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ABSTRACT

We study the luminosity and color dependence of the galaxy two-point correlation function in the SloanDigital Sky
Survey, starting from a sample of�200,000 galaxies over 2500 deg2. We concentrate our analysis on volume-limited
subsamples of specified luminosity ranges, for which we measure the projected correlation function wp(rp), which is
directly related to the real-space correlation function �(r). The amplitude of wp(rp) rises continuously with luminos-
ity from Mr � �17:5 to Mr � �22:5, with the most rapid increase occurring above the characteristic luminosity
L� (Mr � �20:5). Over the scales 0:1 h�1 Mpc < rp < 10 h�1 Mpc, the measurements for samples with Mr >
�22 can be approximated, imperfectly, by power-law three-dimensional correlation functions �(r) ¼ (r/r0)

�� with
� � 1:8 and r0(L�) � 5:0 h�1 Mpc. The brightest subsample, �23 < Mr < �22, has a significantly steeper �(r).
When we divide samples by color, redder galaxies exhibit a higher amplitude and steeper correlation function at all
luminosities. The correlation amplitude of blue galaxies increases continuously with luminosity, but the luminosity
dependence for red galaxies is less regular, with bright red galaxies exhibiting the strongest clustering at large
scales and faint red galaxies exhibiting the strongest clustering at small scales. We interpret these results using halo
occupation distribution (HOD) models assuming concordance cosmological parameters. For most samples, an
HOD model with two adjustable parameters fits the wp(rp) data better than a power law, explaining inflections
at rp � 1 3 h�1 Mpc as the transition between the one-halo and two-halo regimes of �(r). The implied minimum
mass for a halo hosting a central galaxy more luminous than L grows steadily, with Mmin / L at low luminosities
and a steeper dependence above L�. The mass at which a halo has, on average, one satellite galaxy brighter than L is
M1 � 23Mmin(L), at all luminosities. These results imply a conditional luminosity function (at fixed halo mass) in
which central galaxies lie far above a Schechter function extrapolation of the satellite population. The HOD model
fits nicely explain the color dependence of wp(rp) and the cross correlation between red and blue galaxies. For galax-
ies with Mr < �21, halos slightly above Mmin have blue central galaxies, while more massive halos have red cen-
tral galaxies and predominantly red satellite populations. The fraction of blue central galaxies increases steadily
with decreasing luminosity and host halo mass. The strong clustering of faint red galaxies follows from the fact that
nearly all of them are satellite systems in high-mass halos. The HOD fitting results are in good qualitative agreement
with the predictions of numerical and semianalytic models of galaxy formation.

Subject headinggs: cosmology: observations — cosmology: theory — galaxies: distances and redshifts —
galaxies: halos — galaxies: statistics — large-scale structure of universe
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1. INTRODUCTION

Over the course of many decades, studies of large-scale struc-
ture have established a dependence of galaxy clustering on mor-
phological type (e.g., Hubble 1936; Zwicky et al. 1968; Davis &
Geller 1976; Dressler 1980; Postman & Geller 1984; Einasto
1991; Guzzo et al. 1997; Willmer et al. 1998; Zehavi et al. 2002;
Goto et al. 2003), luminosity (e.g., Davis et al. 1988; Hamilton
1988; White et al. 1988; Einasto 1991; Park et al. 1994; Loveday
et al. 1995; Guzzo et al. 1997; Benoist et al. 1996; Norberg et al.
2001; Zehavi et al. 2002), color (e.g.,Willmer et al. 1998; Brown
et al. 2000; Zehavi et al. 2002), and spectral type (e.g., Norberg
et al. 2002; Budavari et al. 2003; Madgwick et al. 2003). Galax-
ies with bulge-dominated morphologies, red colors, and spectral
types indicating old stellar populations preferentially reside in
dense regions, and they exhibit stronger clustering even on the
largest scales because these dense regions are themselves biased
tracers of the underlying matter distribution (Kaiser 1984). Lu-
minous galaxies cluster more strongly than faint galaxies, with
the difference becoming marked above the characteristic lumi-
nosity L� of the Schechter (1976) luminosity function, but the
detailed luminosity dependence has been difficult to establish be-
cause of the limited dynamic range even of large galaxy redshift
surveys. The dependence of clustering on galaxy properties is a
fundamental constraint on theories of galaxy formation, provid-
ing clues to the role of initial conditions and environmental influ-
ences in determining these properties. A detailed understanding
of this dependence is also crucial to any attempt to constrain cos-
mological models with galaxy redshift surveys, since different
types of galaxies trace the underlying large-scale structure of the
dark matter distribution in different ways.

Achieving this understanding is one of the central design
goals of the Sloan Digital Sky Survey (SDSS; York et al. 2000),
which provides high-quality photometric information and red-
shifts for hundreds of thousands of galaxies, sufficient to allow
high precision clustering measurements for many distinct classes
of galaxies. In this paper we analyze the luminosity and color de-
pendence of galaxy clustering in a sample of�200,000 galaxies
drawn from the SDSS, roughly corresponding to the main galaxy
sample (Strauss et al. 2002) of the Second Data Release (DR2;
Abazajian et al. 2004). Our methods are similar to those used in
our study of clustering in an early sample of�30,000 SDSS gal-
axies (Zehavi et al. 2002, hereafter Z02) and in studies of the
luminosity, spectral type, and color dependence of clustering in
the Two-Degree Field Galaxy Redshift Survey (2dFGRS; Colless
et al. 2001) byNorberg et al. (2001, 2002),Madgwick et al. (2003),
and Hawkins et al. (2003). Specifically, we concentrate on the
projected correlation function wp(rp), where integration of the
redshift-space correlation function �(rp, �) over the redshift di-
mension � yields a quantity that depends only on the real-space
correlation function �(r) (Davis & Peebles 1983).

