, they \bring with them" the correct redshiftsof their true positions. That is, DI errors do not a�ect redshifts, but only the distances at which they areevaluated and converted to peculiar velocities. Thus, if �rd (say) is the mean true distance of galaxies withinferred distance d; the mean redshift of these galaxies will to �rst order be hcz(d)i = �rd + ut(�rd); wherethe subscript t signi�es true as opposed to inferred radial peculiar velocity 26 . From this redshift one wouldinfer a peculiar velocity u(d) = ut(�rd) + (�rd � d): Thus, the distance bias (d 6= �rd) translates directly intoa peculiar velocity bias. In the case that the galaxies truly constitute a cluster (i.e., �rd = rc for all d),we see that u > ut when d < rc; and u < ut when d > rc: It follows that the inferred radial peculiarvelocity �eld u(d) would exhibit a compressional inow into the cluster center, even if there were no realpeculiar velocities. This last e�ect|spurious peculiar velocities associated with strong line of sight densitygradients, of which a cluster is the most extreme case|is the most serious consequence of Malmquistbias. As density gradients generally are not known with great precision, Malmquist bias can be di�cult tocorrect for reliably (x 6.5.2).6.4.3 Bias in a Field SampleWe used the example of a cluster to distinguish selection and Malmquist bias with maximum clarity.However, peculiar velocity analyses more often involve �eld galaxy samples. It is therefore important torealize that the two kinds of bias occur, for analogous reasons, in �eld sample analyses as well. In thecluster example, the Method II approach seemed \natural" in comparison with Method I. With a �eldsample, the choice of method is not clear cut. We illustrate these issues in what follows.A Method II analysis of �eld galaxies usually entails the adoption of a model of the peculiar velocity�eld, v(r;a); the quantity a is a vector of free parameters which speci�es the model. An important exampleis a velocity �eld obtained from Eq. (150) using redshift survey data, with � as the only free parameter.Using the model, one obtains a distance r for a galaxy of redshift cz as the solution of the equationr(cz;a) = cz � r̂ � v(r;a) : (163)Such an expression of course assumes a unique redshift-distance mapping, which may not obtain in thevicinity of large mass concentrations (see x 5.9), an issue we will return to later. From Eq. (163) one can26 This last statement neglects second-order changes in the peculiar velocity �eld; cf. Willick 1991 for details.88



predict the galaxy's apparent magnitude, given the value of its velocity width parameter �:m(�; cz;A; b;a) = M(�) + 5 log r(cz;a) ; (164)this predicted apparent magnitude depends, as indicated, not only on the velocity �eld parameter vectora, but also on the TF parameters A and b, whose determination might also be part of the analysis. Onecan then form a �2 statistic of observed minus predicted apparent magnitudes:�2II(A; b;a) = NXi=1 "mi �m(�i; czi;A; b;a)� #2 (165)(the individual object scatters are usually assumed equal in the simplest implementations of MethodII). Minimization of this statistic might then be expected to yield the \best" values of the velocity �eldparameters a and (if necessary) the TF parameters A and b.A bit of reection shows, however, that such an exercise will be subject to the same bias that a�ectedthe �rst TF analysis of cluster galaxies discussed in x 6.4.2. In particular, there is again the issue of\missing" galaxies, although in a more abstract sense than earlier. There is in fact only one galaxy atredshift czi, direction r̂i, and width parameter �i. However, the validity of the �2-minimization procedurerequires that this object be representative of the ensemble of all possible such objects. Because of the uxlimit, however, it cannot be: if the predicted apparent magnitude m(�i; czi;A; b;a) is close to or fainterthan the ux limit, the fainter members of this hypothetical ensemble cannot belong to the sample. As aresult, the observed apparent magnitude mi is likely to be brighter than the predicted value; minimizationof �2II(A; b;a) consequently does not yield the correct values of the parameters on which it depends. AMethod II analysis of a �eld sample is thus a�ected by selection bias, just as was the earlier one based onthe assumption of equidistant cluster members. We note that although we have assumed the existence of amodel peculiar velocity �eld, this is not fundamental to a Method II �eld sample analysis. For example, ifpure Hubble ow were assumed (v(r;a) vanishes identically), an exercise identical to that outlined abovecould be used just to calibrate the TF relation; its results also would be a�ected by selection bias.A Method I analysis of the same sample would proceed di�erently. To make the comparison as directas possible, we again suppose that the purpose is to �t a model velocity �eld v(r;a): Now, however, there isno need to solve Eq. (163) to obtain a distance. Instead we use the inferred distance d as the best indicatorof true distance, and thus as the position at which we evaluate the velocity model. Inferred distances aregiven as described in the Method I cluster analysis (x 6.4.2), and the TF relation is again assumed to havebeen independently calibrated 27 . Using the model velocity �eld we write a predicted redshift for a galaxywith inferred distance d ascz(d;a) = d + r̂ � v(d;a) (166)where d = d r̂: This in turn motivates a �2 statistic of the form�2I (a) = NXi=1 "czi � cz(di;a)�i #2 ; (167)where �i is a suitable measure of redshift and distance errors. Again one might suppose that minimizationof this statistic leads to the best values of the velocity model parameters a:27 It is not fundamental to our de�nition of Method I that the TF relation be calibrated a priori. However,unnecessary complications arise if the TF parameters are considered \free."89



However, this na��ve approach will lead to biased results. The validity of the �2 minimization restson the assumption that cz(di;a) is an unbiased estimator of czi when the velocity model is correct. Asdiscussed in x 6.4.2, the object with inferred distance di can come from a range of true distances withvarying probability. Let the expected true distance of this object be �rdi : Its observed redshift then has acorresponding expected value hczii = �rdi + ut(�rdi); where as in x 6.4.2 ut denotes the true radial peculiarvelocity �eld and we neglect second order e�ects. From this it follows (compare with Eq. 166) that, evenif the velocity model is correct, hczii 6= cz(di;a) unless �rdi = di: But we know from our discussion ofthe Method I cluster analysis (x 6.4.2) that this last condition does not hold in general; the relationshipbetween �rdi and di depends on the details of the underlying density distribution n(r); which is the essenceof Malmquist bias. Thus cz(di;a) is a biased measure of czi, and as a result the parameters which minimize�2I yield an incorrect velocity �eld. Again, while we have framed the problem in terms of a velocity model,Method I includes any analysis in which galaxies with similar inferred distances are assumed to be physicallyproximate and, therefore, to share a peculiar velocity vector. In particular, nonparametric methods, suchas the POTENT reconstruction (Bertschinger & Dekel 1989; see x 7.5), which smooth in inferred-distancespace, belong to Method I and su�er from Malmquist bias.6.4.4 \Inverse" Distance Indicator RelationsThere is another basic division between methods of peculiar velocity analysis, one which has some-times been subsumed under the Method I/II dichotomy but in fact is entirely distinct. Until now we haveconsidered only the \forward" form of DIs, in which the distance-independent quantity (� in the case ofTF) is thought of as predicting the distance-dependent quantity (M in the case of TF). But we can justas easily \turn the relation on its side" and consider the TF relation as a predictor of velocity width givenabsolute magnitude 28 . We quantify this prediction as �0(M) (strictly speaking, the expectation value of� given M), and call it the \inverse" TF relation. Like its forward counterpart �0(M) is well-described bya linear relation�0(M) = �e(M �D) ; (168)we denote its rms dispersion ��: Because of this �nite scatter the forward and inverse forms are notmathematically inverse to one another, i.e., e 6= b�1 and D 6= A: The forward and inverse forms of DIs arealternative representations of a single physical phenomenon; nonetheless, their statistical properties di�ermarkedly.We illustrate with the following example both this di�erence in bias properties, and why the for-ward/inverse and Method I/II distinctions have been conated. Suppose that we wish to carry out aMethod II analysis of the �eld galaxy sample of x 6.4.3 using the inverse TF relation. In that case we useEq. (163) to predict the velocity width parameter � of an object with redshift cz and apparent magnitudem as�(m; cz;D; e;a) = �0 (m� 5 log r(cz;a)) ; (169)this equation motivates a new �2 statistic�2II(D; e;a) = NXi=1 "�i � �(mi; czi; ;D; e;a)�� #2 (170)28 For pure standard candles, there is no distinction between forward and inverse methods; the material discussedin this section is only relevant for distance indicators which depend on a distance-independent observable such asline width. 90



apparently a perfect analogue to its forward counterpart, Eq. (165). The analogy breaks down, however,when one considers the bias properties of this inverse statistic. In the forward case bias arose because thesample galaxy with redshift cz and velocity width parameter � was not representative of the ensemble ofall possible such objects; the presence of a ux limit meant that the faint end was excluded. In the inversecase the relevant question is whether the sample galaxy with redshift cz and apparent magnitude m isrepresentative of all such objects. If we assume that sample selection is independent of the value of � for agiven m, then the answer to this question is evidently \yes," since m must be brighter than the ux limit.There now are no \missing" galaxies, regardless of how close m is to the ux limit, and �(m; cz;D; e;a) isan unbiased estimator of �i; minimization of �2II(D; e;a) may thus be expected to yield essentially unbiasedvalues of the free parameters of the model.This felicitous property of inverse DIs was �rst noticed by Schechter (1980) in a study of the Virgo-centric ow �eld, and was subsequently exploited to great advantage by Aaronson et al. (1982b) and byFaber & Burstein (1988). These studies enshrined the notion that the inverse relation was free of selectionbias, and also cemented the association between Method II and the inverse form of DIs. They also, perhapsbecause of the catch-all nature of the term \Malmquist," led to the assertion (e.g., Tully 1988) that in-verse DIs are free of Malmquist bias. None of these conventional notions are accurate. The above exampleshows only that an inverse Method II analysis is una�ected by selection bias when sample selection isindependent of velocity width. The paradigmatic form of sample selection, a photometric ux limit, whichwe have used here for illustrative purposes, is �-independent. However, as we discuss below (x 6.5.4), inreal TF samples selection criteria are more complex and may depend, usually weakly, on velocity width. Insuch cases, even an inverse Method II analysis will be subject to mild selection bias. Moreover, there is noinherent connection between inverse DIs and Method II; the essence of Method II is its a priori assignmentof distances from redshift, after which either form of the DI can be employed.Finally, because of the conventional association between Method II and inverse DIs, it has not gen-erally been recognized that inverse DIs can be used in Method I analyses. We defer the details to x 6.5.5,and note here only that an inverse inferred distance is de�ned (in the case of TF) by the implicit rela-tion �0(m � 5 log d) = �: A consequence of this de�nition, as will be come clear, is the fact that inverseand forward inferred distances di�er, in general, for a given galaxy. Nonetheless, the fundamental source ofMalmquist bias in forward Method I analyses|that the likelihood an object will scatter from true distancer to inferred distance d depends on the density n(r)|is equally present in an inverse Method I analysis.While the use of forward vs. inverse a�ects its details, Malmquist bias inevitably accompanies a Method Ianalysis.6.4.5 The \Method Matrix" of Peculiar Velocity AnalysisWe provide here a succinct summary of the multiple and to some degree overlapping methods ofpeculiar velocity analysis in the form of a \method matrix." The notion of a matrix derives from thetwo-dimensional character of the methodology discussed above: peculiar velocity analyses can belong toeither Method I or II, and can employ either the forward or inverse form of the relevant DI. The statisticalbiases present are speci�c to each case. Table 2 summarizes these ideas; two terms in that table not yetde�ned, the \Gould e�ect" and the \Landy-Szalay correction," are discussed in x 6.5.We have de�ned Methods I and II and discussed the biases inherent in each; we have not yet indicatedwhy we might choose one over the other. Method I has the advantage of being unburdened by preconceivednotions about the relation between redshift and distance. Method II, which requires that we invoke atleast some form of redshift-distance relation, is necessarily subject to our theoretical prejudice. Ideally, wewould like to know where the galaxies really are, and only later compare these real-space positions with theobserved redshifts. The most compelling motivation for this is the possibility of triple-valued zones in denseregions (Fig. 11), where infall patterns along the line-of-sight can result in widely separated galaxies having91



Table 2. \Method Matrix" of Peculiar Velocity AnalysisDI type/Method Type Method I Method IIDI-inferred distance best Redshift-space data bestindicator of true distance indicator of true distanceForward Malmquist bias Strong selection biasdist-dep (e.g. mag) predicted (selection-independent (depends on observationalby dist-indep (e.g. �) quantity unless 9 \Gould e�ect") selection criteria)Inverse Malmquist bias Weak or no selection biasdist-indep predicted (selection-dependent, (bias present if selectionby dist-dep quantity Landy-Szalay possible) related to dist-indep quantity)the same observed redshift. Since Method I considers redshift only after it has placed the galaxies at theirDI-inferred distances, this presents no special problem. By contrast, Method II is inherently incapable ofdealing with multivaluedness in the redshift-distance mapping. It assumes that redshift uniquely speci�esdistance and thus presents an overly smooth picture of a velocity �eld which in reality is rapidly changing.(In x 8.1.3 we will present a recent variant of Method II which circumvents this particular aw.)On the other hand, Method II has the advantage that its statistical aspects are comparatively well-constrained. If we suppose that the velocity �eld model v(r;a) is not unreasonable, then the dominant errorsin the assignment of distances (Eq. 163) come from \noise" in the velocity �eld, whose rms value in the�eld appears to be at most � 200 km s�1 (x 5.2.1). The dominant errors in Method I distance assignmentscome from DI scatter, and are therefore several times larger at interesting distances. Moreover, as we willsee more clearly in the following section, we can correct for selection bias in terms of knowable information,namely, observational selection criteria. With inverse DIs we can realistically expect selection bias to bequite small. Correction for Malmquist bias, however, depends on density gradients along the line-of-sight,which are not knowable a priori. We can estimate such gradients from redshift data, but this involvesadditional assumptions concerning peculiar velocities (needed to map redshift- to real-space density) andsmoothing methods. Working with inverse DIs gains us nothing in terms of Malmquist bias. In summary,both Method I and Method II have advantages and disadvantages. As we describe in Chapter 8, both arebeing used in contemporary peculiar velocity analyses. It should be pointed out, however, that many ofthe analyses we describe in Chapter 8 were done without proper attention to the biases we describe here,and of the di�erences between the di�erent entries in the Method Matrix of Table 2. Indeed, there remainsmuch work to be done in exploring all these methods; for example, there is no analysis beyond that ofLandy & Szalay (1992) which exploits Method I with an inverse DI.6.5 Quantifying Statistical BiasIn the last section we presented a qualitative outline of the main statistical biases a�ecting distanceindicator and peculiar velocity analysis. In order to correct for these e�ects, the biases must be quanti�edand correction formulae and methods developed. This task has been the focus of a growing number ofworkers over the last decade or so. Sandage and coworkers (e.g., Sandage, Tammann, & Yahil 1979; Sandage1988; Federspiel, Sandage, & Tammann 1994) have provided useful, though mainly qualitative, suggestionsfor treating selection bias. A quantitative approach to the subject was pioneered by Teerikorpi, Bottinelli,and collaborators (e.g., Teerikorpi 1984,1987; Bottinelli et al. 1986), and extended by Willick (1991,1994).92



Malmquist bias (in the DI context) was �rst treated in detail by Lynden-Bell et al. (1988a); this workhas been followed up and extended by Willick (1991,1995), Landy & Szalay (1992), and Gould (1993).The bias properties of inverse DIs have been studied by Schechter (1980), Aaronson et al. (1982b), Faber& Burstein (1988), Tully (1988), Han (1991), Roth (1993), Willick (1994,1995), and Triay, Lachi�eze-Rey,& Rauzy (1994). We will use the formalism developed by Willick (1991,1994,1995) who has advocated acomprehensive approach to the problem. We assume in what follows that the distance indicator in questionis the TF relation, but the discussion is readily modi�ed to treat comparable DIs such as Dn-�.The material discussed in this section remains controversial, and the formal mathematical approachwe have adopted has not been accepted by all of the workers in the �eld. For example, Mathewson &Ford (1994) have argued that approaches like ours require idealized assumptions about sample selectionthat are invalid for realistic data sets. They instead separate their sample into \control" and \target"regions, using the former to calibrate the biases in the latter. We believe, however, that such qualitativeor semiquantitative approaches are subject to their own caveats (are the control and target regions thesame in their bias properties?), and run the risk of obscuring rather than illuminating the principal issues.Unlike much of the rest of the review, we have not attempted here to summarize all the analyses extantin the literature, but rather aim to give a comprehensive coverage of our own approach. This section canbe skipped on a �rst reading.6.5.1 Forward DIs: Selection BiasWe consider �rst the formalism appropriate to the forward relation; the inverse relation is treated inx 6.5.4. A starting point in the quanti�cation of bias is the empirical fact that it is the TF observables, andnot the inferred distances, which exhibit a roughly Gaussian distribution (e.g., Willick et al. 1995c). Thus,the apparent magnitude of a galaxy with width parameter � and true distance r is normally distributedabout a mean value M(�) + 5 log r with rms dispersion �, when selection e�ects may be neglected. Wecombine this Gaussian distribution with the a priori distributions of galaxy distances and width parameters,and with a function describing sample selection probability, to obtain the joint probability distribution ofthe observables (m; �) and the true distance r for a galaxy:P (r;m; �)/ r2 n(r)S(m; �)��(�) 1p2� � exp � [m� (M(�) + �(r))]22�2 ! ; (171)where �(r) = 5 log r; �(�) is the �-distribution function (similar to the luminosity function), and n(r)is the galaxy number density along the line of sight in question. The quantity S(m; �) is the sampleselection function, de�ned as the probability an object with observables (m; �) will be included in thesample irrespective of other considerations. Note that we express the selection function here in terms ofthe observables, rather than in terms of distance as we did in redshift survey analyses (x 3.4). An idealizedform of S(m; �) describes a sample with a strict magnitude limit,S(m; �) = 8><>: 1 if m � m` ;0 otherwise. (172)Selection and Malmquist bias e�ects are each implicit in Eq. (171). Which of the two comes into playdepends, as already noted, on the assumptions underlying the method of data analysis; these assumptionsdetermine which of several conditional probability distributions derivable from Eq. (171) are used. We �rstdiscuss selection bias; in x 6.5.2 we discuss Malmquist bias.93