Examining traditional large-scale structure statistics for dif-
ferent classes of galaxies complements studies of the correlation
between galaxy properties and the local environment (Dressler
1980; Postman & Geller 1984; Einasto & Einasto 1987; Whitmore
et al. 1993; Lewis et al. 2002). Studies using the SDSS have al-
lowed precise quantification of many of the trends recognized
in earlier galaxy surveys, and the size and detail of the SDSS
data set have allowed some qualitatively new results to emerge.
Hogg et al. (2003) show that the local density increases sharply
with luminosity at the bright end of the luminosity function and
depends mainly on color for lower luminosity systems, with faint
red galaxies in particular occupying high-density regions. Blanton
et al. (2005a) demonstrate that the dependence of local density on

galaxy morphology and surface brightness can be largely under-
stood as a consequence of the luminosity and color dependence,
since these quantities themselves correlate strongly with luminos-
ity and color. Goto et al. (2003) further examine the morphology-
density relation in the SDSS and show that the transition from
late to intermediate type populations occurs at moderate over-
density and that the transition from intermediate to early types
occurs at high overdensity. Studies using the SDSS spectro-
scopic properties reveal that star formation rates decrease sharply
in high-density environments (Gomez et al. 2003; Kauffmann et al.
2004) and that luminous active galactic nuclei arise in systems
with large bulges but relatively low density environments (Miller
et al. 2003; Kauffmann et al. 2004). Our focus on the projected
two-point correlation function at scales of rP 30 h�1 Mpc also
complements Tegmark et al.’s (2004a) examination of the lu-
minosity dependence of the large-scale galaxy power spectrum
and Kayo et al.’s (2004) study of the luminosity, color, and mor-
phology dependence of the two-point and three-point correla-
tion functions in redshift space.
Section 3 takes a traditional, empirical approach to our task.

We measure wp(rp) for the full, flux-limited data sample and for
volume-limited subsets with different luminosity and color cuts,
and we fit the measurements with power laws, which generally
provide a good but not perfect description at rpP 20 h�1 Mpc
(Zehavi et al. 2004, hereafter Z04; see also Hawkins et al. 2003;
Gaztañaga & Juszkiewicz 2001). Figures 11 and 14 below sum-
marize our empirical results on the luminosity and color depen-
dence of the projected correlation function.
In x 4 we interpret these measurements in the framework

of the halo occupation distribution (HOD; see, e.g., Ma & Fry
2000; Peacock & Smith 2000; Seljak 2000; Scoccimarro et al.
2001; Berlind&Weinberg 2002). TheHOD formalism describes
the ‘‘bias’’ relation between galaxies and mass in terms of the
probability distribution P(N |M ) that a halo of virial mass M
contains N galaxies of a given type, together with prescriptions
for the relative bias of galaxies and dark matter within virialized
halos. (Throughout this paper, we use the term ‘‘halo’’ to refer to
a structure of overdensity �/�̄ � 200 in approximate dynamical
equilibrium, which may contain a single galaxy or many gal-
axies.) This description is complete in the sense that any galaxy
clustering statistic on any scale can be predicted given an HOD
and a cosmological model, using numerical simulations or an-
alytic methods.23 The HOD approach to modeling wp(rp) comes
with strong theoretical priors: we assume a�CDM cosmological
model (inflationary cold dark matter with a cosmological con-
stant) with parameters motivated by independent measurements,
and we adopt parameterized forms of the HOD loosely moti-
vated by contemporary theories of galaxy formation (Kauffmann
et al. 1997, 1999; Benson et al. 2000; Berlind et al. 2003;Kravtsov
et al. 2004; Zheng et al. 2004). HOD modeling transforms wp(rp)
data on galaxy pair counts into a physical relation between gal-
axies and dark matter halos, and it sets the stage for detailed
tests of galaxy formation models and sharpened cosmological
parameter constraints that draw simultaneously on a range of
galaxy clustering statistics. Jing et al. (1998) pioneered HOD
modeling of correlation function data in their study of the Las
Campanas Redshift Survey, using an N-body approach. HOD

23 We implicitly assume that halos of the samemass in different environments
have, on average, the same galaxy populations, as expected on the basis of fairly
general theoretical arguments (Lemson & Kauffmann 1999; Berlind et al. 2003;
Sheth & Tormen 2004). The correlation of galaxy properties with environment
emerges naturally from the environmental dependence of the halo mass function
(Berlind et al. 2005).
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modeling (or the closely related ‘‘conditional luminosity func-
tion’’ method) has since been applied to interpret clustering data
from a number of surveys at low and high redshift (e.g., Jing &
Börner 1998; Jing et al. 2002; Bullock et al. 2002; Moustakas
& Somerville 2002; van den Bosch et al. 2003b; Magliocchetti
& Porciani 2003; Yan et al. 2003; Zheng 2004; Porciani et al.
2004). In Z04 we used this approach to show that the observed
deviations of the correlation function of Mr < �21 SDSS gal-
axies from a power-law form have a natural explanation in terms
of the transition between galaxy pairs within a single virialized
halo and galaxy pairs in separate halos.

Section 2 describes our data samples and methods. Section 3
presents the empirical results for the galaxy correlation function.
Section 4 describes the details and results of the HODmodeling.
Section 5 presents a summary of our results, comparison to pre-
vious work, and directions for future investigation.

2. OBSERVATIONS AND ANALYSIS

2.1. Data

The Sloan Digital Sky Survey (York et al. 2000) is an on-
going project that aims to map nearly a quarter of the sky in the
northern Galactic cap, and a small portion of the southern Ga-
lactic cap, using a dedicated 2.5 m telescope located at Apache
Point Observatory in NewMexico. A drift-scanning mosaic CCD
camera (Gunn et al. 1998) is used to image the sky in five pho-
tometric bandpasses (Fukugita et al. 1996; Smith et al. 2002)
to a limiting magnitude of r � 22:5. The imaging data are pro-
cessed through a series of pipelines that perform astrometric
calibration (Pier et al. 2003), photometric reduction (Lupton
et al. 2001), and photometric calibration (Hogg et al. 2001), and
objects are then selected for spectroscopic follow-up using spe-
cific algorithms for the main galaxy sample (Strauss et al. 2002),
luminous red galaxy sample (Eisenstein et al. 2001), and qua-
sars (Richards et al. 2002). To a good approximation, the main
galaxy sample consists of all galaxies with Petrosian magnitude
r < 17:77. The targets are assigned to spectroscopic plates (tiles)
using an adaptive tiling algorithm (Blanton et al. 2003a) and ob-
servedwith a pair offiber-fed spectrographs. Spectroscopic data
reduction and redshift determination are performed by automated
pipelines. Redshifts are measured with a success rate greater than
99% and with estimated accuracy of 30 km s�1. A summary

description of the hardware, pipelines, and data outputs can be
found in Stoughton et al. (2002).

Considerable effort has been invested in preparing the SDSS
redshift data for large-scale structure studies (see, e.g., Blanton
et al. 2005b; Tegmark et al. 2004a, Appendix A). The radial se-
lection function is derived from the sample selection criteria
using the K-corrections of Blanton et al. (2003b) and a modified
version of the evolving luminosity function model of Blanton
et al. (2003c). All magnitudes are corrected for Galactic extinc-
tion (Schlegel et al. 1998).WeK-correct and evolve the luminosi-
ties to rest-frame magnitudes at z ¼ 0:1, near the median redshift
of the sample.Whenwe create volume-limited samples below, we
include a galaxy if its evolved, redshifted spectral energy distribu-
tion would put it within the main galaxy sample’s apparent mag-
nitude and surface brightness limits at the limiting redshift of the
sample. The angular completeness is characterized carefully for
each sector (a unique region of overlapping spectroscopic plates)
on the sky. An operational constraint of using the fibers to ob-
tain spectra is that no two fibers on the same plate can be closer
than 5500. This fiber collision constraint is partly alleviated by hav-
ing roughly a third of the sky covered by overlapping plates, but
it still results in �7% of targeted galaxies not having a measured
redshift. These galaxies are assigned the redshift of their nearest
neighbor. We show below that this treatment is adequate for our
purposes.

The clustering measurements in this paper are based on
SDSS large-scale structure sample 12 , based on data taken as of
2002 July (essentially equivalent to the Second Data Release,
DR2, Abazajian et al. 2004). It includes 204,584 galaxies over
2497 deg2 of the sky. The angular coverage of this sample can be
seen in Figure 1. This can be compared to the much smaller sky
coverage of the sample analyzed in Z02 (their Fig. 1, �28% of
current area). The details of the construction and illuminating
plots of the large-scale structure sample are described by Tegmark
et al. (2004a, x 2 and Appendix A).24 Throughout the paper, when

Fig. 1.—Aitoff projection of our galaxy sample in Galactic coordinates.

24 The sample described there is actually sample 11. Our sample 12 has
almost exactly the same set of galaxies, but it has slightly different weights and
selection function, incorporating an improved technical treatment of fiber colli-
sions and an improved luminosity evolution model that includes dependence on
absolute magnitude and is valid for a larger redshift range. These changes make
minimal difference to our results.
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measuring distances we refer to comoving separations, and for
all distance calculations and absolute magnitude definitions we
adopt a flat �CDMmodel with �m ¼ 0:3. We quote distances in
h�1 Mpc (where h � H0 /100 km s�1 Mpc�1), and we use h ¼ 1
to compute absolute magnitudes; one should add 5 log h to obtain
magnitudes for other values of H0.

We carry out some analyses of a full, flux-limited sample, with
14:5 � r P17:77, with the bright limit imposed to avoid small
incompleteness associated with galaxy deblending. The survey’s
faint-end apparent magnitude limit varies slightly over the area
of the sample, as the target selection criteria changed during the
early phases of the survey. The radial completeness is computed
independently for each of these regions and taken into account
appropriately in our analysis.We have verified that our results do
not change substantively if we cut the sample to a uniform flux
limit of 17.5 (as done for simplicity in previous SDSS large-scale
structure analyses), but we choose to incorporate the most ex-
pansive limits and gain in statistical accuracy.We also impose an
absolute magnitude cut of �22 < Mr <�19 (for h ¼ 1), thus
limiting our analysis to a broad but well-defined range of ab-
solute magnitudes around M� (�20.44; Blanton et al. 2003c)
and reducing the effects of luminosity dependent bias within
the sample. This cut maintains the majority of the galaxies in
the sample, extending roughly from 1

4
L� to 4L�. We use galaxies

in the redshift range 0:02 < z < 0:167, resulting in a total of
154,014 galaxies.

In addition to the flux-limited sample, we analyze a set of
volume-limited subsamples that span a wider absolute magni-
tude range. For a given luminosity bin we discard the galaxies
that are too faint to be included at the far redshift limit or too
bright to be included at the near limit, so that the clustering mea-
surement describes a well-defined class of galaxies observed
throughout the sample volume. We further cut these samples by
color, using the K-corrected g� r color as a separator into blue
and red populations.25 In addition to luminosity-bin samples, we
utilize a set of luminosity-threshold samples, which are volume-
limited samples of all galaxies brighter than a given threshold.
This set is particularly useful for the HOD modeling in x 4. For
these samples we relax the bright flux limit to r > 10:5; other-
wise the sample volumes become too small as the lower redshift
limit for the most luminous objects approaches the upper redshift
limit of the faintest galaxies. While there are occasional prob-
lems with galaxy deblending or saturation at r < 14:5, the af-
fected galaxies are a small fraction of the total samples, and we
expect the impact on clustering measurements to be negligible.