We know from x 6.4.1 that selection biases arise in Method II analyses, in which we take redshift-space information as the a priori distance indicator, either through the assumption of a common distancefor cluster galaxies, or via a redshift{real space mapping such as Eq. (163). To the extent this mappingis a good one, we are in e�ect taking the true distance as \known"|dependent, perhaps, on model freeparameters, but entirely independent of the TF observables. 29 In mathematical terms, this is equivalent tousing probability distributions which are conditioned on the value of the true distance r: In the forward TFcase, the relevant distribution is P (mj�; r), which is readily derived from the joint probability distributionEq. 171:P (mj�; r) = P (r;m; �)R1�1 dmP (r;m; �)= S(m; �) exp�� [m�(M(�)+�(r))]22�2 �R1�1 dmS(m; �) exp�� [m�(M(�)+�(r))]22�2 � : (173)Eq. (173) is the mathematical basis of a forward Method II analysis. The distance r would be replaced bya redshift-space prediction, such as Eq. (163), in an actual implementation of Method II.If sample selection were independent of apparent magnitude, S(m; �) would drop out and Eq. (173)would reduce to the familiar normal distribution centered on the na��ve expected apparent magnitudeM(�) + �(r). This is the condition that a simple �2 minimization, such as that suggested by Eq. (165), bevalid for determining values of any unknown model parameters. In a real study, however, sample selectionalmost always depends on apparent magnitude, although the dependence is generally indirect, as we explainbelow. For simplicity, we �rst suppose that in fact a strict magnitude limit, Eq. (172), applies. In thatcase Eq. (173) obviously does not reduce to a normal distribution centered on M(�) + �(r). It is, rather,straightforward to show that the expected apparent magnitude is given byE(mj�; r) = Z mP (mj�; r) dm = M(�) + �(r) �s2� � e�A21 + erf(A) ; (174)whereA(�; r;m`) � m` � (M(�) + �(r))p2� : (175)The last term on the right hand side of Eq. (174) is the apparent magnitude bias, the di�erencebetween actual and na��ve expectation values. Its signi�cance is determined by the parameter A(�; r;m`),a dimensionless measure of how \close" the object is expected to be to the magnitude limit. For A >� 1,the bias is small; in that case few galaxies are \missing" due to the magnitude limit. But for A <� 0, thehypothetical ensemble of galaxies of given � and r is strongly truncated by the magnitude limit, and thebias is comparable to or greater than the TF scatter. Note that the sense of the bias is that objects aretypically brighter than the na��ve TF prediction, as we saw in x 6.4.1. In any magnitude-limited sample,29 It is not, of course, literally correct that the true distance is speci�ed in a Method II analysis. Errors in thevelocity model being �t to the data, as well as small-scale \noise" in the actual velocity �eld, mean that r is onlyapproximately speci�ed by redshift information. However, to �rst order this only increases the variance, but doesnot bias, a Method II solution. The formalism presented above is correct in this approximation, but the quantity� should be regarded as the quadrature sum of DI scatter and model errors. In x 8.1.3 we will describe a methodwhich aims to go beyond this �rst order approximation and include the e�ect of model errors and velocity noise.94



a large fraction of the objects are likely to be near the magnitude limit. Hence, the bias represented byEq. (174) is a problematic issue in most Method II analyses 30 .In real samples, the situation is more complicated. TF and Dn-� samples are drawn from catalogsculled from photographic plate material. Such catalogs (see x 3.1) typically list galaxy apparent magnitudesand/or angular diameters on a measurement system di�erent from that used by the DI. The catalog mightgive, for example, blue-bandpass photographic magnitudes (mB), while the TF study uses I band CCDmagnitudes (mI). Candidates for the TF sample might be required to satisfy mB � m`; but once thusselected, the allowed values of mI are unrestricted (the CCD photometry is far deeper than the catalog).Nonetheless, it is clear that the distribution of I band magnitudes must a�ected by this selection procedure,as mI is sure to be correlated with mB: Analogous statements hold if the sample is limited by catalogdiameter rather than magnitude.Willick (1994) has shown how this problem of an \indirect" magnitude limit may be dealt with inseveral practical situations. Let us refer to the quantity determining sample inclusion as �, which mightbe a photographic magnitude or logarithmic diameter, and assume it is required to satisfy � � �`: Theselection probability for an object with TF observables (m; �) is then given byS(m; �) = P (� � �`jm; �) : (176)The quantity on the right hand side may be determined by �rst assuming that P (�jm; �) is a Gaussiancentered on a mean relation �(m; �) and with rms dispersion ��. Both may be determined empirically fromthe data; Willick et al. (1995a,b) have shown that �(m; �) is well modeled as linear in m and � when � is aphotographic apparent magnitude or logarithmic diameter. The resulting Gaussian probability distributionis then integrated over the allowed values of �:S(m; �) = 1p2� �� 1Z�` d� exp �(� � �(m; �))22�2� ! : (177)This selection function may be substituted into Eq. (173), and the expected apparent magnitude, and thusthe bias, may then be obtained in the usual way. The results, given by Willick (1994), are complicated andneed not be reproduced here. We note only that, as in the case of a strict magnitude limit, the bias againdepends on a \limit closeness parameter," given in the present case byA�(�; r; �`) � �(M(�) + �(r); �) � �`p2�� ; (178)and is also proportional to a \coupling" parameter �� / �=��, which measures the tightness of the TFrelation relative to that of the �{(m; �) correlation. In particular, when the latter correlation is weak,the bias is small, since selection criteria only weakly constrain the apparent magnitude used in the TFanalysis. In most real samples, however, the �{(m; �) correlation is strong enough that even the bias dueto \indirect" limits is signi�cant. Another feature of an indirect limit is that, if � is signi�cantly correlatedwith � as well as with m, sample selection probability is �-dependent; the consequences of this are discussedin x 6.5.4.The formulae given by Willick (1994) for the magnitude and dispersion biases allow one to correct forselection bias. The basic idea is to iterate least-squares �ts of the underlying model, using the parameter30 A related complication is that not only the expected apparent magnitude, but also its variance is biased, in thesense that the actual variance is strictly < �2. The causes of this e�ect, known as dispersion bias, were discussedin x 6.4.2. Quantitative expressions for dispersion bias are given by Willick (1994).95
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Fig. 14. The main e�ects of selection bias on a Method II TF analysis are shown in the left-hand panels; the sameresults following application of the iterative correction procedure (see text) are shown in the right-hand panels.Data sets consisting of 25 galaxies in each of two clusters were numerically simulated. The simulated galaxiesobey a true TF relation with slope b = 7:5 and scatter � = 0:35 mag, and are subject to a diameter limit. Eachsimulated data set consisted of one cluster at �xed distance r1 = 1500 km s�1; assumed known, and another atvariable distance r2 shown on the horizontal axis, which was taken as an unknown in the analysis. Each plottedpoint represents the mean of � 25 simulations within bins of 100 km s�1. A TF relation was �tted to each data set;the free parameters were the zeropoint A (not shown), slope b, and the distance modulus �2 of the second cluster.The left hand panels exhibit the principal e�ects of selection bias: the �tted slope and scatter are too small, andthe distance of the second cluster is underestimated. See text for details.estimates from one iteration to correct the next for bias. \Corrected" apparent magnitudes m(c), de�nedas the observed magnitudes plus the computed bias, are used in the iterated �ts. This procedure typicallyproduces convergent parameter values in � 10 iterations, and has been used by Willick et al. (1995a,b) tocalibrate TF relations for recent peculiar velocity analyses. An alternative to iteration is direct likelihoodmaximization, using individual object probability functions P (mj�; r) given by Eq. (173).In Fig. 14 we illustrate the e�ects of selection bias on both DI calibration and distance determinationusing numerically simulated data. Each simulated data set consisted of two clusters with 25 galaxieseach. The distance to the �rst cluster was �xed at r1 = 1500 km s�1; which was assumed known to the\observer." The second cluster was stepped out in distance, as shown on the horizontal axis; its distancer2 was assumed unknown to the \observer." Determination of its distance modulus �2 was assumed to beone goal of the analysis; the other was determination of the TF parameters A and b: The simulated data96



obey a TF relation with slope b = 7:5 and scatter � = 0:35 mag; sample selection was imposed by requiringgalaxies to have photographic diameters � 10. These diameters were generated from the TF observables(m; �) using empirical relations from real data sets (Willick et al. 1995ab).For each simulated data set the TF parameters A and b; and the distance modulus of the secondcluster �2; were solved for using standard least-squares techniques. An rms scatter about the �t wascomputed separately in each cluster. The results of these least-squares �ts are shown in the left-handpanels of Fig. 14. As the second cluster moves farther away, so that an ever-larger fraction of its membergalaxies are near the diameter limit, the bias increases: the top and middle panels show that the �ttedslope and rms scatter (in the second cluster) become progressively smaller as the second cluster movesfarther away. (The �tted slope levels out at large distances because it is strongly constrained by data inthe �rst cluster, which is close enough to be nearly unbiased.) The bottom panel shows the error in theleast-squares determination of the distance modulus of the second cluster, ��2 = �2�5 log r2: This error isin the sense that the distance is underestimated, and grows fractionally worse with increasing distance. Theright hand panel of Fig. 14 show the same quantities following application of the iterative bias correctionscheme discussed above. As can be seen, the iterative method yields unbiased �nal values of the slope,scatter, and distance of the second cluster.6.5.2 Forward DIs: Malmquist BiasMalmquist bias arises in Method I analyses, in which we �rst assign distances directly from the DI,and consider redshift information only afterward. As discussed above, the large scatter of DIs such asTF or Dn-� guarantees that objects with inferred distance d come, with varying probability, from a widerange of true distances. The probability distribution of true distance r given inferred distance d is thus themathematical basis for treating Malmquist bias.The simplest way to arrive at P (rjd) is �rst to consider P (r; �(d)), which we obtain from Eq. (171)as follows:P (r; �(d)) = 1Z�1 d� 1Z�1 dmP (r;m; �)� � (m� [M(�) + �(d)])/ r2n(r) 1p2� � exp �(�(r)� �(d))22�2 !S(d) : (179)In Eq. (179) � is the Dirac delta function, and we have de�nedS(d) � Z d� �(�)S(M(�) + �(d); �) : (180)Converting to natural logarithms we deriveP (r; d) = P (r; �(d))@�@d / r2n(r) 1p2�� exp � [ln r=d]22�2 ! S(d)d ; (181)where � � � ln 105 �� ' 0:46� is a measure of the fractional distance uncertainty of the DI. The desiredconditional probability is then given byP (rjd) = P (r; d)R10 dr P (r; d) = r2 n(r) exp�� [ln r=d]22�2 �R10 dr r2 n(r) exp�� [ln r=d]22�2 � : (182)We see that S(m; �) has dropped out entirely in Eq. (182); selection bias does not play a role in97



forward Method I analyses. This may appear odd at �rst glance; one would think that because selectiondepletes the sample more at r>d than at r<d, it must a�ect the ratio of near and far objects at inferreddistance d. The reason it does not may be understood heuristically as follows. Objects at r < d must beintrinsically fainter than expected for their velocity width (M>M(�)) in order to scatter out to d; objectsat r>d must be brighter than expected (M<M(�)) in order to scatter in to d. Thus, although the sampleas a whole is progressively depleted with distance, the set of objects with inferred distance d is atypical: itscloser members are unusually faint, and its more distant members are unusually bright. This discrepancyexactly balances the overall decrease in sampling density with distance. It is important to note, however,that this argument is speci�c to the forward form of the DI (we show how inverse DIs di�er in this respectin x 6.5.5) and to the absence of an explicit distance-dependence in the sample selection function (in x 6.5.3we demonstrate how such a dependence might arise).Although independent of observational selection, forward Malmquist bias is nonetheless a complicatede�ect. It is best illustrated by considering the expectation value of r given d :E(rjd) = R10 rP (rjd) drR10 P (rjd) dr = d R10 x3n(dx) e� (lnx)22�2 dxR10 x2n(dx) e� (lnx)22�2 dx ; (183)where x = r=d: Eq. (183) shows that, in general E(rjd) 6= d; that is, the inferred distance is biased. It alsoshows that Malmquist bias depends on the number density of galaxies all along the line of sight, and thusis a nonlocal e�ect.The simplest (though usually unrealistic) example of Malmquist bias occurs when density gradientsare negligible on the scale of distance errors (i.e., n0n � (d�)�1). In that case, the density term drops outof Eq. (183). The integrals are then easily evaluated with the resultE(rjd) = d e 72�2 : (184)Thus even in the case of uniform density E(rjd) 6= d. This e�ect, uniform density Malmquist bias, is due tothe increasing volume element at larger distances: there are more galaxies at r>d than at r<d, and thusE(rjd)>d; for a typical distance indicator (� � 0:2) it is a � 15% e�ect. More generally, density gradientscannot be neglected, and can either reinforce or work against the volume e�ect. This is most easily seenin the approximation that n(r) is slowly varying on the scale of DI errors. Expanding n(r) to �rst order inEq. (183) then yieldsE(rjd) = d �1 + �72 + (d)��2� (185)where(d) � d lnn(r)d ln r �����r=d ; (186)where we have further assumed �2 � 1. Eqs. (184) and (185) were �rst derived in the extragalactic contextby Lynden-Bell et al. (1988a; cf., Malmquist 1920).The slowly-varying approximation Eq. (185) illustrates in a general way the e�ect of density gradientson the statistical properties of inferred distances. This e�ect is also known as inhomogeneous Malmquistbias or IHM. When (d) > 0, IHM reinforces the uniform density bias; when (d) < 0 it works againstit. While the essence of IHM is shown by the slowly-varying density approximation, Eq. (185) is in fact arather poor approximation to the true IHM for the density �elds seen in the real universe (see below). Aproper calculation of IHM requires the full numerical integration indicated by Eq. (183).98



Fig. 15. Malmquist bias induced by a density peak at a distance of 5000 km s�1. Simulated galaxies were generatedalong a line of sight with a Gaussian perturbation of full width � 1200 km s�1 and maximum overdensity �max = 25,atop a uniform distribution. The upper panel shows the distribution of simulated galaxies as a function of theirtrue distance. The lower panel plots, as open squares, average true distance vs. inferred distance for objects in 150km s�1 wide bins. The meaning of the various lines drawn through the points is indicated in the panel.These points are illustrated using simulated data in Fig. 14, which shows the Malmquist bias as-sociated with a very strong density perturbation. Galaxies were simulated along a line of sight in whichthe density is given by n0 + np(r); where np(r) is a Gaussian perturbation centered at 5000 km s�1, withfull width � 1200 km s�1 and maximum overdensity �max = 25: Galaxies were assumed to be moving withHubble ow; there are no true peculiar velocities in this simulation. The number of galaxies per unit truedistance along the line of sight is shown in the upper panel; the e�ect of the density peak on the distribu-tion is clear. The simulated galaxies were required to have diameters � 1:20, although this diameter limitdoes not a�ect the character of Malmquist bias, for reasons described above. The simulated galaxies obeya TF relation with scatter � = 0:35 mag; the \observer" of the simulation assigned inferred distances dwith a properly calibrated TF relation. In the lower panel the galaxies have been binned according to thevalues of their inferred distances. The average true distances of the galaxies in each bin are plotted as open99



squares.Nowhere do the simulated data follow the Hubble line. Very far from the density peak (d <� 2500 km s�1and d >� 7500 km s�1) the simulated data follow the uniform density Malmquist bias prediction Eq. (184).However, within � 2000 km s�1 of the peak, the data depart strongly from the uniform density prediction;this is the IHM e�ect. The sense is that in the foreground of the peak distances are underestimated (thesquares lie above the long dashed line) and in the background they are overestimated. The amplitude ofthese e�ects is 500{1000 km s�1. The short dashed line is the prediction of the slowly varying approxima-tion Eq. (185), using the exact density gradient. It is apparent that this approximation is extremely poor;this is because the density varies rapidly on the scale of distance errors. The heavy solid line is obtainedfrom the exact formula Eq. (183) by numerical integration of the true density �eld, and correctly predictsthe bias at all distances.Fig. 15 gives further insight into an issue touched upon in x 6.4.2, namely, why IHM can leadto spurious peculiar velocities. Suppose that the galaxies depicted in the �gure followed the Hubble ow.Their redshift vs. inferred distance diagram would then closely resemble the lower panel. The \S-wave" seenin the �gure|measured with respect to the uniform density prediction|would be interpreted as peculiarvelocities if IHM were neglected. In particular, motions of many hundreds of km s�1 toward the densitypeak would be seen in both the foreground and the background. Such motions are what is expected fromgravitational instability, but in this example they are merely an artifact of Malmquist bias. More generally,if gravitational instability is correct, there are real motions but IHM will cause the observed motions to belarger. This bias mimics the e�ect of having more mass in the density enhancement than actually exists.It follows that, if not properly accounted for, IHM will result in an overestimate of � (e.g., Eq. 149).6.5.3 Distance-Dependent Selection Functions: The \Gould E�ect"An important feature of the Malmquist bias equations in x 6.5.2 was their independence of obser-vational selection. This greatly simpli�es their application in peculiar velocity analyses; in particular, itmakes the uniform density correction trivial. However, as was �rst pointed out by Gould (1993), undercertain circumstances this desirable attribute of Malmquist bias might break down. The origin of this e�ectis best understood in terms of the selection function, which we have assumed to depend explicitly onlyon the observables (m; �), not on distance. As a result, in the steps leading from Eq. (179) to Eq. (182)S(m; �) naturally cancelled out. Had the selection function actually been of the form S(m; �; r), it wouldnot have dropped out, and the result would have been a selection-dependent equation for Malmquist bias.To see how distance-dependent selection might arise, suppose that selection is based on a blue appar-ent magnitude which must satisfy mB � m`, while the TF analysis involves a distinct magnitude m. Now,instead of empirically relating mB to the TF observables and deriving S(m; �) according to Eq. (176), letus consider the TF relation MB(�) satis�ed by the absolute magnitude corresponding to mB: We can thenrelate the probability that mB � m`, for a galaxy of width parameter � and distance r, to a probabilityinvolving the absolute magnitude MB:P (mB � m`j�; r) = P (MB � m` � �(r)j�)= m`��(r)Z�1 1p2��B e� [MB�MB(�)]22�2B dMB ; (187)where we have assumed a normally distributed blue TF relation with scatter �B: Eq. (187) is apparentlynothing but the sample selection function as we have de�ned it. However, it is independent of the TFmagnitude m, and explicitly dependent on r: rather than writing it S(m; �) we must write it S(�; r):How can this derivation be reconciled with Eq. (176), whose premises appear equally valid but whichyields a qualitatively di�erent result? The answer is quite subtle, and we refer the reader to Willick (1995)100