2.2. Clustering Measures

We calculate the galaxy correlation function on a two-
dimensional grid of pair separations parallel (�) and perpendic-
ular (rp) to the line of sight. To estimate the background counts
expected for unclustered objects while accounting for the com-
plex survey geometry, we generate random catalogs with the de-
tailed radial and angular selection functions of the samples. We
estimate �(rp, �) using the Landy & Szalay (1993) estimator

�(rp; �) ¼
DD� 2DRþ RR

RR
; ð1Þ

where DD, DR, and RR are the suitably normalized numbers of
weighted data-data, data-random, and random-random pairs in

each separation bin. For the flux-limited sample we weight pairs
using the minimum variance scheme of Hamilton (1993).
To learn about the real-space correlation function, we follow

standard practice and compute the projected correlation function

wp(rp) ¼ 2

Z 1

0

d� �(rp; �): ð2Þ

In practice we integrate up to � ¼ 40 h�1 Mpc, which is large
enough to include most correlated pairs and gives a stable result
by suppressing noise from distant, uncorrelated pairs. The pro-
jected correlation function can in turn be related to the real-space
correlation function �(r),

wp(rp) ¼ 2

Z 1

0

dy �
�
r 2p þ y2

�
1=2

h i
¼ 2

Z 1

rp

r dr �(r)
�
r 2� r 2p

��1=2

ð3Þ

(Davis & Peebles 1983). In particular, for a power law �(r) ¼
(r/r0)

�� , one obtains

wp(rp) ¼ rp
rp

r0

� ���

�
1

2

� �
�

� � 1

2

� ��
�

�

2

� �
; ð4Þ

allowing us to infer the best-fit power law for �(r) from wp. The
above measurement methods are those used in Z02, to which we
refer the reader for more details.
Alternatively, one can directly invert wp to get �(r) indepen-

dent of the power-law assumption. Equation (3) can be recast as

�(r) ¼ � 1

�

Z 1

r

w0
p(rp)(r

2
p � r 2)�1=2drp ð5Þ

(e.g., Davis & Peebles 1983). We calculate the integral analyti-
cally by linearly interpolating between the binned wp(rp) val-
ues, following Saunders et al. (1992). As this is still a somewhat
approximate treatment, we focus our quantitative modeling on
wp(rp).
We estimate statistical errors on our different measurements

using jackknife resampling. We define 104 spatially contigu-
ous subsamples of the full data set, each covering approximately
24 deg2 on the sky, and our jackknife samples are then created
by omitting each of these subsamples in turn. The covariance er-
ror matrix is estimated from the total dispersion among the jack-
knife samples,

Cov(�i; �j) ¼
N � 1

N

XN
l¼1

�
�li � �̄i

��
�lj � �̄j

�
; ð6Þ

where N ¼ 104 in our case, and �̄i is the mean value of the
statistic �i measured in the samples (� denotes here the statistic
at hand, whether it is � or wp). In Z02 we used N ¼ 10 for a
much smaller sample, while here the larger number, 104, en-
ables us to estimate the full covariance matrix and still allows
each excluded subvolume to be sufficiently large.
Following Z02, we repeat and extend the tests with mock

catalogs to check the reliability of the jackknife error estimates.
We use 100 mock catalogs with the same geometry and angular
completeness as the SDSS sample and similar clustering prop-
erties, created using the PTHALOS method of Scoccimarro &
Sheth (2002). (The mocks correspond to the sample analyzed in

25 Cuts using the u� r color give similar results. While u� r is a more
sensitive diagnostic of star formation histories, the SDSS g-band photometry is
more precise and more uniformly calibrated than the u-band photometry, so we
adopt g� r to define our color-selected samples.
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Z04, a slightly earlier version of our current sample, but we
expect the results to be the same.) For each mock catalog we
calculate the projected correlation function wp(rp) and compute
jackknife error estimates with the same procedure that we use for
the SDSS data. Figure 2 compares these error estimates to the
‘‘true’’ errors, defined as the dispersion among the 100 wp(rp)
estimates from the fully independent mock catalogs. The jack-
knife estimates recover the true errors reasonably well for most
separations (with �20% 1 � scatter for the diagonal elements),
without gross systematics. The jackknife errors seem to fare well
also for the off-diagonal elements of the covariance error ma-
trix, but with larger deviations. Since fits can be sensitive to off-
diagonal elements when errors are strongly correlated, we will
present some fits below using both the full jackknife covariance
matrix and the diagonal elements alone. For a specified cluster-
ing model, the mock catalog approach is probably the best way
to assess agreement of the model with the data. However, the
jackknife approach is much more practical when analyzing mul-
tiple samples that have different sizes and clustering properties,
as it automatically accounts for these differences without requir-
ing a new clustering model in each case. The tests presented here
indicate that parameter errors derived using the jackknife error
estimates should be representative of the true statistical errors.
We have verified this expectation using the SDSS data sample
of Z04, finding that the jackknife covariance matrix produces
fits and �2 values similar to those obtained with a mock catalog
covariance matrix, for either power-law or HOD model fitting.

Another issue that we revisited with simulations is the effect
of fiber collisions. As mentioned above, we are unable to ob-
tain redshifts of approximately 7% of the galaxies because of
the finite fiber size constraints; when two galaxies lie within 5500

of each other, one is selected at random for spectroscopic ob-
servations. At cz ¼ 50;000 km s�1, the outer edge of our flux-

limited sample, 5500, corresponds to a comoving transverse sep-
aration of 0.13 h�1 Mpc, and we thus restrict our measurements
to separations larger than that. We assign to each ‘‘collided’’
(unobserved) galaxy the redshift of its nearest neighboring gal-
axy in angle. This approach is roughly equivalent to double weight-
ing the galaxies for which we do obtain redshifts, but using the
angular position of the unobserved galaxy better preserves the
small-scale pair distribution (see further discussion in Z02 and
Strauss et al. 2002). In Z02 we tested this procedure using the
tile overlap regions, where redshifts of collided galaxies are
obtained when the area of sky is reobserved, and found this to
be an adequate treatment: residual systematics for the redshift-
space correlation function were considerably smaller than the
statistical errors, and this was even more true for wp(rp). We have
since carried out improved tests using mock catalogs created
from the White (2002) �CDM N-body simulation, which was
run using a TreePM code in a periodic box of 300 h�1 Mpc on
a side. We impose on it the SDSS sample 12 mask and pop-
ulate galaxies in dark matter halos (as in Berlind & Weinberg
2002) using a realistic HOD model derived from theMr < �20
volume-limited SDSS sample (see x 4). We identify galaxies
that would have been collided according to the 5500 fiber separa-
tion criterion. Figure 3 shows the wp(rp) estimate for this mock
catalog corrected using our standard treatment, divided by the
‘‘true’’ wp(rp) calculated from the mock catalog with no gal-
axies eliminated by fiber collisions. The correction procedure
works spectacularly well, with any residual bias being much
smaller than the statistical errors on scales above our adopted
minimum separation. The correction is important, however,
as simply discarding the collided galaxies causes wp(rp) to be

Fig. 2.—Accuracy of jackknife error estimates on wp(rp), tested using the
PTHALOS mock catalogs. Points and error bars show the mean and 1 � scatter
of the error estimates derived by applying our jackknife procedure to 100 mock
catalogs, divided by the ‘‘true’’ errors defined by the scatter in wp(rp) among the
100 fully independent catalogs. The top left panel shows diagonal terms in the
covariance matrix, and other panels show terms one, two, and four elements
from the diagonal, as indicated.

Fig. 3.—Test of the accuracy of our correction for fiber collisions, using a
mock catalog drawn from a high-resolution N-body simulation. The solid line
and error bars denote the exemplary ideal case obtained for the full mock
catalog, with no galaxies eliminated by fiber collisions. Error bars throughout
are obtained by jackknife resampling. The long-dashed line and error bars show
the wp(rp) estimate from a mock catalog that includes fiber collisions, corrected
using the same procedure we apply to the data, divided by wp(rp) for the full
catalog. No systematic effect is present for scales above our minimum separa-
tion. The short-dashed line and square symbols with error bars show the case
where we apply no correction for collisions but simply drop the collided gal-
axies from the catalog. [See the electronic edition of the Journal for a color
version of this figure.]
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underestimated at all scales, especially rpP1 h�1 Mpc. Our cor-
rection works particularly well for wp(rp) because it is integrated
over the line-of-sight direction. The postcorrection biases can be
larger for other statistics; e.g., the redshift-space correlation func-
tion shows a small systematic deviation at sP1 h�1 Mpc, al-
though this is still well within the statistical uncertainty.

3. THE GALAXY CORRELATION FUNCTION

3.1. Clustering Results for the Flux-limited Sample

Figure 4 shows contours of the correlation function as a
function of projected (rp) and line-of-sight (�) separation for our
full flux-limited sample, where we bin rp and � in linear bins of
2 h�1 Mpc. One can clearly see the effects of redshift distortions
in �(rp, �). At small projected separations the contours are
elongated along the line of sight due to small-scale virial motions
in clusters, the so-called finger-of-God effect. At large projected
separations �(rp, �) shows compression in the � direction caused
by coherent large-scale streaming (Sargent & Turner 1977; Kaiser
1987; Hamilton 1992).

Figure 5 shows �(rp, �) separately for red and blue galaxies.
The g� r galaxy color distribution is bimodal, similar to u� r
(Strateva et al. 2001), so we divide the sample at a rest-frame
g� r ¼ 0:7, which naturally separates the two populations. The
red sample contains roughly twice as many galaxies as the blue
one. As expected, the red galaxies exhibit a larger clustering am-
plitude than do the blue galaxies. The difference in the anisotropy
is striking, with the red galaxies exhibiting much stronger finger-
of-God distortions on small scales. Both samples show clear sig-
natures of large-scale distortion. We examine the dependence of
real-space clustering on galaxy color in x 3.3.

We disentangle the effects of redshift distortions from real-
space correlations by estimating the projected correlation func-
tion wp(rp) via equation (2), now using logarithmic bins of 0.2
in rp. The resulting wp for the full flux-limited sample is shown
in Figure 6, together with fits of the data points to a power law.
The fits are done using the measured data points in the range
0:13 h�1 Mpc < rp < 20 h�1 Mpc, as this is the range where
themeasurements are robust. As discussed in x 2.2, the power-law
fits can be directly related to the real-space correlation function
(eq. [4]). The inferred real-space correlation function is �(r) ¼
(r/r0)

�� with r0 ¼ 5:59 � 0:11 h�1 Mpc and � ¼ 1:84 � 0:01,
when the fit is done using the full covariance matrix (solid line).
When using only the diagonal elements (dotted line), i.e., ignoring
the correlation of errors between bins, one gets a slightly higher
and shallower power law as the strongly correlated points at large
separation are effectively given higher weight when they are
treated as independent. The parameters of this diagonal fit are
r0 ¼ 5:94 � 0:05 h�1 Mpc and � ¼ 1:79 � 0:01, but the error
bars are not meaningful in this case. The power law provides an
approximate description of the projected correlation function, but,
as emphasized byZ04, there are notable and systematic deviations
from it. The �2/dof for the power-law fit when using the jackknife
covariance matrix is�5. The deviations from a power law can be
naturally explained in the HOD framework as discussed by Z04
and in x 4 below. Power-law fits are nonetheless useful as ap-
proximate characterizations of the data and for facilitating the
comparison to other measurements.

Figure 7 shows the real-space correlation function �(r) ob-
tained by inverting wp(rp) for the flux-limited sample using
equation (5), independent of the power-law assumption. The
lines plotted are the same corresponding power-law fits obtained
by fittingwp(rp).We can see that the characteristic deviation from
a power-law is also apparent in �(r), but we still choose to do all

model fitting to wp(rp) because it is more accurately measured
and has better understood errors.