for a detailed explanation. There it is shown that Eq. (176) is valid to the extent that the residuals ofthe TF relations MB(�) and M(�) are strongly correlated, as is normally the case. Eq. (187) is valid inthe opposite limit of uncorrelated residuals. A rigorous derivation of sample selection must take this e�ectinto account; the general result is a selection function S(m; �; r), with the strength of the r-dependenceinversely related to the degree of correlation between the two TF relations.There are two methods to determine whether the Gould e�ect is present is real samples. The �rst isto directly examine correlations between the MB(�) and M(�) TF residuals. The second is to test whethermB is statistically best described as a function of m and �, of � and r, or of all three. In the �rst of thethree cases, there is no Gould e�ect; otherwise it is present at some level. Willick et al. (1995a,b) used thesecond test (with r modeled by redshift) to show that the e�ect is signi�cant for samples selected on theESO angular diameter (e.g., Mathewson et al. 1992b). Peculiar velocity analyses using such samples (e.g.,Hudson et al. 1995) rely heavily on redshift-space grouping to minimize the e�ect.6.5.4 Inverse DIs: Selection BiasA formalism quite analogous to that developed above may be presented for inverse DIs; we assume, asusual, that the DI in question is TF. The central element of this formalism is the Gaussian distribution ofobserved width parameters about the expectation value �0(m� �(r)) when selection e�ects are neglected.Adding in the remaining elements we arrive at the joint distribution of m, �, and r written in terms of theinverse TF relation:P (r;m; �)/ r2 n(r)S(m; �)��(m� �(r)) 1p2� �� exp � [� � �0(m� �(r))]22�2� ! : (188)We note that, in contrast to its forward analogue Eq. (171), this equation involves the luminosity function�(M):Both selection and Malmquist bias are implicit in Eq. (188). As before the two are distinguished bythe assumptions of data analysis. In a Method II analysis we (implicitly) condition on the true distance(see x 6.5.1). The probability distribution which underlies such an analysis is thus P (�jm; r); obtained fromEq. (188) according toP (�jm; r) = P (r;m; �)R1�1 d� P (r;m; �)= S(m; �) exp�� [���0(m��(r))]22�2� �R1�1 d� S(m; �) exp�� [���0(m��(r))]22�2� � : (189)This equation is the inverse counterpart of Eq. (173). In the forward case the condition for selection bias tovanish was that S(m; �) be independent of m, which is almost always unrealistic. Now the condition is thatS(m; �) be independent of �: We can expect that, to a good approximation, this condition will frequentlyhold. To the extent that it does, Eq. (189) reduces to a Gaussian distribution of � about �0(m � �(r):It follows that a standard �2 minimization procedure will yield unbiased values of model parameters, asdiscussed in x 6.4.4.However, the assumption that inverse Method II analyses are free of selection bias is subject to severalcaveats which are often overlooked:(i) As noted in x 6.5.1, using di�erent photometric quantities for sample selection than for DI analysiscan result in an �-dependence of the function S(m; �). Willick (1994) has quanti�ed and described101



correction techniques for this e�ect.(ii) Direct dependence of sample selection on velocity width can occur in studies in which � is measuredfrom the HI 21 cm line. Signal-to-noise ratio considerations can mean that large velocity widths morelikely to be undetected at low 21 cm ux levels (Roth 1993). Willick et al. (1995a) have attempted toestimate this e�ect for the Mould et al. (1991) TF sample, and found it small but non-negligible.(iii) The slope of the inverse relation|the quantity e in Eq. (168)|is a�ected by the accuracy of theredshift-distance model used in calibrating the relation (Willick 1991). This �tting bias does nota�ect the forward relation, in which a poor model increases scatter but does not bias the slope.(iv) Finally and perhaps most importantly, while inverse DIs can avoid selection bias in the case of velocitywidth-independent selection, they have no special advantage over forward DIs in terms of susceptibilityto Malmquist bias. Indeed, inverse Malmquist bias is inherently more complicated than forward, aswe describe in the following section.6.5.5 Inverse DIs: Malmquist BiasAn inverse Method I analysis is fully analogous to a forward Method I analysis, except that theinferred distances are obtained by solving the equation �0(m� 5 log d) = � implicitly for d: For the linearinverse TF relation Eq. (168), this gives d = 100:2[m�(D��=e)], which may be compared with the forwardinferred distance d = 100:2[m�(A�b�)]. Although we have used the symbol d for both the forward andinverse inferred distance, the two are not equal in general; the non-equality of the forward and inverse TFparameters (x 6.4.4) guarantees this. In fact, inverse DIs are steeper than their forward counterparts whenplotted in the usual way (M vs. �). Inverse inferred distances are thus larger for luminous, and smallerfor faint, galaxies. Since luminous objects dominate a sample at large redshifts, it is clear that a redshiftvs. inferred distance diagram will look di�erent depending on whether the forward or inverse relation hasbeen used, with quite di�erent biases in the two cases. Let us now quantify these ideas.If we begin with Eq. (188) and go through a series of steps analogous to those which took us fromEq. (171) through Eq. (182), we obtain the following for the probability distribution of the true distanceof a galaxy with inverse inferred distance d:P (rjd) = r2n(r)s(r) exp�� [ln r=d]22�2 �R10 r2n(r)s(r) exp�� [ln r=d]22�2 � dr : (190)Here � � ��=e, the e�ective fractional inverse distance error, is roughly but not precisely equal to itsforward counterpart. Derivation of Eq. (190) required the assumption of a linear inverse TF, and alsoof a selection function at most weakly dependent upon � (details are given in Willick 1995). With these(realistic) assumptions Eq. (190) resembles its forward analogue Eq. (182), but with a crucial di�erence:the presence of the real space selection functions(r) � 1Z�1 dm�(m� �(r))S(m; �0[m� �(r)]) ; (191)the probability that a sample object lies at true distance r irrespective of the observables (m; �).Eq. (190) shows that the inverse Malmquist e�ect quantitatively resembles the forward, with theexception that now the product n(r)s(r) replaces n(r) alone. The di�erences between inverse and forwardMalmquist bias are most clearly illustrated by considering the uniform density case, with the furtherassumption that s(r) varies slowly on scales d�. By analogy with Eq. (185) it is then easy to derive the102



resultE(rjd) = d �1 + �72 + s(d)��2� ; (192)wheres(d) = d ln s(r)d ln r �����r=d : (193)We see again that, like their forward counterparts, inverse inferred distances are biased: E(rjd) 6= d: How-ever, in contrast with the forward case, the e�ect is not independent of sample selection or the luminosityfunction. Even in the case of uniform density, it is not simple to obtain a Malmquist correction for aninverse distance. One must not only accurately model the selection function S(m; �), but integrate it withrespect to a believable luminosity function �(M). These di�culties are only compounded by the realisticrequirement of estimating n(r) in order to account for IHM. The net e�ect of these considerations is thatinverse DIs are less suitable than forward DIs for Method I analyses. This point must be kept in mindwhen one speaks of the \unbiased" character of inverse DIs. The quantity s(r) might be modeled by theobservables s(z) or s(d), and thus perhaps be dealt with easily. There is, however, a method which, at leastin principle, permits e�ective use of inverse inferred distances, as we discuss in the next section.6.5.6 The Method of Landy and SzalayA severe obstacle to correcting for IHM is the requirement of knowing the number density n(r) alongany given line of sight. One way around this obstacle is to estimate n(r) from redshift survey information.This has been done, for example, in comparisons of the IRAS density �eld with the POTENT massreconstruction (Dekel et al. 1993; Hudson 1994a; Hudson et al. 1995). Although reasonable, this procedurehas unsatisfactory features, such as uncertainties introduced by smoothing and the need for an assumedpeculiar velocity �eld to convert redshift- to real-space density. One would like, if possible, to derive theIHM correction self-consistently from the DI data themselves. Such a method was outlined by Landy& Szalay (1992;LS), and independently by Willick (1991). The LS technique relies on the mathematicalrelationship between E(rjd) and a quantity which is in principle observable: the number of objects per unitinferred distance.Let us de�ne f(d) as the number of objects, per unit solid angle along a particular line of sight, perunit inferred distance. If the galaxy distribution is densely enough sampled, one can imagine measuringf(d) by binning objects in inferred distance. The resulting histogram representation of f(d) is proportionalto the probability, P (d), that an object along the given line of sight has inferred distance d. This probabilitymay in turn be calculated by integrating P (r; d), given by Eq. (181) in the forward case and derivable fromEq. (188) in the inverse case, over the true distance r:f(d) / P (d) = 1Z0 P (r; d) dr : (194)At this point, the expressions for the forward and cases diverge, and we present separately the result foreach:fforw(d) / S(d)d 1Z0 r2n(r) 1p2�� exp � [ln r=d]22�2 ! dr ; (195)103



and finv(d) / 1d 1Z0 r2n(r)s(r) 1p2�� exp � [ln r=d]22�2 ! dr : (196)In the forward case, the quantity S(d), which dropped out of the conditional expectation E(rjd), is presenthere in the expression for f(d). In the inverse case, however, f(d) contains a dependence on selectionidentical to that seen in E(rjd). Thus, it is only for the inverse case that the relationship between f(d) andE(rjd) will be straightforward (cf., Teerikorpi 1993), and we consider only the inverse case (now withouta subscript) in what follows.Taking as usual x = r=d we havef(d) / d2 1Z0 x2n(dx)s(dx) e� (ln x)22�2 dx (197)for inverse distances. To relate this to E(rjd) we rely on the mathematical identity (e.g., LS or Willick1995) that1Z0 x3g(dx) e� (ln x)22�2 dx = e 72�2 1Z0 x2g(d e�2 x) e� (ln x)22�2 dx (198)where g(r) is an arbitrary function. Combining Eqs. (183), (197), and (198) one readily obtainsE(rjd) = d e 32�2 f(d e�2)f(d) : (199)Eq. (199) is the basis of the Landy-Szalay method of Malmquist bias correction. It says that we canobtain an unbiased estimate of the true distance, given an inverse inferred distance d, from the observabledistribution f(d).The LS method is attractive for several reasons. First, as already noted, it enables us to correct forIHM using the DI data alone. Second, because LS involves inverse DI distances, it is based on a DI relationwhose calibration was very nearly free of selection bias. In this sense, inverse DIs can be viewed as (nearly)bias-free, but only when the LS method is used. Finally, while we have not made this explicit in the abovederivation, the LS method is applicable even when the Gould e�ect is present. This is because even whenthe selection function is of the form S(m; �; r), one arrives at the expression Eq. 190.With this rosy view of LS must go several realistic caveats. Accurate determination of the quantityf(d) presents a number of technical problems (Willick 1995). Basically, the issue is one of resolution: oneneeds a su�cient number of objects per bin that the histogram representation of f(d) is not overwhelmedby shot noise; to obtain this number one must make bigger bins in both angle and distance. The largerthe bin, of course, the less accurately one determines the actual IHM correction. For these reasons, LS hasyet to be implemented for a real sample. An e�ort is presently underway (Dekel et al. 1995) to do so forthe large TF samples currently available (x 7.2). It remains unclear at this time whether implementationof the LS method will constitute a major advance in dealing with Malmquist bias.7 Statistical Measures of the Velocity FieldWe begin this chapter with a discussion of bulk ows in x 7.1; this has been the major theme of muchof the work in peculiar velocities in the last decade. x 7.2 summarizes the history of peculiar velocity work104



with a discussion of the e�ort needed to put on a common basis the various samples available. The rest ofthe chapter discusses various statistics measurable from the observed ow �eld. The velocity correlationfunction and the Cosmic Mach Number are discussed in x 7.3 and x 7.4, respectively. x 7.5 is devoted toderivations of the full three-dimensional velocity �eld from its radial component, with emphasis on thePOTENT technique of Bertschinger & Dekel (1989), and the results that have come from this work.7.1 A History of Observations of Large-Scale FlowSince the mid-1970's coherent departures from uniform Hubble ow 31 have been observed on everlarger scales. A comprehensive historical review of the subject through � 1989 is given by Burstein (1990).Here we briey outline this history from � 1976 to the present, with an emphasis on recent years.When one speaks of a coherent bulk ow, one requires a velocity frame of reference. Prior to themid-1970's, the most logical choice for such a frame was that de�ned by the barycenter of the Local Groupof galaxies (LG), the bulk of whose mass is found in the Milky Way and the Andromeda galaxy M31.Our own motion with respect to such a frame was thought to arise from LG dynamics and the rotationof the Milky Way; the LG barycenter itself was considered at rest with respect to the Hubble expansion.This reasoning changed following the discovery of the CMB dipole anisotropy in 1976 (see x 5.7). TheCMB dipole was and is most naturally interpreted as due to the motion of the LG with respect to the restframe of the totality of mass within our observable universe, in the direction l = 276�, b = 30�, and withamplitude 627 km s�1. With this �nding it became clear that signi�cant peculiar velocities exist in theUniverse: unless the LG is atypical, peculiar motions of hundreds of km s�1 could no longer be consideredunusual. The CMB dipole also suggested a natural reference frame for the analysis of peculiar motions.7.1.1 Early WorkThe �rst claimed detection of large-scale streaming was that of Rubin et al. (1976ab), who assumedthat giant Sc spiral galaxies are standard candles. They studied a sample of 96 such galaxies in the redshiftrange 3500-6500 km s�1, and found a bulk ow relative to the Local Group frame of � 600 km s�1 inthe direction l = 160�, b = �10�. The Rubin et al. result provoked a great deal of skepticism in theastronomical community, despite the (nearly simultaneous) discovery of the CMB dipole. The direction ofthe Rubin et al. bulk ow was nearly orthogonal to the LG velocity vector, making the relationship of thetwo measurements di�cult to understand. Indeed, the measurement of Rubin et al. to this day has neitherbeen con�rmed nor entirely refuted, but instead has simply been supplanted by more modern data basedon better distance indicators.In the late 1970s and early 1980s, peculiar velocity work focused on the detection of infall to theVirgo cluster, which lies near the North Galactic Pole at l ' 270�, b ' 75�, and is the nearest largecluster to the Local Group. A number of workers using TF, Faber-Jackson, and other techniques estimatedthe amplitude of this motion at the Local Group to be in the range � 150{400 km s�1 (e.g., Schechter1980; Aaronson et al. 1982a; de Vaucouleurs & Peters 1981; Tonry & Davis 1981a,b; Hart & Davies 1982;Dressler 1984). Even if the largest of these estimates were correct, the misalignment between the Virgodirection and the CMB dipole meant that Virgocentric infall could not be the sole cause of the LG motion(Davis & Peebles 1983a; de Vaucouleurs & Peters 1984; Sandage & Tammann 1984; Yahil 1985). This ledto suggestions that the remaining part of the LG motion resulted from the pull of the relatively nearbyHydra-Centaurus supercluster complex, which lies almost near the apex of the microwave dipole at aredshift cz ' 3000 km s�1 (Shaya 1984; Tammann & Sandage 1985; Davies & Stavely-Smith 1985). Lilje,Yahil, & Jones (1986) studied residuals from the Virgocentric ow solution of Aaronson et al. (1982a)31 On large scales, these ows are referred to as as \large-scale streaming motions," \large-scale ow," \bulk ow,"among other terms. We use all these terms interchangeably here.105



and concluded they were best �t by a quadrupolar term arising from the pull of Hydra-Centaurus. Thesesuggestions were consistent with the generally accepted view that peculiar motions arose from relatively\local" (scales <�5000 km s�1) mass density perturbations.7.1.2 1986{1990: The \Great Attractor"Con�rmation of this view appeared to come from a long term study by the Aaronson group. UsingIRTF distances to ten clusters in the 4000{10,000 km s�1 redshift range, Aaronson et al. (1986) concludedthat these clusters exhibited no net motion relative to the CMB 32 . They argued, as a corollary, that the LGmotion had to be entirely generated by mass uctuations within � 5000 km s�1. The picture that prevailedin the mid-1980's was thus one in which the Hubble ow was unperturbed on scales >�5000 km s�1: Butwithin several years the paradigm had changed radically, due mainly to the work of the \7 Samurai" (7S).Applying the Dn-� relation to an all-sky sample of over 400 bright (mB � 13 mag, hczi ' 3000 km s�1)elliptical galaxies, the group reported a bulk ow of amplitude 600 � 100 km s�1 relative to the CMBframe, in the direction l = 312� 11�, b = 6� 10� (Dressler et al. 1987a). They emphasized that galaxies inthe Hydra-Centaurus concentration participated in, and therefore could not be the source of, the observedow. They concluded that, contrary to the conventional wisdom, the greater part of the LG motion relativeto the CMB had to be generated on scales >�5000 km s�1:This result shook up the cosmology community considerably. Its signi�cance lay not so much in theamplitude as in the coherence scale of the ow. Indeed, as initially reported by Dressler et al. (1987a), thetrue scale of the bulk ow was unconstrained, potentially larger than the e�ective limit (� 6000 km s�1)of their sample. It was quickly realized (e.g., Vittorio, Juszkiewicz, & Davis 1986) that a bulk ow on thisscale was inconsistent with essentially all of the then-popular scenarios for large-scale structure formation,including the standard cold and hot dark matter models. The power spectrum P (k) for any of thosemodels did not contain su�cient power on large scales to generate ows of amplitude � 600 km s�1on scales >�5000 km s�1 (Eq. 40). Kaiser (1988) showed that the situation for cosmological models wasnot as dire as Vittorio et al. (1986) implied, as the e�ective depth of the 7S sample was not as large ashad been assumed. Indeed, the �tted bulk ow was not inconsistent with the standard CDM model withhigh enough normalization. However, in this case, the small-scale velocity dispersion is larger than thatobserved; Bertschinger & Juszkiewicz (1988) point out that there is no normalization of standard CDMwhich can simultaneously match the 7S bulk ow and the observed small velocity dispersion (cf., x 7.4).The controversial nature of the 7S result was at least partially alleviated when the group undertook areinterpretation of their data in Lynden-Bell et al. (1988a, hereafter LB88). They showed that much of thesignal for the elliptical streaming motion was provided by galaxies within � 2000 km s�1; if they con�nedtheir analysis to objects at distances >�3000 km s�1, bulk ow was only marginally detected. Moreover,in a conical region within � 60� of the apex of the apparent bulk ow, the derived amplitude was nearly1000 km s�1. They interpreted this as due to infall into an attracting point. They �t their data using aMethod I approach (x 6.4) to a model in which the ow is generated primarily by a spherically symmetricdensity perturbation they called the \Great Attractor" (GA) (cf., x 4). In addition to the GA distance andow amplitude, which were treated as free parameters, the model of LB88 included a Virgo infall motionwith a �xed amplitude of 250 km s�1 at the position of the LG. Their maximum-likelihood �ts placed theGA at a distance of 4350� 350 km s�1 in the direction l = 307�, b = 9�, indicated that it induced an infallvelocity of 570 � 60 km s�1 at the position of the LG, and attributed to it a mass of � 5:4� 1016M�.A further elaboration of the GA model was provided by Faber & Burstein (1988, FB88), who combinedTF data for nearby spirals from Aaronson et al. (1982b) with the 7S elliptical data. FB88 �tted the32 Willick (unpublished) has shown, however, that the limited sky coverage of the Aaronson et al. sample meansthat its ruling out of large-scale bulk ows is not de�nitive.106