3.2. Luminosity Dependence

We examine the clustering dependence on luminosity using
sets of volume-limited samples constructed from the full sample,
corresponding to different absolute magnitude bins and thresh-
olds. The details of the individual samples are given in Tables 1
and 2. Figure 8 shows the projected correlation functions ob-
tained for the different volume-limited samples corresponding to
galaxies in specified absolute magnitude bins (top left panel ) and
to galaxies brighter than the indicated absolute magnitude (top
right panel ). For clarity, we omit some of the latter subsamples
from the plot, but we list their properties in Table 2 and we will
use them in x 4. The dependence of clustering on luminosity is
clearly evident in Figure 8, with the more luminous galaxies
exhibiting higher clustering amplitude. This steady trend holds
throughout the luminosity range, confirming the early results of
Z02 (but see further discussion below). The slopes of power-law
fits to wp(rp) for the different samples are � � 1:8 2:0, with a
notable steepening for the most luminous bin. These trends are
in agreement with an analogous study of the galaxy-mass corre-
lation function from weak-lensing measurements in the SDSS
(Sheldon et al. 2004).
The lines plotted in the top panels are power-law fits to the

measurements obtained using the full error covariance matrix.
The fitted values of r0 and � are specified in Tables 1 and 2. Note
that some of the fits, particularly for the smaller volume sub-
samples, lie systematically below the data points. While initially
counterintuitive, these fits do indeed have lower �2 than higher
amplitude power laws that pass closer to the points. This kind of
behavior is not uncommon when fitting strongly correlated data

Fig. 4.—Contours of the galaxy correlation function as a function of tangential
separation rp and line-of-sight separation �, evaluated for the full flux-limited
sample in 2 h�1 Mpc bins. The heavy contour marks �(rp; �) ¼ 1; inner contours
are spaced by 0.1 in log � and outer contours by 0.1 in �. The dashed contour
marks �(rp; �) ¼ 0. Dotted lines show the isotropic behavior expected in the
absence of redshift-space distortions. Contours show the compression at large
scales caused by coherent peculiar velocities and the elongation at small rp caused
by finger-of-God distortions in collapsed structures. [See the electronic edition of
the Journal for a color version of this figure.]
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Fig. 6.—Projected galaxy correlation function wp(rp) for the flux-limited
galaxy sample. The solid line shows a power-law fit to the data points, using the
full covariance matrix, which corresponds to a real-space correlation function
�(r) ¼ (r/5:59 h�1 Mpc)�1:84. The dotted line shows the fit when using only the
diagonal error elements, corresponding to �(r) ¼ (r/5:94 h�1 Mpc)�1:79. The
fits are performed for rp < 20 h�1 Mpc.

Fig. 5.—Correlation function contours for galaxies with g� r < 0:7 (blue; left) and g� r > 0:7 (red; right) in the flux-limited sample. Contour specifications are as
in Fig. 4. Red galaxies have a higher amplitude correlation at a given separation, and they show stronger finger-of-God distortions because of their preferential location
in dense regions. Both classes of galaxies show large-scale compression, although the results for blue galaxies are noisier because of the lower �(rp, �) amplitude and
smaller sample. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 7.—Real-space correlation function �(r) for the flux-limited galaxy
sample, obtained from wp(rp) as discussed in the text. The solid and dotted lines
show the corresponding power-law fits obtained by fitting wp(rp) using the full
covariance matrix or just the diagonal elements, respectively.



points, and in tests with the PTHALOS mock catalogs on some
small-volume samples we find similar results using mock cata-
log covariance matrices in place of jackknife covariance matri-
ces. We thus have no reason to think that these are not the ‘‘best’’
values of r0 and �, in a statistical sense. However, the covariance
matrices do have noise because they are estimated from the finite
data samples themselves. For good measure, the bottom panels
in Figure 8 show the samemeasurements, but nowwith fits using
only the diagonal components of the jackknife covariance ma-
trix. These fits pass through the points in agreement with the
‘‘chi-by-eye’’ expectation. The best-fitting values of r0 and � for
these cases are quoted in the tables, but the �2 values are no lon-
ger meaningful as goodness-of-fit estimates.

The �21 < Mr < �20 luminosity-bin sample and the Mr <
�20 luminosity-threshold sample in Figure 8 exhibit anoma-
lously high wp(rp) at large separations, with a flat slope at
rpk 3 h�1 Mpc that is clearly out of line with other samples. We
believe that this anomalous behavior is a ‘‘cosmic variance’’ ef-
fect caused by an enormous supercluster at z � 0:08, slightly in-
side the limiting redshift zmax ¼ 0:10 of these two samples. This
‘‘Sloan Great Wall’’ at � � 200

�
, � � 0

�
is the largest structure

detected in the SDSS to date, or, indeed, in any galaxy redshift
survey (see Gott et al. 2005). It has an important effect on the
zmax ¼ 0:1 samples, but no effect on the fainter samples, which
have zmax < 0:08, and little effect on brighter samples, which
cover a substantially larger volume. If we repeat our analysis ex-
cluding the supercluster region in an ad hoc fashion, then the
large-scale wp(rp) amplitude drops for these two zmax ¼ 0:10
samples but changes negligibly for other samples. Because our
jackknife subsamples are smaller than the supercluster, the jack-

knife error bars do not properly capture the large variance intro-
duced by this structure. We note that while this supercluster is
certainly a striking feature in the data, its existence is in no con-
tradiction to concordance cosmology: preliminary tests with the
PTHALOS mock catalogs reveal similar structures in more than
10% of the cases.
A more general cosmic variance problem is that we measure

the clustering of each galaxy luminosity subset over a different
volume, and variations in the true underlying structure could mas-
querade as luminosity dependence of galaxy bias. To test for this
problem, we compare the wp(rp) measurements for each pair of
adjacent luminosity bins to the values measured when we re-
strict the two samples to the volume where they overlap (and
thus trace identical underlying structure; see the correspond-
ing redshift ranges in Table 1). In each panel of Figure 9, the
points show our standard wp(rp) measurement for the maximum
volume accessible to each luminosity bin; brighter and fainter
luminosity bins are represented by open and filled circles, re-
spectively. The dashed and solid curves and error bars show the
corresponding measurements when the samples are restricted to
the volume where they overlap. In the absence of any cosmic
variance, the dashed curve should pass through the open points
and the solid curve through the filled points. This is essentially
what we see for the two faintest bins, shown in the lower right,
except for a low significance fluctuation at large scales in the
overlap measurement for �20 < Mr < �19.
Moving to the next comparison in the lower left, we see the

dramatic effect of the z � 0:08 supercluster. When the �21 <
Mr < �20 sample is restricted to the overlap volume, reducing
zmax from 0.10 to 0.07, its projected correlation function drops

TABLE 1

Volume-limited Correlation Function Samples Corresponding to Magnitude Ranges

Mr z Ngal n̄ r0 � �2/dof rd0 � d

�23 to �22.............. 0.10 to 0.23 3499 0.005 10.04 � 0.37 2.04 � 0.08 0.4 10.00 � 0.29 2.04 � 0.08

�22 to �21.............. 0.07 to 0.16 23930 0.114 6.16 � 0.17 1.85 � 0.03 3.4 6.27 � 0.07 1.86 � 0.02

�21 to �20.............. 0.04 to 0.10 31053 0.516 5.52 � 0.19 1.78 � 0.03 2.2 5.97 � 0.11 1.77 � 0.02

�21 to �20.............. 0.04 to 0.07� 5670 0.482 5.02 � 0.30 1.80 � 0.05 1.1 4.96 � 0.16 1.86 � 0.03

�20 to �19.............. 0.03 to 0.07 14223 0.850 4.41 � 0.23 1.87 � 0.04 1.9 4.74 � 0.11 1.85 � 0.03

�19 to �18.............. 0.02 to 0.04 4545 1.014 3.51 � 0.32 1.92 � 0.05 0.9 3.77 � 0.17 1.89 � 0.06

�18 to �17.............. 0.01 to 0.03 1950 1.209 2.68 � 0.39 1.99 � 0.09 0.3 2.83 � 0.19 1.94 � 0.11

Notes.—All samples use 14:5 < rP17:77; n̄ is measured in units of 10�2 h3 Mpc�3; r0 and � are obtained from a fit for wp(rp) using the full error covariance
matrix; rd0 and � d are the corresponding values when using just the diagonal elements. The clipped �21 < Mr < �20 sample, indicated with an asterisk (�), is
confined to a limiting redshift zmax ¼ 0:07 to avoid the effects of the large supercluster at z ¼ 0:08 (see text).

TABLE 2

Volume-limited Correlation Function Samples Corresponding to Magnitude Thresholds

M max
r zmax Ngal n̄ r0 � �2/dof rd0 � d

�22.0 ........... 0.22 3626 0.006 9.81 � 0.39 1.97 � 0.08 0.8 9.81 � 0.30 1.97 � 0.08

�21.5 ........... 0.19 11712 0.031 7.70 � 0.22 1.88 � 0.03 1.7 7.77 � 0.12 1.88 � 0.02

�21.0 ........... 0.15 26015 0.117 6.24 � 0.16 1.90 � 0.02 4.0 6.49 � 0.08 1.89 � 0.02

�20.5 ........... 0.13 36870 0.308 5.81 � 0.15 1.88 � 0.02 1.6 5.98 � 0.07 1.86 � 0.02

�20.0 ........... 0.10 40660 0.611 5.58 � 0.20 1.83 � 0.03 2.8 6.12 � 0.11 1.81 � 0.02

�20.0 ........... 0.06� 9161 0.574 5.02 � 0.24 1.88 � 0.04 0.8 5.09 � 0.13 1.90 � 0.03

�19.5 ........... 0.08 35854 1.015 4.86 � 0.17 1.85 � 0.02 2.0 5.19 � 0.10 1.85 � 0.02

�19.0 ........... 0.06 23560 1.507 4.56 � 0.23 1.89 � 0.03 1.7 4.85 � 0.11 1.88 � 0.03

�18.5 ........... 0.05 14244 2.060 3.91 � 0.27 1.90 � 0.05 1.0 4.37 � 0.15 1.92 � 0.04

�18.0 ........... 0.04 8730 2.692 3.72 � 0.30 1.87 � 0.05 1.9 4.39 � 0.20 1.84 � 0.06

Notes.—All samples use 10:0 < r < 17:5; zmin for the samples is 0.02; n̄ is measured in units of 10�2 h3 Mpc�3; r0 and � are obtained from a fit for
wp(rp) using the full error covariance matrix; rd0 and �

d are the corresponding values when using just the diagonal elements. The clippedMr < �20
sample, indicated with an asterisk (�), is confined to a limiting redshift zmax ¼ 0:06 to avoid the effects of the large supercluster at z ¼ 0:08 (see text).
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and steepens, coming into good agreement with that of the
�20 < Mr < �19 sample. Conversely, when the �22 < Mr <
�21 sample is restricted to zmax ¼ 0:1 (dashed curve, top right),
it acquires an anomalous large separation tail like that of the
(full) �21 < Mr < �20 sample. Increasing the minimum red-
shift of this sample to zmin ¼ 0:10 (solid curve, top left), on the
other hand, has minimal impact, suggesting that the influence of
the supercluster is small for the full �22 < Mr < �21 sample,
which extends from zmin ¼ 0:07 to zmax ¼ 0:16. The large-scale
amplitude of the �23 < Mr < �22 sample drops when it is re-
stricted to zmax ¼ 0:16, but this drop again has low significance
because of the limited overlap volume, which contains only
about 1000 galaxies in this luminosity range. In similar fashion,
the overlap between the �19 < Mr < �18 and �18 < Mr <
�17 volumes is too small to allow a useful cosmic variance test

for our faintest sample. We have carried out the volume overlap
test for the luminosity-threshold samples in Table 2, and we
reach a conclusion similar to that for the luminosity bins: the
Mr < �20 sample, with zmax ¼ 0:10, is severely affected by
the z � 0:08 supercluster, but other samples appear robust to
changes in sample volume.

Given these results, we have chosen to use the measurements
from the �21 < Mr < �20 sample limited to zmax ¼ 0:07 (the
same limiting redshift as for �20 < Mr < �19) and the Mr <
�20 sample limited to zmax ¼ 0:06 (same as Mr < �19) in our
subsequent analyses. We list properties of these reduced samples
in Tables 1 and 2. This kind of data editing should become un-
necessary as the SDSS grows in size, and even structures as large
as the Sloan Great Wall are represented with their statistically
expected frequency. As an additional test of cosmic variance

Fig. 8.—Top left: Projected galaxy correlation functions wp(rp) for volume-limited samples with the indicated absolute magnitude and redshift ranges. Lines show
power-law fits to each set of data points, using the full covariance matrix. Top right: Same as top left, but now the samples contain all galaxies brighter than the indicated
absolute magnitude; i.e., they are defined by luminosity thresholds rather than luminosity ranges. Bottom panels: Same as the top panels, but now with power-law fits
that use only the diagonal elements of the covariance matrix. [See the electronic edition of the Journal for a color version of this figure.]