combined data set to a model in which the local velocity �eld was fully described by infall motions intothe GA and Virgo, but with the parameters characterizing each motion allowed to vary independently (seealso Han & Mould 1990). They obtained consistent results using Method I and Method II analyses. Twoimportant conclusions resulted from this work. First, the nearby TF spirals (cz <� 2500 km s�1) mappedout a velocity �eld similar to that of the ellipticals. Second, the e�ect of Virgo was found to be very smallin comparison with the tidal e�ect of the GA: the infall motion due to Virgo alone at the position of theLG had an amplitude of � 100 km s�1. This contrasted strongly with earlier estimates (e.g., Aaronson etal. 1982a) which had found a Virgocentric motion of � 300 km s�1 and higher (x 7.1, x 8.1.1). FB88 veri�edthat the discrepancy between their Virgo ow solution and that of Aaronson et al. was due solely to theshear caused by the GA in the model (cf., Lilje et al. 1986) 33 .Apparent con�rmation of the GA picture came from two directions. First, three newly-completedredshift surveys (da Costa et al. 1988; Dressler 1988; Strauss & Davis 1988) showed that there was in facta very strong excess number of galaxies in the direction of the proposed GA, peaking at cz � 4000 km s�1(cf., Fig. 6). The second source of support for the GA model came from further peculiar velocity studies ofthe region. Aaronson et al. (1989) extended their infrared TF cluster study to the Hydra, Centaurus, andother neighboring clusters and con�rmed large positive peculiar velocities for these clusters (see also Mouldet al. 1991). Dressler & Faber (1990a,b) studied �eld galaxies in the GA region using both the TF (usingCCD photometry and optical linewidths) and Dn-� methods. Probing deeper than earlier studies, theyclaimed to detect \back-side infall" into the GA, i.e., negative peculiar motions of galaxies at distances>�5000 km s�1: Such motions would have to exist if the positive velocities detected in the foregroundwere indeed generated by the GA, and the GA was an isolated structure. The detection of backside infallremains controversial (cf., Burstein et al. 1990; Roth 1993; Mathewson & Ford 1994), given the large anduncertain correction for inhomogeneous Malmquist bias. In addition, it is clear that the velocity �eld withinthe Centaurus cluster is quite complex; it consists of two pieces with substantially di�erent distances andpeculiar velocities (e.g., Lucey, Curry, & Dickens 1986; Burstein et al. 1990).7.1.3 1990-1994: Very Large-Scale Streaming?Several independent peculiar velocity surveys came to fruition around 1990, with results that chal-lenged the consensus which had emerged around the GA picture. Willick (1990,1991; hereafter W91)reported an R band CCD TF study of 155 cluster spirals from the sample of Aaronson et al. (1986), and of326 �eld spirals in the Perseus-Pisces supercluster region (PP). One of the more prominent structures inthe nearby universe (Fig. 6), PP consists of a dense �lament of galaxies at redshift � 5000 km s�1, centeredon l � 110�, b � �30�. W91 obtained velocity widths for PP galaxies from the published 21 cm data ofGiovanelli & Haynes (1985,1989) and Giovanelli et al. (1986). The W91 PP sample was concentrated ina relatively narrow (� 15�) strip in galactic latitude, stretching over � 90� in longitude. PP lies nearlyopposite on the sky from the GA at a similar distance, but was not well sampled in the 7S study. ThePP region thus represented a signi�cant uncharted volume in the velocity �eld as mapped by the ellipticaldata. W91 used the cluster galaxies to calibrate the R band TF relation, assuming (following the �ndingof the Aaronson group) that the Northern Sky clusters were at rest in the CMB. When applied to thePP galaxies, the TF data revealed a coherent motion directed toward the LG, with a mean amplitude of� 350 km s�1. Superposed on the coherent streaming were compressional motions presumably due to theoverdense PP �lament, but the bulk motion was the most prominent feature of the data. Because of thelocation of PP, the streaming motion was directed not only toward the LG, but also approximately toward33 The very small Virgo infall amplitude found by FB88 remains controversial. Tonry et al. (1992) have applied theSBF technique to local ellipticals and found an infall velocity of 340� 80 km s�1 at the LG. Work on the subjectwill undoubtedly continue in the coming years. 107



the GA. The amplitude of this streaming was much larger than what was predicted at PP (� 150 km s�1)by the FB88 GA model. W91 suggested that the residual motion might be due to very large-scale, lowamplitude density uctuations, but noted that at the largest distances in his sample (� 10,000 km s�1),objects appeared to be at rest in the CMB frame.The small solid angle covered by the W91 PP sample raised the question of whether the PP inowextended over a larger region of the sky. Con�rmation that it did was provided by the R band CCD TFsurvey of Courteau and Faber (Courteau 1992; Courteau et al. 1993; CF), who obtained data for 321galaxies distributed over the Northern sky using a dilute sampling approach. CF used optical H� rotationcurves to measure velocity widths. Because of their large sky coverage and very uniform selection criteria,CF were able to compare di�erent regions of the sky reliably. Well away from PP their data suggesteda relatively quiescent velocity �eld, as indicated by the small scatter of the TF relation when distanceswere modeled by pure Hubble ow. However, within the PP region|now de�ned to cover an area severaltimes larger than the W91 sample|the scatter was larger and the residuals systematically o�set fromHubble ow. The implied velocity was � 300{350 km s�1 toward the LG, in agreement with W91. Furthercon�rmation of a bulk motion came from Han & Mould (1992), who used the I band CCD TF relation tostudy �ve clusters embedded in the PP supercluster. They found PP to be moving towards the LG withamplitude � 400 km s�1.Han, Mould and collaborators also obtained I band TF data for 16 further clusters distributed overmuch of the sky (Han 1992; Mould et al. 1991). This sample of clusters largely overlapped those studiedusing the IRTF by Aaronson et al. (1986,1989), but the I band relation was considered more accurate.Han & Mould (1992) �tted the combined data for 21 clusters to two models: a large-scale bulk streamingsimilar to the original model proposed by the 7S group (Dressler et al. 1987a); and a \bi-infall" modelin which the local universe is dominated by competing gravitational pulls of the GA and Perseus-Pisces.They found that both models were consistent with the data.Connolly (1993) measured Tully-Fisher parameters for a sample of 218 Sc galaxies in both Galactichemispheres, with mean redshift of 5500 km s�1. He �ts the data to a dipole and �nds good agreementwith the analysis of a much larger sample by Courteau et al. (1993).The largest single contribution of Tully-Fisher data in recent years has been that of Mathewsonand collaborators (Mathewson et al. 1992ab, hereafter MAT92; Mathewson & Ford 1994). Using I bandCCD photometry and a combination of HI and optical velocity widths from several telescopes in Australia,MAT92 obtained TF data for 1355 Southern sky galaxies. Roughly half of these were in the steradianaround the GA region as de�ned by the 7S group, and another half, thought of as a control group, wereoutside. The sample was constructed to be roughly complete to an ESO diameter limit of 1:70. Most objectsin the sample have redshifts <� 4000 km s�1, but a substantial number have 5000 <� cz <� 7000 km s�1:MAT92 calibrated their TF relation relative to � 40 galaxies with TF data from Aaronson et al. (1989),Willick (1991), and Han & Mould (1992).The redshift vs. TF distance diagram for galaxies in the \control" region exhibited pure Hubble owin the mean. Within the GA region, MAT92 con�rmed the large (� 1000 km s�1) outowing motions in theGA foreground that had been detected in the 7S elliptical data. However, the spirals did not appear to tracea velocity �eld which fell to zero at the distance (� 4500 km s�1) of the nominal Great Attractor. Instead,the data indicated that the GA itself (i.e., galaxies in the redshift range � 4000{5000 km s�1) possesseda mean positive peculiar velocity of � 600 km s�1. Furthermore, the MAT92 data did not exhibit the\backside infall" which Dressler & Faber (1990ab) had claimed to detect: even at distances >� 5000 km s�1a return to the Hubble line was not apparent. MAT92 argued that their data, in combination with thoseof Willick (1990), suggested a vast bulk ow in the Supergalactic plane on scales well in excess of 10,000km s�1.However, a recent reanalysis of the MAT92 data, as well as further data from the Mathewson group108



itself, have not lent support to this hypothesis. MAT92 did not attempt a careful correction for selectionor Malmquist biases; in addition, their zeropoint calibration used only a small number of independentcomparisons. Using a careful zeropointing technique which ties together the distance scale of several TFsamples, Willick et al. (1995abc) have recalibrated the TF relations used by MAT92 as well as other TFsamples (see x 7.2). Preliminary analyses of the recalibrated data (Courteau et al. 1993; Faber et al. 1993,1994) have derived modest (� 300{350 km s�1) bulk ows in the GA direction, as well as evidence of areturn to the Hubble line at the distance of the GA. The backside infall, however, remains undetected inthese recent studies. Very recently, Mathewson & Ford (1994) have enlarged their Southern sky sample by� 1000 galaxies. The new sample is selected to an ESO diameter of 10 and thus probes to greater distances(cz <� 10; 000 km s�1). Mathewson & Ford measure a bulk ow in the GA direction of � 370 km s�1 forthe combined sample, in good agreement with Courteau et al. (1993), and a return to the Hubble line atcz ' 7000 km s�1: The new data have not been reanalyzed using the techniques of Willick et al.; this willbe carried out in the near future.7.1.4 The Lauer-Postman ResultThe most dramatic apparent detection of very large-scale streaming to date comes from the workof Lauer & Postman (1994, hereafter LP). Using the BCG L-� relation (x 6.3.2), LP obtained redshift-independent distances to a volume-limited sample of 119 Abell clusters in the redshift range cz < 15; 000 km s�1:The typical distance error from the method was estimated by LP as � 16%, so that the peculiar velocityerror for a typical sample cluster is � 2000 km s�1, much too large to estimate individual cluster peculiarvelocities. However, the data do allow the determination of a mean bulk velocity vector for the sample.LP de�ned an \Abell Cluster Inertial Frame," or ACIF, and measured the velocity of the LG Lrelative to it. They solved for L by minimizing the �2-like quantity 34E = NXi=1 (2 � �i)2z2i �czi �10 0:4�M(�i )2��i � 1��L � ĝi�2 (200)where:(i) �i is the �-value for galaxy i;(ii) zi its redshift in the LG frame;(iii) �M(�i) is its residual (in magnitudes) from the L-� relation;(iv) ĝi is a unit vector toward the galaxy; and(v) L is the motion of the LG with respect to the ACIF.The minimization is carried out with respect to the parameters specifying the L-� relation (which determinethe quantity �M(�)), and the three components of L. The quantity (2 � �) which appears both in theweighting term and in the exponent arises from the fact that both L and � must be measured withinmetric apertures; as a result the e�ective scatter of the relation is actually given by 2�M=(2 � �) where�M = 0:24 mag is the scatter about the relation. The z�2 term gives greatest weight to the nearby clusters,although LP show the solution is insensitive to the redshift weighting.LP found that the LG motion relative to the ACIF was in the direction l = 220�, b = �28� (totalangular uncertainty�27�). That the LG would have a signi�cant motion relative to an inertial rest frame isof course no surprise; we already know that the LG moves at � 600 km s�1 relative to the CMB. However,the latter motion is in the direction l = 276�, b = 30� (with negligible angular uncertainty). Consequently,according to LP the ACIF di�ers signi�cantly from the frame de�ned by the CMB dipole. Stated anotherway, if the CMB de�nes the true cosmic rest frame, the LP data indicate that the Abell clusters out to34 Colless (1995) derives a more accurate version of Eq. (200); his reanalysis of their data gives results di�eringonly slightly from those of Lauer & Postman (1994). 109



15,000 km s�1 possess a net peculiar motion of 689� 178 km s�1 in the direction l = 343�, b = +52 (totalangular uncertainty �23�). Aware of the controversial nature of their result, LP performed a suite of testsaimed at identifying systematic e�ects in their analysis. Among other things, they considered the e�ectsof cutting their sample at low and high redshifts, and at low and high values of �, of removing prominentsuperclusters (such as the Hydra-Centaurus complex) from their sample, of using a linear rather than aquadratic L-� relation, and of removing galaxies with very large residuals. They found that none of thesetests produced signi�cant changes in their solution. They did identify one non-negligible systematic e�ectcalled \geometry bias," which arises due to coupling between the dipole moment of the sky distributionof the sample and the distance indicator relation. LP calibrated and corrected for this e�ect using MonteCarlo experiments; in practice, it was rather small (< 100 km s�1) since their sample has excellent skycoverage.One could take the view that a � 700 km s�1 bulk motion of a volume � 30,000 km s�1 in diameter ishighly implausible, and attribute it instead to an incorrect choice of cosmic rest frame. One would then beobliged to jettison the conventional view that the CMB dipole is kinematic in origin; possible explanationsof a cosmological origin for the CMB dipole have been suggested by Gunn (1988), Paczy�nski & Piran(1990), and Turner (1991). While the possibility that the CMB does not de�ne a cosmic rest frame cannotbe excluded, such a view has become increasingly di�cult to uphold in light of the discovery of small butmeasurable CMB anisotropies by the COBE satellite (Smoot et al. 1992). These COBE measurementshave corroborated most theoretical ideas about the nature of the CMB.Alternatively, if one accepts the kinematic origin of the CMB dipole and the resultant CMB-de�nedrest frame, the LP data indicate a � 5% perturbation to the Hubble ow on a 15,000 km s�1 scale. This isdi�cult to reconcile with bulk ow observations from the TF and Dn-� relations. Courteau et al. (1993)used the Mark III dataset (x 7.2) to estimate the bulk ow within 6000 km s�1 to have an amplitude of360 � 40 km s�1 in a nearly orthogonal direction, toward l ' 300�, b ' +10�. It is di�cult to understandhow the amplitude of the bulk ow could grow with scale in a universe which approaches uniformity inthe galaxy distribution in the large, especially given the apparent convergence of the dipole in the galaxydistribution between 6000 and 15,000 km s�1(x 5.7).The LP result also poses severe problems for a number of currently popular theories for the growth oflarge-scale structure. Strauss et al. (1995) have generated mock LP-like BCG samples in N-body simulationsbased on six di�erent cosmogonic scenarios, including CDM, HDM, and PIB models. These mock sampleswere constructed to mimic all the observational errors in the actual LP sample. Strauss et al. found thatno more than 2{5% of the realizations of any given model exhibited an apparent ow as large as thatmeasured by LP. Similar results were found by Feldman & Watkins (1994) using an analytic approach.Ja�e & Kaiser (1995) suggest comparing not just the bulk ow, but the full sample of peculiar velocities,to the predictions of various models. They �nd better agreement between the LP data and models thando Strauss et al. and Feldman & Watkins. However, as Ja�e & Kaiser ignore the correlations between themeasured peculiar velocities of di�erent clusters, which arise from the self-calibrating nature of the LPsample, the validity of their analysis is uncertain.The very careful treatment by LP makes it unlikely that the observed ow will \go away" with afuture reanalysis of the data. Rather, it seems likely that future measurements on comparably large scales(x 9.7) will determine the ultimate evaluation of LP, as was the case with the Rubin et al. (1976ab) result.If LP is con�rmed, it will need to be reconciled with the discrepant ows seen on smaller scales, andtheoretical models are likely to require signi�cant revision.7.1.5 Bulk Flows: A SummaryThe myriad of bulk ow analyses we have discussed here have used a wide variety of samples, method-ologies and techniques, and have been carried out during a time when our knowledge of the properties110



of distance indicators, and the various biases which plague them, was evolving rapidly (as indeed it stillis). The bulk ows measured by di�erent samples necessarily probe di�erent volumes of space; a directcomparison between them is problematic, and we have not attempted one in this review. Nevertheless,there is a rough consensus between the di�erent workers in the �eld as to the nature of the bulk owwithin 6000 km s�1 (cf., the review by Postman 1995), both in its amplitude and in its direction. Eventhe Lauer-Postman bulk ow, which is on appreciably larger scales than the others, agrees very roughlyin direction. The surprising thing about this result is the fact that it also agrees roughly in amplitude, onsuch a large scale.One of our aims in measuring bulk ows is to compare with theoretical predictions, as given for a givenmodel by Eq. (40). This equation refers to the volume-weighted average of the three-dimensional velocityof particles within a spherical volume, which can di�er substantially from the galaxy- and error-weightedaverage of radial velocities that is usually measured. Indeed, as Juszkiewicz et al. (1990) and Strauss et al.(1995) point out, one can have a bulk ow within a volume even in the absence of density uctuations onlarger scales, if the center of mass of the volume does not coincide with its geometric center. There are anumber of such subtleties which are only now being appreciated in this game; further theoretical analysesalong the lines of Kaiser (1988; 1991) and Feldman & Watkins (1994) are needed.Of the samples discussed here, only that of Lauer & Postman (1994) approached being volume-limited(cf., Roth 1993, 1994). However, one can measure an e�ective volume-limited bulk ow if one weights thegalaxies appropriately. The POTENT technique (to be discussed in detail in x 7.5) does exactly that, andBertschinger et al. (1990) quote volume-limited bulk ows measured within a series of spheres centeredon the Local Group. More recent results using POTENT applied to a more complete data set by Dekelet al. (1995) show a bulk ow of 400 km s�1 within a sphere of radius 6000 km s�1 sphere, which isin fact consistent with standard CDM normalized to COBE. Again, the Lauer-Postman result, whichprobes appreciably larger scales, is in disagreement with this and all other viable models; we suspect thatmeasurements of bulk ows on large scales will continue to be a very active area of research for at leastthe next �ve years.7.2 Homogeneous Peculiar Velocity CatalogsTully-Fisher and Dn-� data have been collected, at an increasing rate, over the past �fteen years.There now exists a large number of independent data sets potentially useful in peculiar velocity surveys.This trend will accelerate in the coming years, as most ordinary spiral and elliptical galaxies out to� 10,000 km s�1 acquire quality photometric and spectroscopic measurements. There is and will be aneed for uniform catalogs containing the TF and Dn-� observable data, and the corresponding estimateddistances and peculiar velocities. Distances obtained using the newer DIs such as the PNLF, SBF, BCG,and SNe methods will eventually be cataloged as well.The greatest problem in constructing a peculiar velocity catalog is ensuring the homogeneity of theseparate samples. The originally published inferred distances to galaxies found in two or more independentdata sets are almost sure to di�er systematically, for two basic reasons. First, observers measure the relevantquantities|apparent magnitudes, diameters, and internal velocity widths|di�erently; they not only usedi�erent observational methods, but apply di�erent corrections (e.g. for internal extinction) to the rawobservables. As a result, there are as many TF relations (say) as there are data acquisition and reductiontechniques. Nonetheless, a TF relation derived for one data set is sometimes heedlessly applied to another.Second, observers determine the appropriate TF relation (say) from their data in di�erent ways. Some �tan inverse relation, some a forward relation; in each case, the treatment (if any) of selection bias can di�er.A na��vely constructed peculiar velocity catalog, in which inferred distances are simply appropriated fromthe published literature, will thus be plagued with systematic errors within and between data sets.111



Until recently, attempts to produce uniform peculiar velocity catalogs from the literature have beenlargely the work of D. Burstein, a member of the 7S collaboration. Two early versions known as the Mark Iand Mark II, were distributed privately to the community by electronic mail in 1987 and 1989 respectively.Burstein tabulated the Dn-� elliptical galaxy data of the 7S group, Lucey & Carter (1988) and Dressler &Faber (1990a), as well as the infrared TF spiral data of the Aaronson group. Burstein was able to makedirect comparisons of the Dn-� data from the di�erent groups. However, it was di�cult to guarantee thatthe spiral and elliptical data were on the same system; comparison of TF and Dn-� group distances wasused to make small adjustments, but these comparisons su�ered from the inevitable uncertainty associatedwith the spatial segregation of spiral and elliptical galaxies. Although not optimal, the Mark II catalogplayed an important role in some of the major statistical studies of peculiar velocity in recent years (e.g.,Bertschinger et al. 1990; Dekel et al. 1993).With the advent of new large samples of peculiar velocity data, there has been a strong need toextend Burstein's e�ort, particularly in view of the more complete understanding of bias e�ects acquiredin recent years (x 6.5). A group led by one of the present authors (J.W.) has recently completed this task.The basic methodology is described in Willick et al. (1995ab); the Mark III Catalog of Galaxy PeculiarVelocities is presented in Willick et al. 1995c, and is available for electronic distribution as well. The MarkIII consists of the CCD TF samples of Han, Mould, and collaborators (Han 1991, 1992; Han & Mould1992; Mould et al. 1991,1993; collectively, HM); Willick (1991, W91); Courteau and Faber (Courteau 1992;CF); and Mathewson et al. 1992b; and of the infrared TF sample of Aaronson et al. (1982b), as recentlyreanalyzed by Tormen & Burstein (1994, 1995), who corrected previously unrecognized systematic errorsin the diameter system used by the Aaronson group (see x 6.1.1). The Mark III catalog will also includeexpanded versions of the elliptical Dn-� samples found in the Mark II.Several basic principles guide the construction of the Mark III catalog. The �rst is the adoption ofa uniform set of rules for correcting the raw observable quantities, in particular apparent magnitude andvelocity width, for the e�ects of extinction, inclination, and redshift. Internal extinction corrections havebeen a source of particular controversy in the past (see Burstein et al. 1995 for a review); the Mark IIIcompilation adopts bandpass-speci�c internal extinctions which minimize TF scatter. The second principleis to re-derive a Tully-Fisher relation for each sample separately, taking full account of and correcting forselection biases in the manner suggested by Willick (1994; cf. x 6.5). An important result of this re-derivationis that the TF relations in the Mark III compilation can di�er markedly from those of the original authors.Third, the zeropoints (the constant A in Eq. 152) of the individual TF relations are mutually adjusted toyield the maximum agreement in the inferred distances for several hundred galaxies which are common totwo or more individual samples. Finally, the global catalog zeropoint is determined by assuming that inthe sample as a whole, the volume-weighted radial peculiar velocity component vanishes in the mean.A representation of the Mark III velocity �eld is shown in Fig. 16, which shows the measured radialpeculiar velocities of all galaxies within 22.5� of the Supergalactic plane. The point is drawn at the measureddistance of the galaxy, while the line is drawn to its redshift, in the CMB rest frame. Positive peculiarvelocities are drawn with solid points and solid lines, while negative peculiar velocities use open pointsand dashed lines. When possible, galaxies are grouped in order to decrease the errors and reduce theMalmquist bias; points representing groups of more than three galaxies are drawn somewhat larger. Thezone of avoidance is apparent as the missing wedge out of the middle of the �gure. Compare this �gure withthe IRAS density �eld of Fig. 6; we have labeled the major structures as we did in that �gure. The bulkow into the GA is apparent, as is the coherence of the ow even back to the Pisces-Perseus supercluster.It is di�cult, however, to draw quantitative conclusions from this �gure alone about bulk ows or infallsinto speci�c structures. In the remainder of this chapter, we discuss various statistical analyses of peculiarvelocity data, culminating in reconstruction methods of the full three-dimensional velocity �eld in x 7.5.112



Fig. 16. The Mark III peculiar velocities of all galaxies within 22.5� of the Supergalactic plane. The point is drawnat the measured distance of the galaxy, while the line is drawn to its redshift, in the CMB rest frame. Positivepeculiar velocities are drawn with solid points and solid lines, while negative peculiar velocities use open pointsand dashed lines. Points representing groups of more than three galaxies are drawn somewhat larger.7.3 Velocity Correlation FunctionOne of the most striking features of the observed large-scale velocity �eld is its coherence. One wayto quantify this is by �tting bulk ows to the data (x 7.1). Another approach was suggested by G�orski(1988): the correlation function of the velocity �eld. G�orski de�nes the correlation function between theith and jth Cartesian coordinate of the velocity �eld as:	ij(r) � hvi(x)vj(x+ r)i = 	?(r)�ij + h	k(r)�	?(r)i r̂ir̂j; (201)where 	? and 	k are the transverse and radial correlation functions. The second equality holds if thevelocity �eld is homogeneous and isotropic. If the velocity �eld is derivable from a potential, then these113



two are not independent:	k(r) = d[r	?(r)]dr : (202)In linear perturbation theory, one can derive simple expressions for these quantities:	?(r) = H20f(
0)22�2 Z P (k)j1(kr)kr dk; (203)and 	k(r) = H20f(
0)22�2 Z P (k) j0(kr) � 2 j1(kr)kr ! dk; (204)compare with Eq. (40). Of course, we observe only the radial component of the velocity �eld. G�orski etal. (1989) and Groth, Juszkiewicz, & Ostriker (1989) have suggested methods to determine the velocitycorrelation function from observational data. The �rst of these papers de�nes a quantity  from a samplewith radial peculiar velocities ui: (r) � Ppairs (r) u1u2 cos �12Ppairs (r) cos2 �12 ; (205)where the sum is over all pairs of galaxies with separations between r and r + dr, and �12 is the anglebetween galaxies 1 and 2 on the sky. A uniformly selected full-sky sample exhibiting a bulk ow of amplitudev will have a velocity correlation function  1 = v2=3. The second equality of Eq. (201) implies that  (r) isa linear combination of 	k(r) and 	?(r), with coe�cients depending on the spatial distribution of galaxiesin the sample.The velocity correlation function at zero lag is a measure of the root-mean-square velocity dispersionof galaxies, while the scale on which it drops to zero is a measure of the coherence length of the velocity�eld. G�orski et al. (1989) looked at two datasets: the spiral galaxies of Aaronson et al. (1982) and theelliptical galaxies of the 7 Samurai. The correlation function  of both drop to zero at separations of2000 km s�1. The amplitude of the elliptical galaxy dataset has a much larger amplitude than that ofthe spirals, although this amplitude was not robust: deleting a small number of galaxies in the GreatAttractor region caused the amplitude to drop by more than a factor of two. These results were comparedto N -body simulations of CDM and PBI models. The CDM models �t the observed correlation lengthwell, and required a normalization �8 > 0:5 to match the amplitude. The PBI models tended to show morecoherence than is seen in the real data.Groth et al. (1989) used the linear relation between  and 	?;	k to solve for the latter. Theyemphasized the fact that in the frame comoving with the bulk ow of the Aaronson et al. (1982) data,the velocity correlations were essentially zero; the ow was very cold. This is consistent with the smallvalue of the pairwise velocity dispersion deduced from redshift surveys (x 5.2.1). Seen in this light, thecorrelation length of 2000 km s�1 reported by G�orski et al. (1989) is probably at least partly an edge e�ectdue to a �nite sample. It is time to revisit the velocity correlation function now that the data sampleshave improved and expanded. More work is needed to characterize the e�ects of survey geometry, and inparticular, peculiar velocity errors, on this statistic. It has the potential to place strong constraints oncosmological models, once these various e�ects are understood better.114



Juszkiewicz & Yahil (1989) point out that the comparison of the velocity and the spatial correlationfunction yields an estimate of �; in particular, in linear theory:D[v(r1)� v(r2)]2E = 2[	ii(0) �	ii(r12)] = �2H202� r12Z0 J3(x)x2 dx: (206)Note that the velocity correlations in this form on scale r depend only on the the correlation functionson scales smaller than r. Thus accurate measurements of the velocity correlation function and the spatialcorrelation function have the potential to yield a measurement of �. Moreover, the extent to which thetwo sides of Eq. (206) agree with one another as a function of r on linear scales is a test of gravitationalinstability theory. Unfortunately, existing data are not yet at the stage to allow this test to be done.7.4 The Cosmic Mach NumberOstriker & Suto (1990), struck by the coldness of the velocity �eld observed in the Aaronson et al.(1982) data, suggested a new statistic to quantify this coldness: the Cosmic Mach Number. The Machnumber in standard usage is the ratio of the ow velocity in some medium to the sound velocity inthat medium. In the cosmological context, the equivalent of the sound velocity is the small-scale velocitydispersion of galaxies. Following Eq. (40), the characteristic bulk velocities in a given cosmological modelmeasure the large-scale component of the power spectrum, while the small-scale velocity dispersion dependson the power on small scales. Their ratio is thus independent of the amplitude of the power spectrum(at least in linear theory), and is a diagnostic of its shape. Strauss, Cen, & Ostriker (1993; cf. Suto,Cen, & Ostriker 1992) �t bulk ows to observed datasets; all components of the velocity �eld on smallerscales were attributed to incoherent small-scale peculiar velocities. Subtracting o� the estimated errors inquadrature from the rms of the residuals allowed them to de�ne a small-scale velocity dispersion, and thusa Mach number. Strauss et al. (1992) compared the Mach number results from three di�erent datasetsto the distribution of Mach numbers observed in Monte-Carlo simulations of the observational data. TheAaronson et al. (1982) sample, with its relatively small errors, gave the strongest constraints on models;standard CDM was ruled out at the 95% con�dence level by this statistic. This is largely a consequenceof the fact that it greatly over-predicts the velocity dispersion on small scales, as was discussed in x 5.2.1.Other models with less power on small scales relative to large, including tilted CDM and HDM, fared muchbetter by this statistic.7.5 Reconstructing the Three-Dimensional Velocity FieldThe bulk ows discussed in x 7.1 represent one quantitative statistic that can be extracted fromobservations of peculiar velocities. One would like a method to characterize all the information availablein the velocity �eld. In particular, given gravitational instability theory (Eq. 30 or quasi-linear extensionsthereof), the observed velocity �eld gives a measure of the gravitating density �eld, independent of anyassumptions about the relative distribution of galaxies and dark matter. Bertschinger & Dekel (1989)have developed a technique they call POTENT (cf. Dekel 1994 for a review) which starts from the basicassumption that the observed velocity �eld is derivable from a potential �(r) such thatv(r) = �r�: (207)This is valid to the extent that the velocity �eld is curl-free; Kelvin's circulation theorem implies thatvorticity is generated only in regions of shell-crossing. Moreover, initial vorticity decays in an expandinguniverse just as do initial peculiar velocities. Thus we expect that at the present time, if we smooth on115



large enough scales, the vorticity is likely to be negligible. In this case, the radial component of the velocity�eld (which is all that is observable) determines the full three-dimensional velocity �eld. If u(r; �; �) is theobserved radial velocity �eld, then the potential (normalized to zero at the origin) is given by:�(r) = � rZ0 u(r0; �; �) dr0; (208)di�erentiation via Eq. (207) then yields the full three-dimensional velocity �eld. Indeed, there is no reasonto restrict the integration in Eq. (208) to radial rays; Simmons et al. (1994) discuss optimal integrationpaths for recovering the potential.Given the three-dimensional velocity �eld, linear theory gives a simple relation to the density �eld(Eq. 30). The POTENT method as currently implemented uses a non-linear generalization of this followingNusser et al. (1991):�P (r) = f(
0) I� f(
0)�1 @v@r � 1! ; (209)where I is the unit matrix; Eq. (209) reduces to r � v in the linear limit.Of course, we do not observe a radial velocity �eld u(r); we have noisy data for a non-uniform andsparsely sampled set of galaxies. Thus another crucial part of the POTENT technique involves turning thedata available into a continuous radial velocity �eld. This smoothing has several features:(i) It allows the radial velocity �eld to be de�ned at every point in space;(ii) It smoothes over small-scale vorticity in the velocity �eld due to shell-crossing;(iii) It smoothes over very non-linear e�ects that are not modeled by Eq. (209);(iv) It averages together the very noisy individual peculiar velocity measurements.Dekel, Bertschinger, & Faber (1990) use a tensor window function smoothing that takes into account theradial nature of the observed velocity �eld. There are three particularly pernicious sources of error in theresulting smoothed velocity �eld:(i) Statistical noise in the velocity �eld due to the errors in the individual peculiar velocities. One mini-mizes this noise by weighting each galaxy by the inverse square errors;(ii) Malmquist bias, both homogeneous and inhomogeneous, resulting from the peculiar velocity errors(x 6.5.2); POTENT uses peculiar velocities derived via Method I applied to forward DIs;(iii) Sampling gradient bias, due to the inhomogeneous sampling of the velocity �eld within a smoothingwindow. This is minimized using equal volume weighting.Note that the e�ects of items (i) and (iii) are minimized with di�erent weightings; one can never minimizeboth simultaneously. In practice, the e�ects of these sources of noise and biases for any given dataset andsmoothing scheme are calculated using extensive Monte-Carlo simulations. First results of the POTENTtechnique are presented in Bertschinger et al. (1990), using the Mark II data. The resulting density �eld,smoothed with a 1200 km s�1 Gaussian window, clearly shows the Great Attractor, and the void in theforeground of the Pisces-Perseus supercluster. The smoothed velocity �eld and resulting density �eld asgained from the Mark III data (Dekel et al. 1995) are shown in Fig. 17.The POTENT method and results have been used for a number of other studies, now using the MarkIII data described in x 7.2. We have already referred to its use to trace the density �eld at low Galacticlatitudes (x 3.8), and to compare the velocity �elds as traced by elliptical and spiral galaxies separately(x 6.2). Seljak & Bertschinger (1994) have used a maximum-likelihood method to �t the amplitude ofuctuations in the Mark II POTENT density �eld, assuming a given power spectrum. The analysis iscomplicated by the fact that data points are coupled not just by real correlations, but also by noise,necessitating a full Monte-Carlo approach to the covariance matrix. A summary of their results for a range116



Fig. 17. The smoothed velocity �eld and resultant density �eld from the Mark III data, in the Supergalactic Plane.The smoothing used was a 1200 km s�1 Gaussian. The arrows give the X-Y components of the three-dimensionalvelocity �eld, while the contours are of � assuming 
0 = b = 1, spaced at intervals of 0.2.of plausible CDM-like models is�8;v
0:60 = 1:3+0:4�0:3; (210)where �8;v is the rms value of r � v in spheres of radius 8 h�1 Mpc. This result is in good agreement withstandard CDM, normalized to the COBE quadrupole.7.5.1 The Initial Density Distribution FunctionIn x 5.2.2, we described a method developed by Nusser & Dekel (1993) which uses the Zel'dovichapproximation to reconstruct the initial density distribution function from the eigenvalues of the spatialderivatives of the velocity �eld. It can be shown that this reconstruction is independent of 
0 whenreconstructing from the velocity �eld predicted from a redshift survey, while the reconstruction from theobserved velocity �eld is 
0-dependent; in particular, the shape of the derived initial density distributionfunction will depend on the value of 
0 used. Nusser & Dekel (1993) carried out a preliminary analysis of117



the Mark II POTENT velocity �eld using this technique, and found that they needed values of 
0 closeto unity in order to match the Gaussian distribution function seen in the reconstruction from the density�eld. That is, for small values of 
0, the distribution function reconstructed from the observed density andvelocity �elds did not agree at all. Nusser & Dekel (1993) used this approach to rule out 
0 < 0:3 modelsat the 4-6 � con�dence level; the data are consistent with 
0 = 1. Further tests are needed, however, totest whether very low 
0 models, in which the derived errors become large, can be ruled out as well. TheMark III data should give much superior results.7.5.2 Higher-Order Moments of the Velocity FieldIn linear perturbation theory with Gaussian initial conditions, we saw that the density �eld showeda Gaussian distribution. Given the direct proportionality between � and � � r � v (Eq. 30), � will alsohave a Gaussian distribution. However, just as the distribution of � develops skewness in second-orderperturbation theory, so does �. Bernardeau (1994ab; cf. Bouchet et al. 1994) calculates the higher-ordermoments of � in perturbation theory for top-hat smoothing (cf. Bernardeau et al. 1994 and  Lokas et al.1994 for Gaussian smoothing), and shows that the ratio of the skewness to the variance squared is givenby: S3� = � 1
0:60 �267 � (1 + 3)� (211)(compare with Eq. 124; like that result, this is valid only in the range �3 � 1 < 1). Unlike the caseof the density �eld, the skewness of the velocity �eld is strongly dependent on 
0. Unlike the density-velocity comparisons discussed below, galaxy biasing does not a�ect the results (at least for equal volumeweighting). Bernardeau et al. (1994) have made a tentative measurement of the skewness of the POTENTdensity �eld from the Mark III data, and conclude that the data are consistent with 
0 = 1, with 
0 = 0:3ruled out at the 2 � level. Because the skewness is so heavily weighted by the tails of the distribution, andthe substantial sources of errors and biases in POTENT will strongly a�ect these tails, this result remainstentative, and will require extensive Monte-Carlo simulations to test it thoroughly. Higher-order momentsremain unmeasurable from current data.7.5.3 Voids in the Reconstructed Density FieldThe dimensionless density �eld � has a �rm lower limit, �1, corresponding to the absence of matter.In linear theory, � is proportional to the divergence of the velocity �eld �, which says that � also has a lowerlimit, depending only on the proportionality constant f(
0). Comparison with lowest observed point in thePOTENT maps thus puts a lower limit on f(
0), again independent of galaxy biasing. Dekel & Rees (1994)have applied this idea to the Sculptor Void seen in the Mark III POTENT data (cf., Fig. 6), and �nd that
0 > 0:3 at the 2.4 � level. The systematics of this method have not yet been properly treated, however.In particular, as there is a strong correlation between �galaxies and �, the voids that one wants to use forthis test are in those regions where there are fewest galaxies, and thus the noise in the POTENT mapsare highest. In addition, these are regions which potentially su�er from strong inhomogeneous Malmquistbias, precisely because the galaxy density �eld shows strong gradients in voids.7.5.4 Other Approaches to Reconstructing the Velocity FieldThe POTENT approach can be thought of as a parameterized �t to the velocity �eld, in which thevelocity �eld in each smoothing volume is �t to a bulk ow (plus shear terms; cf. the discussion in Dekelet al. 1994). An alternative approach is to expand the velocity �eld in Fourier modes. Kaiser & Stebbins(1991) and Stebbins (1994) use a Bayesian approach, regularizing their solution for the Fourier coe�cientsby assuming that the velocities are drawn from a Gaussian distribution with a given power spectrum.118



Indeed, this regularization is equivalent to applying a Wiener �lter to the data, and thus has the samefeature as we saw above in x 3.7: the derived density �eld goes to zero in regions of poor data. The resultsthey get are a strong function of the power spectrum assumed; we await a detailed exposition of theirtechnique in refereed journals.As a Method I technique (Table 3) the POTENT method has the serious drawback that it assumesan a priori distance indicator relation, calibrated independently of the data in question. A small error inthe slope of the Tully-Fisher relation, for example, will cause systematic errors in the derived velocity �eld.An alternative approach is to solve simultaneously for the parameters of the distance indicator relationand the velocity �eld, in a Method II approach. In the �rst paper that takes into account all the selectione�ects in such a problem, Han & Mould (1990) �t the Aaronson et al. (1982) peculiar velocity data toa model involving infall into the Virgo cluster and the Great Attractor (cf., Faber & Burstein 1988). Wedescribe a generalization of their technique in x 8.1.3 using the IRAS predicted velocity �eld.Nusser & Davis (1994b) suggest an expansion of the radial velocity �eld in spherical harmonics andradial spherical Bessel functions. They �nd linear combinations of the basis functions that are orthonormalat the positions of the galaxies for which data exist, allowing them to �nd an analytic solution for theTully-Fisher parameters and the coe�cients of these orthonormalized functions as measured in redshiftspace by minimizing the scatter in the inverse Tully-Fisher relation (thereby eliminating selection bias).Small-scale noise and triple-valued zones eliminate the one-to-one mapping between real space and redshiftspace, causing a bias in the derived velocity �eld, although this seems to be a small e�ect with real data.This o�ers an alternative method to smooth peculiar velocity data, and may be the ideal way to comparewith the predicted velocity �eld from redshift surveys using the Nusser & Davis (1994a) approach (cf.,Davis & Nusser 1995). The applicability of the derived velocity �eld to points other than those wheredata exist remains unclear, and the method is limited to data characterized by a single distance indicatorrelation (or at least is analytic only in this limit). These problems are not fatal by any means, and thismethod holds great promise.8 Comparing the Density and Velocity FieldsIn this penultimate chapter, we bring the results of the previous chapters together with a discussionof analyses involving both the velocity and density �elds. This can be done either by predicting the velocity�eld from redshift surveys using Eq. (150), and comparing with the observed velocities (x 8.1), or predictingthe density �eld from peculiar velocity surveys using Eq. (149), and comparing with the observed redshiftsurveys (x 8.2).8.1 Comparison via the Velocity Field8.1.1 Cluster Infall ModelsMuch of the motivation for measuring the velocity �eld has been to compare it to models of what isexpected given the density �eld. Our historical review of our gradual understanding of the nature of thelarge-scale ow �eld focussed on measurements of bulk ows, but in fact much of the motivation of the earlywork was for measurements of cluster infall. A spherically symmetric cluster embedded in a homogeneousmedium induces a spherically symmetric radial velocity �eld. In linear theory, the cluster infall velocity issimply given by (Eq. 33) :v(r) = H0
0:603 r��(r); (212)119



where r is the distance to the center of the cluster, and ��(r) is the mean overdensity within r. In fact,for a top-hat initial density perturbation (i.e., a spherically symmetric overdensity that is constant inamplitude out to some given radius), the evolution can be calculated exactly (Silk 1974, 1977; Schechter1980; Bertschinger 1985ab; Reg�os & Geller 1989) by writing the evolution of the perturbation and thebackground density as separate isotropic expanding or contracting bodies, and matching the boundaryconditions at the edge of the tophat. For the case of an open universe with an initial mean tophat overdensity��i > 1 at a time when the Hubble constant was Hi and the density parameter was 
i, the radial velocity�eld at time t isv(r) = rt sinh �(sinh � � �)(cosh � � 1)2 ; (213)where � is de�ned implicitly by the equation:sinh � � � = 2tHi
1=2i h��i � (
�1i � 1)i3=21 + ��i : (214)Similar equations can be written down for a closed universe. Much of the early work on interpreting resultsof velocity �elds concentrated on �tting these formulae to the infall around the Virgo cluster (Tonry &Davis 1981ab; Aaronson et al. 1982b; Davis et al. 1982; Tully & Shaya 1984; Tammann & Sandage 1985;Gudehus 1989; cf., the review of Davis & Peebles 1983a). There has been a great deal of controversyin the literature about the amplitude of the cluster infall detected, with characteristic numbers at theLocal Group ranging from 100 km s�1 to 450 km s�1 (x 7.1); this, together with the uncertainty in theoverdensity of the Virgo cluster itself in galaxies (Sandage, Tammann, & Yahil 1979; Davis et al. 1982;Strauss et al. 1992a), has meant that values of � determined from Virgocentric infall have been equallyuncertain. Bushouse et al. (1985) and Villumsen & Davis (1986) used N -body models to test the ability ofthis method to constrain 
0, and concluded that it works to the extent that one's peculiar velocity datasurrounds 4� steradians of the cluster, otherwise, shear motions from more distant mass concentrationscan strongly bias the results.In the meantime, studies of the Virgo cluster have shown that the approximation of it as an isolatedspherically symmetric cluster is less and less applicable. It has been known for years that it shows ap-preciable substructure on the sky; accurate distances to Virgo galaxies have shown that it probably hasappreciable depth (at least in spiral galaxies), which may contribute to some of the controversy as to itsdistance, and the intrinsic scatter of the Tully-Fisher relation (Pierce & Tully 1988; Fukugita, Okamura, &Yasuda 1993). Moreover, the velocity �eld around it is a�ected by other, more distant, mass concentrationsand voids; in particular, Lilje et al. (1986) demonstrated the presence of a tidal �eld in the Aaronson etal. (1982a) data from what we now interpret as the Great Attractor.Spherically symmetric cluster infall models are starting to be applied to more distant clusters. Kaiser(1987) and Reg�os & Geller (1989) showed that cluster infall causes characteristic caustics in the redshift-space maps of galaxies around clusters, although the structure in the galaxy distribution in the �eld inwhich the cluster is embedded can make these caustics di�cult to identify. Careful measurement of thesecaustics has the potential to yield the linear cluster infall velocity, which, together with the measuredoverdensity of galaxies in the clusters, will yield �. However, it is not yet clear how practical this approachis given the complicated e�ects of intrinsic small-scale structure in the galaxy distribution outside theclusters themselves.There have been a variety of attempts to go beyond the single cluster model for the velocity �eld byinvoking two or more clusters (e.g., Faber & Burstein 1988; Han & Mould 1990; Rowan-Robinson et al.1990), or even to �t the ow �eld around a void (Bothun et al. 1992). But given the availability of redshift120



surveys covering much of the sky, we can trace out the full density �eld at every point in space (at somemodest smoothing length) in the local universe, and compare the resulting predicted velocity �eld (x 5.9)with observations.8.1.2 Unparameterized Velocity Field ModelsIn this section and the next, we describe the most direct comparisons between peculiar velocity andredshift surveys. Linear theory gives a relation between galaxy density and peculiar velocity (Eq. 33),which can be used to derive a velocity �eld from a redshift survey (x 5.9). The resulting velocity �eldcan be compared point-by-point with measured peculiar velocities in a Method I analysis (usually usingthe forward DI relations); the slope of the resulting scatter plot is thus in principle a measure of �. Thisprocess is actually somewhat subtle: sampling the predicted peculiar velocity �eld at the measured distanceof each galaxy gives biased results, due to the substantial errors in the distances. Rather, one shouldcalculate the predicted peculiar velocities given the redshifts to each object, by inverting the predictedredshift-distance diagram along each line of sight. This is subject to the ambiguities of triple-valued zones(Fig. 11). Furthermore, because the self-consistent velocity �eld from the redshift survey predicts thepeculiar velocity of the Local Group, this comparison is best made in the frame in which the Local Groupis at rest. This will give di�erent results from a comparison in the frame in which the CMB shows no dipole,because the IRAS velocity �eld does not exactly match the peculiar velocity of the Local Group (x 5.7).Much of the early work in this �eld was done before a proper understanding of selection and Malmquistbiases were at hand (x 6.5), making these results somewhat suspect.Strauss (1989) compared the IRAS 1.936 Jy predicted velocity �eld with the Mark II peculiar velocitydata. A strong correlation between observed and peculiar velocities was seen, and the slope was consistentwith � = 0:8. Similar results were found by minimizing the scatter in the inverse Tully-Fisher relationfor the Aaronson et al. (1982a) data in a Method II analysis. However, the error in the derived � wasnot properly quanti�ed; nor for that matter was it demonstrated that the scatter was consistent with theobservational errors.Kaiser et al. (1991) used a Method I approach to compare the velocity �eld from the QDOT redshiftsurvey with the Mark II data. The QDOT density �eld (and therefore predicted velocity �eld) was correctedfor redshift space distortions not by iterations, as in x 5.9, but rather by applying a correction to thesmoothed density �eld at each point taken from Kaiser (1987) (cf, Eq. 91). The resulting predicted peculiarvelocity �eld was compared to the Mark II data, binned on the same grid used to de�ne the density �eld;least-squares �ts yielded a slope � = 0:86 � 0:14.A similar approach was taken by Hudson (1994b) who used the density �eld of optically selectedgalaxies to obtain a predicted peculiar velocity �eld to compare with the Mark II data. He used thetechniques of Hudson (1994a) to correct the data for inhomogeneous Malmquist bias, assuming the galaxiesfor which peculiar velocities were measured to be drawn from the same density distribution as in his maps.He also included in his models a bulk ow from scales beyond those surveyed. He concluded from hispeculiar velocity scatter plots that � = 0:50 � 0:06, with an additional bulk ow of 405 km s�1 towardsl = 292�; b = +7�. However, this derived bulk ow is almost in the Galactic plane, in the direction of theGreat Attractor, and thus may be due to overdensities not surveyed by Hudson's sample. On the otherhand, this bulk ow is roughly consistent with that observed from the Mark III data, so it may indeedrepresent ows on scales larger than his sample.Shaya, Tully, & Pierce (1992) also compared peculiar velocities (in this case, from a combinationof the Aaronson et al. (1982a) data and their own TF data; Tully, Shaya, & Pierce 1992) with a redshiftsurvey, namely the catalog of galaxies within 3000 km s�1 compiled by Tully (1987b). They used luminosityrather than number weighting, and carried out an elaborate analysis which includes components to thedensity �eld clustered on a variety of length scales. They concluded that 
0 associated with galaxies is only121



0.1, clustered on 1 h�1 Mpc scales. However, their modeling of the e�ects of mass concentrations in theZone of Avoidance, and beyond 3000 km s�1, is simplistic, and their resulting predicted peculiar velocity�eld only bears qualitative resemblance to that measured. A more recent analysis is presented by Shaya,Peebles, & Tully (1994), using Peebles' (1989) variational technique to extend the linear theory relationbetween the density and velocity �elds. They conclude that �optical < 0:4, but emphasize that their analysisis still in progress, and awaits improved Tully-Fisher data.Roth (1993; 1994) carried out a Tully-Fisher survey in the I band of 91 galaxies selected froma volume-limited subset of galaxies within 4000 km s�1 from the 1.936 Jy IRAS redshift survey, andminimized the scatter of the forward Tully-Fisher relation as a function of � in the IRAS velocity �eldmodel, using a Method II approach. Extensive Monte-Carlo simulations demonstrated that this methodgives an unbiased estimate of �; he found � � 0:6. Unfortunately, systematic errors in the line-width data,and the dominance of the triple-valued zone around the Virgo cluster (which is prominent in the sample)mean that the systematic errors associated with this result are large. Schlegel (1995) is extending thesurvey to contain � 250 galaxies with accurately measured line widths from H� rotation curves, and withmore uniform sky coverage; this dataset promises to give tighter constraints on �.Finally, Nusser & Davis (1994a) compared the predicted dipole moment of their multipole expansionof the IRAS velocity and density �eld (cf., Eq. 145) with that measured from the POTENT map. Theyshow that the dipole of a shell as measured in the Local Group frame depends only on the density �eldinterior to that shell, making this a semi-local comparison. They conclude � = 0:6 � 0:2, although theerror was estimated by eye from their plots. This is a promising way to proceed, especially with their moresophisticated technique for determining the multipole moments of the measured velocity �eld (x 7.5.4).8.1.3 Method II+Common to the handful of Method II velocity comparisons discussed above is the assumption of aunique redshift{distance mapping, as required in a Method II analysis (x 6.4.3). In the real world, however,a distance cannot be unambiguously assigned from an observed redshift|even when the peculiar velocitymodel is \correct." In what follows, we explain why this is so, and describe a maximum likelihood methodto overcome the problems that result.One can distinguish two contributions to a galaxy's peculiar velocity. The �rst is what is usually meantby the peculiar velocity \�eld." It has a coherence length of a few Mpc or greater, is due to perturbationsin the linear or quasi-linear regime, and is predictable from an analysis of density uctuations. The secondis what is loosely referred to as velocity \noise." It has zero coherence length, arises from strongly nonlinearprocesses, and is unpredictable except in a statistical sense. We label the coherent part v(r), and describethe random part in terms of an rms radial velocity dispersion �v: Each can separately invalidate theassumption of a unique redshift-distance mapping, as follows:(i) Method II assumes that the distance r to a galaxy is the \crossing point" in the redshift-distancediagram, given implicitly byr = cz � r̂ � v(r) (215)(cf. x 6.4.3). There is, however, no guarantee that this equation will have only one solution. When lineof sight gradients in v(r) are of order unity, there can be three or more crossing points for given cz.Such regions are generically called \triple-valued zones" (cf., Fig. 11).(ii) Even if Eq. 215 has a unique solution r, this solution will di�er from the true distance because ofvelocity noise. In essence, cz is a random realization of the \redshift �eld" r+ r̂ �v(r), and only de�nesthe crossing point to accuracy � �v:The situations just described are summarized in Fig. 11, which shows a triple-valued zone around the Virgocluster. The inherent uncertainty due to velocity noise is indicated with the scatter of points.122



Because of these e�ects, Method II is subject to biases over and above selection bias (x 6.4). Willicket al. (1995d) have developed a modi�ed form of Method II which neutralizes these biases by explicitlyallowing for non-uniqueness in the redshift-distance mapping. The basic idea is to derive correct probabilitydistributions of observable quantities, taking into account the complexities of the redshift-distance relation,and then to maximize likelihood over the entire data set. This approach shares features of both MethodsI and II (x 6.4.3), but is closer in spirit to the latter, and will accordingly be called \Method II+" in whatfollows.We assume the goal is to �t a model peculiar velocity �eld v(r;a); where a is a vector of freeparameters, and adopt the useful abbreviationu(r;a) = r̂ � v(r;a) (216)for its radial component. The central element of Method II+ is a description of the redshift-distance relationin terms of a Gaussian probability distribution:P (czjr) = 1p2� �v exp � [cz � (r + u(r;a))]22�2v ! : (217)A related probability function is given as a function of r in the lower half of Fig. 11 (that curve shows theprobability distribution in Eq. (144), which di�ers fromP (czjr) by the additional factors of n(r)r2�(4�r2fmin)).Three subtleties of Eq. (217) deserve mention. First, �v is not merely the true velocity noise, whose value isthought to be � 150 km s�1 (e.g., Groth et al. 1989), but rather its convolution with two additional e�ects:redshift measurement errors and velocity model errors. The former are small (typically � 50 km s�1) butnot entirely negligible. The latter, which reect the �nite accuracy of our predictions, can be estimatedfrom N-body simulations (e.g., Fisher et al. 1994d) and are of order 200 km s�1. Second, �v is not necessar-ily constant; both the true velocity noise and model errors are larger in dense regions. Third, whereas truevelocity noise is incoherent, model prediction errors are not. Contributions to v(r) arising on scales toosmall to be included in the model, but which unlike true noise have spatial coherence, manifest themselvesas coherent prediction errors. In what follows, we will neglect these subtleties and treat �v as a spatialconstant of order 200 km s�1 whose value may be held �xed or treated as a free parameter in the likelihoodanalysis.We quanti�ed Method II selection bias (x 6.5) based on the probability distribution P (m; �; r);arguing that we could in e�ect treat redshift as distance. Using Eq. (217), we may now write down thejoint distribution of the TF observables, distance, and redshift:P (m; �; r; cz) = P (m; �jr)� P (czjr) � P (r) ; (218)where we have assumed that the TF observables and redshift couple only via their mutual dependence ontrue distance. The observables in a redshift-distance sample are m, �, and cz: Their distribution is obtainedby integration:P (m; �; cz)= 1Z0 P (m; �jr)� 1p2� �v exp � [cz � (r + u(r;a))]22�2v !n(r)r2 dr : (219)Eq. (219) gives the likelihood of a data point in a redshift-distance sample, valid for arbitrary v(r;a) and�v: Method II+ consists of maximizing the product of the likelihood (Eq. 219) over the peculiar velocity123



sample, with respect to the parameters of the velocity �eld model, the parameters of the TF relation(including its scatter), and �v.The overall likelihood depends on TF probability evaluated not only at the crossing point(s), butover a range of distances roughly characterized byjcz � r � u(r;a)j � �v : (220)This likelihood will di�er from its Method II counterpart to the extent that the length scale on whichP (m; �; r) varies is comparable to or smaller than the interval de�ned by Eq. (220). The former scale isgiven by � �d; where � is the TF fractional distance error and d = 100:2[m�M(�)] is the inferred distance(x 6.5.2). For galaxies beyond 3000 km s�1, �d >� 600 km s�1: This is considerably larger than the rangegiven by Eq. (220) for typical �v; outside triple valued or at zones. In these circumstances Methods II andII+ di�er little. Indeed, it is easy to see that|again away from triple-valued or at zones|Method II+reduces exactly to Method II (Eq. 165) in the limit �v ! 0: However, Method II+ represents a substantialcorrection to classical Method II at small (d <� 2000 km s�1) distances, in triple-valued or at zones, orwhen �v becomes anomalously large. Method II+ is therefore necessary for rigorous analysis of the very localuniverse and, in particular, of the Local Supercluster region, where small distances and triple-valuednessare often combined.Application of Method II+ requires two additional steps. First, one must decide whether to use theforward or inverse form of the TF relation, and thus whether Eq. (171) or Eq. (188) is used for P (m; �; r) inEq. (219). As in Method II (x 6.4), the inverse method is advantageous when sample selection is independentof velocity width 35 , though with Method II+ this choice introduces a new uncertainty discussed below.Second, one does not apply Eq. (219) directly, but instead derives from it suitable conditional probabilities:P (mj�; cz) in the forward case, P (�jm; cz) in the inverse. These are obtained from Eq. (219) as follows:P (mj�; cz) = P (m; �; cz), 1Z�1 dmP (m; �; cz) =R10 dr r2n(r)P (czjr)S(m; �; r) exp�� [m�(M(�)+�(r))]22�2 �R10 dr r2n(r)P (czjr) R1�1 dmS(m; �; r) exp�� [m�(M(�)+�(r))]22�2 � (221)and P (�jm; cz) = P (m; �; cz), 1Z�1 d� P (m; �; cz) =R10 dr r2n(r) �(m � �(r))P (czjr)S(m; �; r) exp�� [���0(m��(r))]22�2� �R10 dr r2n(r) �(m � �(r))P (czjr) R1�1 d� S(m; �; r) exp�� [���0(m��(r))]22�2� � ; (222)where we have restored the compact notation P (czjr) (Eq. 217), reversed the order of integration in thedenominators, and allowed for an explicit r-dependence of sample selection (which in fact exists for some ofthe Mark III samples; cf. x 6.5.3). The integrals over m and � in the denominators of Eqs. (221) and (222)35 In principle, Method II+ rigorously incorporates selection e�ects into either the forward or inverse formalism.However, with real data characterization of sample selection is often subject to uncertainty (Willick et al. 1995ab).Its relatively smaller susceptibility to selection bias thus remains a virtue of the inverse approach.124



can be done analytically for simple forms of S (Willick 1994), so two-dimensional integrations are notrequired. The chief advantage of conditional probabilities is that they are less sensitive than P (m; �; cz)to the precision with which the number density n(r) is modeled. As n(r) appears in both numerator anddenominator, it only weakly a�ects the conditional distributions provided it varies slowly compared withP (czjr) or the TF probability term, as will generally be the case. This is important, since it is the accuracyof our velocity model, not our density model, with which we are mainly concerned. Still, Method II+(unlike Method II) does require a density model, and in that sense resembles a Method I analysis. Finally,note that the velocity width distribution function �(�) (x 6.5) strictly cancels out of P (mj�; cz); while theluminosity function �(M) (x 6.5.4) does not cancel out of P (�jm; cz) (although the results are insensitiveto the luminosity function, as it again appears in numerator and denominator).Willick et al. (1995d) used Method II+ to analyze data from the Mark III peculiar velocity catalog(x 7.2). They limited their analysis to the 900 galaxies in the TF samples of Mathewson et al. (1992b)and Aaronson et al. (1982b), which densely sample the local region, and to redshifts � 3500 km s�1:The forward method (Eq. 221) was used, and the TF parameters for each sample (slope, zeropoint, andscatter) were allowed to vary in the search for maximum likelihood, rather than �xing them at their valuesdetermined in the Mark III analysis (x 7.2).The IRAS 1.2 Jy predicted peculiar velocity �eld was taken as the model to be �tted to the data.To �rst order this model velocity �eld depends only on �, although the analysis was carried out for twodi�erent smoothing lengths, and with and without nonlinear e�ects included. Using the IRAS galaxydensity �eld for the quantity n(r) that appears in Eqs. (221) and (222) assumes that IRAS galaxies aredistributed like the Mark III sample objects. This assumption may not be correct in detail but is expectedto have a minimal e�ect on our conditional analysis. The forward Method II+ analysis was carried out interms of a quantity � de�ned by� = �2Xi lnP (mij�i; czi) (223)where the sum runs over all galaxies used in the comparison. An analogous statistic using the inverserelation is discussed by Willick et al. and gives consistent results.We summarize these results in Fig. 18, which shows � vs. � curves for four realizations of theIRAS �elds: 300 and 500 km s�1 gaussian smoothing lengths, each with and without nonlinear corrections,following Nusser et al. (1991), and setting b = 1. The \best" values of � occur at the minima of the curves;they range from � ' 0:48 for 300 km s�1 smoothing linear to � ' 0:65 for 500 km s�1 smoothing nonlinear.The statistical error at 95% con�dence level associated with these numbers is � 0:15, as determined bydeviations of the likelihood function from its minimum. Note that there are systematic e�ects acting aswell: a larger smoothing length leads to a larger �; and nonlinear corrections yield larger � for a givensmoothing length. These results are to be expected: both increasing the smoothing scale and makingnonlinear corrections decrease the amplitude of predicted peculiar velocities, and thus are qualitativelysimilar to decreasing �: For the nonlinear �elds, the predicted velocities now depend separately on 
0 andb; the curves here were obtained for the case b = 1, i.e., � = 
0:60 :Which of the four IRAS predicted velocity �elds shown should ideally be used in estimating �? InMethod II+ we are comparing the predicted velocity �eld with unsmoothed data. The �eld obtained from300 km s�1 smoothing thus gives rise to the most valid comparison here. At smaller smoothing lengthsthe nonlinear corrections cease to be valid. Nonlinear e�ects must be present, as the overdensities at 300km s�1 smoothing can be considerably in excess of unity. However, Fig. 18 shows that the nonlinear curvehas formally smaller likelihood than the linear curve. The reason for this is not well understood at present.A compromise value is � ' 0:55; roughly midway between the linear and nonlinear minima. It is not clearhow to combine the systematic and statistical errors we have identi�ed; for now we conservatively put the125



Fig. 18. Likelihood � plotted as a function of � for four realizations of the IRAS predicted peculiar velocityand density �elds. Likelihoods have been computed using a Method II+ comparison with a subset of the Mark IIIpeculiar velocity catalog (see text for details). The left hand panel depicts results in which a 300 km s�1 smoothinglength was used in the IRAS velocity and density �eld reconstruction; a 500 km s�1 smoothing length was used inthe right hand panel. Each panel shows the results for linear (dotted line) and nonlinear (solid line) predictions.The latter were obtained by holding the bias factor �xed at b = 1:95% con�dence level at �0:25:As mentioned above the value of the rms velocity noise �v was treated as a free parameter, its �nalvalue determined by maximizing likelihood for each �: Willick et al. found that �v '150{160 km s�1for the likelihood-maximizing values of �: This value is remarkably small, in view of the fact that theIRAS predictions themselves are thought to have rms errors of 100{200 km s�1, as discussed above; theimplication would appear to be that the true noise is <� 100 km s�1: It is unlikely that the velocity �eld isin reality that cold. It is likely instead that by neglecting correlated model prediction errors (see above), thelikelihood analysis ends up underestimating �v: Future implementations of both Method II+ (and MethodII, which similarly assumes uncorrelated residuals) will need to address this issue.8.2 Comparison via the Density FieldThe reconstruction of the mass density �eld using the POTENT method begs a comparison withthe galaxy density �eld as observed in redshift surveys. Indeed, to the extent that the two �elds areproportional to one another, their ratio gives a measure of � via Eq. (149). Dekel et al. (1993) carried outthis comparison, using the Mark II POTENT maps of Bertschinger et al. (1990) and the IRAS 1.936 Jyredshift survey. The �rst, and most striking result from this comparison, is that the POTENT and IRASdensity �eld show qualitative agreement. Given the noise and sparseness in the peculiar velocity data,the POTENT map has much greater noise than does the IRAS map, and therefore the region in whichthe comparison of the two can be made is limited. Nevertheless, both show the Great Attractor and the126



void in front of the Perseus-Pisces supercluster. With 1200 km s�1 Gaussian smoothing, there are � 10independent volumes within which the comparison of the two density �elds can be made. A scatter plotof the two shows a strong correlation. In the absence of biases, the slope of the regression would be anestimate of �. However, as discussed in x 7.5, the POTENT density �eld is subject to a number of biases.The most severe of these in this context is Sampling Gradient bias, with inhomogeneous Malmquist biastaking a close second. One can quantify the �rst by sampling the IRAS predicted velocity �eld at thepositions of the Mark II galaxies, and running the results through the POTENT machinery; comparingthe resulting density �eld to the input density �eld yields a regression slope of 0.65, substantially di�erentfrom unity. Given this fact, Dekel et al. used an elaborate maximum likelihood technique to quantify theagreement between the POTENT and IRAS density �elds. For a given value of � (actually given values of
0 and b; Eq. (209) rather than Eq. (149) is used throughout), they create mock Mark II datasets given theIRAS predicted peculiar velocity �eld (via the method described in x 5.9), noise is added, and the resultsare fed into POTENT. Note that these simulations su�er from sampling gradient bias exactly as does thereal POTENT data. The slope and scatter of the regression between the original IRAS map and the mockPOTENT map are recorded, and the two-dimensional distribution of these two quantities is calculated for100 such realizations. Elliptical �ts to this distribution allows them to calculate the probability that theobserved slope and scatter of the regression is consistent with the model assumed (i.e., the IRAS predictedpeculiar velocity �eld for the given values of 
0 and b are consistent with the observed peculiar velocity�eld, given the errors). This process is then repeated for a grid of values of 
0 and b.The conclusions from this work are as follows:(i) There exist values of 
0 and b for which the likelihood that the model is is consistent with the datais high. That is, the observed scatter is consistent with the assumed errors and the assumption thatIRAS galaxies are at least a biased tracer of the density �eld that gives rise to the observed peculiarvelocities.(ii) The tightest constraint is on �, for which the likelihood curve gives � = 1:28+0:75�0:59 at 95% con�dence.(iii) Not surprisingly, the constraints on 
0 and b separately are quite a bit weaker. Indeed, the likelihoodcontour levels do not close at large 
0 for a given �, meaning that the data are consistent withpurely linear theory in which no second-order e�ects exist. The data are inconsistent with highlynon-linear conditions (i.e., very small 
0 for a given �), but this is the regime in which the non-linearapproximation used starts to break down anyway.May we then conclude that the gravitational instability picture has been proven? After all, we haveseen consistency in the data with one of its strongest predictions, namely Eq. (30). However, as Babul et al.(1994) emphasize, Eq. (30) can be derived directly from the �rst of Eqs. (21), the continuity equation alone;only the constant of proportionality comes from gravity. Indeed, � and r�v are proportional for any modelin which galaxies are a linearly biased tracer of the mass, and for which the time-averaged acceleration isproportional to the �nal acceleration. They show analytically and with the aid of simulations that a rangeof models with non-gravitational forces exhibit correlations between � and r � v at least as strong as thatseen in the POTENT-IRAS comparison. Thus a proof of the gravitational instability picture will requireruling out these alternative models by other means.Work is in progress as this review is being written, to update the POTENT results using the Mark IIIpeculiar velocity compilation. The Mark III data have been corrected for inhomogeneous Malmquist bias,assuming that the IRAS density �eld is that of the galaxies of the Mark III sample. More importantly,however, the systematic errors in the overlap between datasets have been minimized, and the volumesurveyed well with the Mark III data is such that the IRAS-POTENT comparison can be done over fourtimes as many data points as before. In addition, the more complete sampling means that the samplinggradient bias is smaller than with the Mark II data, by roughly a factor of two in the mean. The left-handpanel of Fig. 19 shows a preliminary version of the POTENT density �eld in the Supergalactic plane using127



Fig. 19. The left panel is the POTENT density �eld r � v in the Supergalactic plane from the Mark III peculiarvelocity data. The right panel is the independently determined density �eld of IRAS galaxies. The smoothing inboth panels is 1200 km s�1. The axes are labeled in 1000 km s�1. The Local Group sits at the center of each panel.1200 km s�1 Gaussian smoothing, taken from Fig. 17. The right hand panel shows the density �eld of theIRAS 1.2 Jy survey at the same smoothing. The qualitative agreement is remarkable. In the Supergalacticplane, both maps show the Great Attractor, the Perseus-Pisces Supercluster, the Coma-A1367 Supercluster,as well as voids between Coma and Perseus, and South of the Great Attractor (the Sculptor Void). Workis ongoing to quantify the di�erences between the two maps, and to put exact error bars on the derived �.Hudson et al. (1995) have carried out a comparison of the Mark III POTENT results with the opticalgalaxy density �eld of Hudson (1993a,b). They also �nd good agreement. between the two density �elds;a less elaborate analysis than that of Dekel et al. (1993) shows � = 0:74 � 0:13.9 DiscussionIn this brief concluding chapter, we summarize what it is that has been learned from redshift andpeculiar velocity surveys, and put the results into the context of the larger �eld of observational cosmology.9.1 The Initial Power SpectrumWe have put constraints on the power spectrum directly from measurements of the distribution ofgalaxies (x 5.3). The fact that power spectra derived from redshift surveys in di�erent areas of the sky,using di�erent samples, agree, implies that it is meaningful to de�ne a power spectrum in the �rst place.That is, we do not live in a simple fractal universe, in which a mean density depends on the scale on whichit is measured. Moreover, our samples are starting to become big enough that our statistical measures arenot completely dominated by sampling uctuations, at least for measures probing relatively small scales(50 h�1 Mpc and smaller). This is not to say that improvements in the statistical errors in the power128



spectrum on these scales are not needed!The redshift survey data strongly rule out the standard CDM model, and are �t much better by a� = 0:20 � 0:30 model (Fig. 9). This is in accord with analyses of the small-scale velocity dispersion ofgalaxies, their large-scale angular clustering, observations of bulk ows on large scales, as well as constraintsfrom the CMB uctuations (Efstathiou et al. 1992; Kamionkowski & Spergel 1994; Kamionkowski, Spergel,& Sugiyama 1994), the distribution and mass spectrum of clusters (Bahcall & Cen 1992; 1993), and a hostof other constraints. Unfortunately, we cannot conclude from this that the dark matter problem is solved. Anumber of the di�erent suggested power spectra are degenerate over the scales probed by redshift surveys,with very di�erent implications for the nature of the dark matter (compare the range of Fig. 9 to that ofFig. 2). In particular, the data we have presented are also consistent with the Mixed Dark Matter modeland the Tilted Cold Dark Matter model, which are two of the more popular models being discussed.The Mixed Dark Matter model has a long history, starting with the idea that adiabatic damping of thepower spectrum on small scales by baryons will cause a turn-down in the power spectrum (Silk 1968; Dekel1981); its recent incarnation is in terms of a mix of hot and cold dark matter (Schaefer, Sha�, & Stecker1989; Schaefer & Sha� 1992; Taylor & Rowan-Robinson 1992; Davis, Summers, & Schlegel 1992; Klypinet al. 1993). In particular, the hot dark matter suppresses the power spectrum on small scales, decreasingthe small-scale velocity dispersion relative to standard CDM, and increasing the amount of large-scalepower for a given normalization on small scales. However, the model perhaps suppresses small-scale poweroverly much: galaxies cannot form on these small scales until very late, which is di�cult to reconcile withobservations of galaxies and quasars at very high redshifts (Cen & Ostriker 1994; cf., Efstathiou & Rees1988 for a similar critique of standard CDM).The tilted CDM model was suggested simultaneously by a number of workers (Cen et al. 1992; Lidsey& Coles 1992; Lucchin, Matarrese & Mollerach 1992; Liddle, Lyth & Sutherland 1992; Adams et al. 1993;Cen & Ostriker 1993). It also increases the amount of power on large scales relative to small, in this caseby changing the slope of the primordial power spectrum. However, Muciaccia et al. (1993) showed thatstandard CDM is preferred over tilted models when velocity �eld data and CMB uctuations are takeninto account as well.There are a number of further constraints on the power spectrum, some of which we've only touchedupon on this review. The most important of these is the uctuations in the CMB. On the largest scales, theuctuations as detected by COBE appear to be consistent with a primordial power spectrum of index n = 1(the inationary prediction) (G�orski et al. 1994), with an amplitude that matches well that predicted fromthe � = 0:2 CDM model (Fig. 9). Observations of the CMB uctuations on sub-COBE scales (a few degrees)are just beginning to yield reproducible results; because more than the Sachs-Wolfe e�ect is operating onthese smaller scales, these data can potentially yield information on 
0, the density parameter in baryons,as well as the power spectrum (Hu & Sugiyama 1994). In addition, these probe scales now being reached bythe largest peculiar velocity and redshift surveys, spanning much of the gap seen in Fig. 2. In this regard,the bulk ow results of Lauer & Postman (1994) (x 7.1.4) remain unexplained in the context of models forlarge-scale structure. It is vitally important that this result be checked, as a number of workers are nowdoing (x 9.7). The comparison between large-scale ows and CMB uctuations has the potential to checkgravitational instability theory directly, independent of the power spectrum (Juszkiewicz, G�orski, & Silk1987; Tegmark, Bunn & Hu 1994).Constraints can be put on the power spectrum from observations of galaxies at high redshift. Theamount of small-scale power determines at what epoch galaxies will form; measures of the age of galaxiesand their evolution thus tell us something about the power spectrum. Balancing the need for enoughsmall-scale power to allow galaxies to form early, as seems to be required by observations of high-redshiftgalaxies and quasars, against the requirement of not too much small-scale power, in order to restrict thesmall-scale velocity dispersion (x 5.2.1) has not yet been self-consistently done for any model. Similarly,129



observations of clusters of galaxies and their evolution also have the power to constrain cosmological models(eg., Peebles, Daly, & Juszkiewicz 1989). Finally, detection of the evolution of clustering in the universewould be a tremendously important observation. In an open universe, clustering ceases to grow when 
deviates signi�cantly from unity (x 2.2); unambiguous detection of this e�ect would be a sensitive measureof 
0.Perhaps the most dramatic constraint one could imagine on the power spectrum would be the labo-ratory detection of dark matter (Primack et al. 1988). It would be a tremendous triumph of our theoreticalframework if a dark matter particle were discovered with properties consistent with the best-�t power spec-trum from astronomical data. The HDM model has been out of favor for some time, given its unphysicallylate formation epoch for galaxies (e.g., White, Frenk, & Davis 1983), but if a de�nite non-zero mass forthe muon neutrino were measured appropriate to close the universe, HDM models would certainly enjoy aresurgence of popularity!9.2 The Distribution Function of the Initial FluctuationsAll the tests we have described for the random-phase hypothesis have yielded positive results; thereis no direct evidence for non-Gaussian uctuations in the initial density �eld. Perhaps the strongest suchclaim comes from the direct measure of the distribution function of initial uctuations as found by thetime machine of Nusser & Dekel (1993). Similar conclusions are found in analyses of the COBE CMBuctuations (e.g., Hinshaw et al. 1994). However, as we emphasized in x 5.4, this by no means allows usto conclude that all non-Gaussian models are dead. Each of the tests described in x 5.4 refer to a speci�csmoothing scale, and a model that is non-Gaussian on a given scale need not be so on another. Whatis needed is a systematic test of each non-Gaussian model proposed against the various observationalconstraints. This has been done to a certain extent for models of cosmic strings (Bennett, Stebbins, &Bouchet 1992) and texture models (Pen, Spergel, & Turok 1994), mostly in the context of non-Gaussiansignatures in CMB uctuations.9.3 The Gravitational Instability ParadigmThe results we have presented here are all consistent with the gravitational instability picture. Inparticular, we have seen that there exist physically plausible power spectra which can simultaneouslymatch the observed large-scale distribution of galaxies, large-scale ows, and the CMB uctuations 36 .When redshift surveys began to reveal extensive structures such as giant voids and the Great Wall, manyquestioned whether this could be explained in the context of gravitational instability theory. However,simulations by Weinberg & Gunn (1990), and Park (1990), as well as arguments based on the Zel'dovichapproximation (Shandarin & Zel'dovich 1989), showed that these structures were not unexpected givengravitational instability and plausible models for the power spectrum.The most direct test of gravitational instability comes from the comparison of peculiar velocity andredshift surveys. Dekel et al. (1993) in particular claim that the Mark II peculiar velocity data are consistentwith the velocity �eld predicted from the distribution of IRAS galaxies, and gravitational instability theory.However, this is not a proof; Babul et al. (1994) demonstrate models with velocities due to non-gravitationalforces (in particular, large-scale explosion models) that the Dekel et al. tests would not rule out.We have not discussed features of the velocity �eld on small scales, smaller than are resolved by thePOTENT-IRAS comparison, with its 1200 km s�1 Gaussian smoothing. Burstein (1990) presents evidence36 An obvious exception to this statement is the Lauer-Postman (1994) bulk ow; if it is con�rmed by furtherobservations, we may �nd ourselves questioning the gravitational instability paradigm.130



that the very local velocity �eld, as measured with the Aaronson et al. (1982a) TF data, di�er qualita-tively from the IRAS predictions, a conclusion that continues to hold with the Tormen & Burstein (1995)reanalysis of the Aaronson et al. data. Similarly, the complete lack of an infall signature in the spiralgalaxies around the Coma cluster found by Bernstein et al. (1994) is worrisome, and remains unexplained.Understanding these results remains a task for the future.9.4 The Value of 
0Gravitational instability theory has given us a tool to measure the cosmological density parameter,by comparing peculiar velocities with the density distribution (Eq. 30), although in most applications,galaxy biasing means that we constrain only � � 
0:60 =b. In Table 3, we summarize the various constraintson 
0 that we have discussed in this review.Is there some consensus in the literature as to the value of �? One way to assess this, at leastqualitatively, is to plot each of the determinations in Table 3 as a series of Gaussians of unit integral, withmeans and standard deviations given by the numbers in the table. For simplicity, asymmetric error bars havebeen symmetrized, and those determinations without quoted error bars are not included. Determinationsbased on IRAS and optical samples are plotted with di�erent symbol types. We now simply add theGaussians together, to yield the two heavy curves in the plots. Note that this procedure tends to givelower weight to those determinations with more realistic (i.e., larger) error bars. No attempt has beenmade to assess the relative quality of these di�erent determinations. Note also that because many ofthese determinations are from common datasets, they are not independent. Thus this form of qualitativesummary gives an unprejudiced view of literature of determinations of � from redshift and peculiar velocitysurveys. The heavy curves have a mean of 0.78 and standard deviation of 0.33 (IRAS) and a mean of 0.71and standard deviation of 0.25 (optical). These values are actually in quite close agreement, although thatseems more coincidental than anything else, given the large spread of individual determinations.The community is clearly not quite ready to settle on a single value for � for the IRAS galaxies.The determinations range from 0.45 (Fisher et al. 1994b) to 1.28 (Dekel et al. 1993, although the latteris likely to come down slightly with the Mark III data; Dekel, private communication). This is reectedin the large standard deviation, larger than any individual determination, and the at top to the heavycurve in Fig. 20 . The optical � shows a smaller spread, perhaps simply because there are fewer individualdeterminations of it. The odd man out is the determination of 
0 by Shaya et al. (1994), although theirdetermination is heavily a�ected by their modeling of the background density within 3000 km s�1 and thedensity �eld beyond there. Moreover, their work remains in ux (compare with Shaya et al. 1992) and itis not clear where their �nal results will lie.Most of the references in Table 3 are very recent, and we have not done a thorough job of reviewingthe earlier literature, especially on Virgocentric infall. However, the common impression that estimatesof 
0 have taken a dramatic upturn in recent years is wrong. Davis et al. (1980) used observations ofVirgocentric ow to �nd � = 0:6 � 0:1, in good agreement with the values for optical galaxies here. Thevalue from the Cosmic Virial Theorem from Davis & Peebles (1983b) is di�cult to interpret in terms of abiasing model, but corresponds to � = 0:4 for an unbiased model.9.5 The Relative Distribution of Galaxies and MassWe have very few handles on the biasing parameter independent of �. One approach has been toassume a model for the power spectrum, normalize it to the COBE uctuations, and then compare theresults predicted for the galaxy uctuations at 8 h�1 Mpc with observations. This approach is by de�nitionmodel-dependent; for standard CDM, one �nds that optical galaxies are unbiased and that IRAS galaxies131



Table 3: Constraints on 
0 and �Quantity Value Comments ReferenceRedshift Space Anisotropy�CfA 0:53� 0:15 �(s) vs. w(�) Fry & Gazta~naga 1993�SSRS 1:10� 0:16 �(s) vs. w(�) Fry & Gazta~naga 1993�IRAS 0:84� 0:45 �(s) vs. w(�) Fry & Gazta~naga 1993�IRAS 1:0� 0:2 �(s) vs. w(�) Peacock & Dodds 1994�optical 0:77� 0:15 �(s) vs. w(�) Peacock & Dodds 1994�IRAS 0:69+0:28�0:24 Angular moments of � Hamilton 1993a�IRAS 0:45+0:27�0:18 Angular moments of � Fisher et al. 1994b�IRAS 0:52� 0:14 Angular moments of P (k) Cole et al. 1995�IRAS 0:94� 0:17 Spherical Harmonics Fisher et al. 1994c�IRAS 1:1� 0:3 Spherical Harmonics Heavens & Taylor 1994
0 0:2+0:1�0:07 Cosmic Virial Theorem Davis & Peebles 1983bAcceleration on Local Group�optical 0:38� 0:74 Infall into Virgo Davis & Huchra 1982�IRAS 0:82� 0:15 QDOT Rowan-Robinson et al. 1990�IRAS 0:55+0:20�0:12 IRAS 1.2 Jy Strauss et al. 1992c�optical 0:80+0:21�0:13 Hudson 1993bAnalyses of Velocity Field�8;v
0:60 1:3+0:4�0:3 Amplitude of uctuations Seljak & Bertschinger 1994
0 1:0 Gaussianity of r � v Nusser & Dekel 1993
0 1:0 Skewness of r � v Bernardeau et al. 1994
0 > 0:3 Voids in r � v Dekel & Rees 1994Comparison of Velocity and Density Fields�IRAS 0.8 Velocity Scatterplot Strauss 1989�IRAS 0:86� 0:14 Velocity Scatterplot Kaiser et al. 1991�optical 0:50� 0:06 Velocity Scatterplot Hudson 1994b�optical < 0:4 Variational Method Shaya et al. 1994�IRAS 0.6 Scatter in TF diagram Roth 1994�IRAS 0.6 Di�erential Dipole Nusser & Davis 1994a�IRAS 1:28+0:38�0:30 � vs r � v Dekel et al. 1993�IRAS 0:55� 0:13 Likelihood analysis Willick et al. 1995d�optical 0:74� 0:13 � vs r � v Hudson et al. 1995are anti-biased, while a model like � = 0:2 CDM gives a normalization that leaves the IRAS galaxiesunbiased.Alternatively, one can constrain biasing by looking for non-linear e�ects to break the degeneracybetween 
0 and b. The skewness is one such e�ect. Fry & Gazta~naga (1993; 1994) and Frieman & Gazta~naga(1994) claim that the beautiful agreement between the measured higher-order moments of the APM counts-in-cells with that predicted given the power spectrum, implies that biasing of optical galaxies is very weak,and to the extent that there is biasing, that it is local. Dekel et al. (1993) attempted to look for non-lineare�ects in the IRAS-POTENT comparison; they could only show that the data are inconsistent with verystrong non-linearities, thereby ruling out very small values of b.Finally, one can look for relative biasing of di�erent types of galaxies, as we described in x 5.10. Thee�ects are subtle: outside of clusters, there are no two populations of galaxies known that have qualitatively132



Fig. 20. The distribution of determinations of � discussed in this review. Each determination is shown as aGaussian of unit integral with mean and standard deviation given by the values listed in Table 3. IRAS andoptical determinations are plotted with di�erent line types. The (renormalized) sums of all curves (optical andIRAS separately) are shown as the heavy curves.di�erent large-scale distributions. The lack of such e�ects have motivated several workers (Valls-Gabaudet al. 1989; Peebles 1993) to argue that biasing cannot be acting at all. But di�erential e�ects are seenbetween galaxies of di�erent luminosities and morphological types. It is time for a detailed comparisonof these observed e�ects with hydrodynamic simulations, in order to see what constraints these put ongeneral biasing schemes.In any case, the consensus of the community is that biasing is relatively weak; few authors are arguingfor b > 1:5 these days. This is quite a contrast to a decade ago, when the idea of biasing was �rst introduced;values of b = 2:5 or higher were popular (e.g., Davis et al. 1985). Thus we conclude that �5=3 < 
0 < 2�5=3;the results of Table 3 are still consistent with values in the range 
0 = 0:3 to 
0 = 1. It has been quitepopular in recent years to argue for the lower value, given the coincidence with the value of 
0 needed tomatch the � = 0:25 value preferred by the power spectrum (Coles & Ellis 1994).133



9.6 Is the Big Bang Model Right?One tests the Big Bang model with redshift and peculiar velocity data only to the extent that theygive results which can be �t into our grander picture of the evolution of the universe, with input from allthe subjects we did not discuss: observations of distant galaxies and quasars, measurements of individualgalaxy properties, abundances of the light elements, and so on. We should point out one serious problemwhich we see on the horizon. The data we have discussed point towards a value of 
0 close to unity,implying an age of the universe given roughly by t0 = 2=3H�10 (Eq. 17). With recent determinations ofthe Hubble Constant of the order of 80 km s�1Mpc�1 (Jacoby et al. 1992; Pierce et al. 1994; Freedmanet al. 1994), this gives an age of 8 billion years, less than half the currently accepted ages of the oldestglobular clusters (e.g., Chaboyer, Sarajedini, & Demarque 1992). Note that this would be a problem evenif 
0 ! 0, for which t0 = 1=H0 = 12 billion years. We may �nd ourselves invoking theoretically awkwardmodels in which 
0 � 
� <� 1. In any case, the next few years should be very exciting, as we come to gripswith this rather basic problem.9.7 The FutureWe conclude this review with a quick discussion of the various on-going and planned redshift surveysand peculiar velocity surveys of which we are aware. As these become available, we can look forward toapplying the statistics developed so far to vastly superior datasets; moreover, these will allow us to doanalyses of much more subtle statistics.There are a number of large-scale peculiar velocity surveys in progress. Giovanelli, Haynes, andcollaborators are doing a Tully-Fisher survey of Sc I galaxies from the Northern sky drawn from the UGCcatalog, together with calibrating galaxies drawn from a number of clusters. They have data for roughly800 galaxies. In the meantime, Mathewson & Ford (1994) have extended their Tully-Fisher survey in theSouthern Hemisphere to smaller diameters, as reported in x 7.1.3; their sample now includes a total of 2473galaxies.At higher redshift, a team of eight astronomers started by three of the original 7 Samurai (Burstein,Davies, and Wegner), has extended the 7 Samurai Dn-� survey of elliptical galaxies to a further � 500galaxies in clusters at redshifts � 10; 000 km s�1 (Colless et al. 1993).Several groups are attempting to check the large-scale bulk ow measured by Lauer & Postman(1994). The same authors, in collaboration with Strauss, are in the process of extending the survey toinclude the BCG's of all Abell clusters to z = 0:08, a total of over 600 clusters. They expect to completethe gathering of the data by mid-1996. Fruchter & Moore are measuring distances to the same clusters asthe original Lauer & Postman (1994) dataset by �tting Schechter functions to the luminosity distributionsin the clusters. In a complementary e�ort, Willick is measuring accurate distances to 15 clusters aroundthe sky at redshifts of � 10; 000 km s�1, using TF and Dn-� distances to spirals and ellipticals in eachcluster. Finally, Hudson, Davies, Lucey, and Baggley are measuring Dn-� parameters of 6-10 ellipticals ineach Lauer-Postman cluster with redshift less than 12,000 km s�1. This will result in distance errors of� 8% per cluster.There are two major new redshift survey projects in preparation. A British collaboration led byEllis plans to measure redshifts for 250,000 galaxies to bJ = 19:7 selected from the APM galaxy catalogin a series of �elds in the Southern Sky, using the 2dF 400-�ber spectrograph on the Anglo-Australiantelescope (Gray et al. 1992). The survey geometry consists of two long strips in the Fall and Spring skies,plus 100 randomly placed �elds of 2� diameter, totaling 0.53 ster. The principal motivation is to measurethe large-scale power spectrum of the galaxy distribution, redshift space distortions to constrain 
0, andevolutionary e�ects. 134



The Sloan Digital Sky Survey (SDSS) will use a dedicated 2.5m telescope to survey 3 ster aroundthe Northern Galactic Cap with CCD's in �ve photometric colors. A multi-object spectrograph with 640�bers will be used to carry out a ux-limited redshift survey of galaxies to roughly R = 18:0. Over �veyears, this survey will measure redshifts for � 106 galaxies, with a median redshift of � 31; 000 km s�1.The survey will see �rst light in the second half of 1995. Details may be found in Gunn & Knapp (1993),and Gunn & Weinberg (1995). The SDSS is one of the few large-scale surveys in in which the photometricdata from which the redshift galaxy sample will be selected is obtained as part of the survey itself. Theuse of CCD data and careful calibration guarantees that it will be the best calibrated of these surveys. Itdoes not go as deep as the 2dF survey mentioned above, but covers much more area.Thus we look forward to tremendous growth in the quantity and quality of both peculiar velocityand redshift data. We set forth a series of questions in the beginning of this review (x 2.5) which we hopedto address with the data available. We have reviewed the analyses that have been done with redshift andpeculiar velocity surveys to answer these questions. However, as we have summarized in this concludingchapter, there are few of these questions for which we now have de�nitive answers. Indeed, most of thequantities we hope to measure are known to within a factor of two at best, and more often only within anorder of magnitude. We expect that the next decade will be a period of intense activity in this branch ofobservational cosmology, during which superior data and a more complete understanding of the theoreticalissues will allow us to make observational cosmology a precision science; there is no doubt qualitativelynew science to be discovered when we measure the power spectrum on large scales, the value of 
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