LUMINOSITY AND COLOR DEPENDENCE 9No. 1, 2005



effects, we have measured wp(rp) separately in each of the three
main angular regions of the survey (see Fig. 1), and despite sig-
nificant fluctuations from region to region, we find the same
continuous trend of clustering strength with luminosity in each
case.

Figure 10 presents the luminosity dependence in the form
of relative bias functions, brel(rp) � ½wp(rp)/wp; Bd(rp)	1/2; where
wp(rp) is the measured result for a luminosity bin and wp, fid(rp)
is the projected correlation function corresponding to �(r) ¼
(r/5:0 h�1 Mpc)�1:8. We take a power law rather than a given
sample as our fiducial so that measurement noise does not
propagate into the definition of bias functions. The bias factors
increase steadily with luminosity, and they are roughly scale in-
dependent, with�10%–20% fluctuations, for all samples except
the brightest one. The �23 < Mr < �22 galaxies have a wp(rp)

slope steeper than �1.8, so their bias relative to fainter galaxies
increases with decreasing rp.
To summarize our results and compare to previous work, we

take the bias factors at rp ¼ 2:7 h�1 Mpc and divide them by the
bias factor b� of the �21 < Mr < �20 sample, which has lu-
minosity L � L�. We choose 2.7 h�1 Mpc because it is out of the
extremely nonlinear regime and all samples are well measured
there; one can see from Figure 10 that other choices would give
similar but not identical results. Figure 11 plots b/b� vs. log L/L�,
where the solid points show the results from our wp(rp) mea-
surements. The dashed curve is the fit to SDSS results byTegmark
et al. (2004a), where bias factors are derived from the galaxy
power spectrum at wavelengths 2�/k � 100 h�1 Mpc, in the
linear (or at least near-linear) regime. The wp(rp) and P(k) re-
sults agree remarkably well, despite being measured at very

Fig. 9.—Impact of finite volume fluctuations on the measured luminosity dependence of wp(rp). Each panel compares the projected correlation function of two
neighboring absolute-magnitude bins. The filled and open symbols show the results using the maximum accessible redshift range for each bin, as in Fig. 8. Lines show
the measurements of wp(rp) restricted to the overlap redshift range in which both sets of galaxies are observable. Error bars, attached to the lines (not the points),
represent 1 � errors for these smaller, overlap samples. [See the electronic edition of the Journal for a color version of this figure.]
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different scales. The dotted curve in Figure 11 shows the fit of
Norberg et al. (2001), based onwp(rp) measurements of galaxies
with log L /L� > �0:7 in the 2dFGRS. Agreement is again very
good, over the range of the Norberg et al. (2001) measurements,
with all three relative bias measurements (from two indepen-

dent data sets) showing that the bias factor increases sharply for
L > L�, as originally argued by Hamilton (1988). At luminos-
ities LP 0:2L�, the Tegmark et al. (2004a) formula provides a
better fit to our data than the extrapolation of the Norberg et al.
(2001) formula.

3.3. Color Dependence

In addition to luminosity, the clustering of galaxies is known
to depend on color, spectral type, morphology, and surface bright-
ness. These quantities are strongly correlated with each other,
and in Z02 we found that dividing galaxy samples based on any
of these properties produces similar changes to wp(rp). This re-
sult holds true for the much larger sample investigated here. For
this paper, we have elected to focus on color, since it is more
precisely measured by the SDSS data than the other quantities.
In addition, Blanton et al. (2005a) find that luminosity and color
are the two properties most predictive of local density, and that
any residual dependence on morphology or surface brightness
at fixed luminosity and color is weak.

Figure 12 shows a color-magnitude diagram constructed
from a random subsampling of the volume-limited samples used
in our analysis. The gradient along each magnitude bin reflects
the fact that in each volume faint galaxies are more common than
bright ones, while the offset from bin to bin reflects the larger vol-
ume sampled by the brighter bins. While we used g� r ¼ 0:7
for the color division of the flux-limited sample (Fig. 5), in this
section we adopt the tilted color cut shown in Figure 12, which
better separates the E/S0 ridgeline from the rest of the popu-
lation. It has the further advantage of keeping the red : blue ra-
tio closer to unity in our different luminosity bins, although it
remains the case that red galaxies predominate in bright bins
and blue galaxies in faint ones (with roughly equal numbers for
the L� bin). The dependence of the color separation on luminos-
ity has been investigated more quantitatively by Baldry et al.
(2004).

Fig. 10.—Relative bias factors as a function of separation rp for samples defined
by luminosity ranges. Bias factors are defined by brel(rp) � ½wp(rp)/wp;Bd(rp)	1/2
relative to a fiducial power-law corresponding to �(r) ¼ (r/5 h�1 Mpc)�1:8. [See
the electronic edition of the Journal for a color version of this figure.]

Fig. 11.—Relative bias factors for samples defined by luminosity ranges.
Bias factors are defined by the relative amplitude of the wp(rp) estimates at a
fixed separation of rp ¼ 2:7 h�1 Mpc and are normalized by the �21 < Mr <
�20 sample (L � L�). The dashed curve is a fit obtained from measurements
of the SDSS power spectrum, b/b� ¼ 0:85þ 0:15L/L� � 0:04(M �M�)
(Tegmark et al. 2004a), and the dotted curve is a fit to similar wp(rp) measure-
ments in the 2dF survey, b/b� ¼ 0:85þ 0:15L/L� (Norberg et al. 2001).

Fig. 12.—K-corrected g� r color vs. absolutemagnitude for all galaxies com-
prising our volume-limited luminosity bins samples. A clear color-magnitude
trend is evident. The vertical line demarcates a simple cut at g� r ¼ 0:7, while
the tilted line indicates the luminosity-dependent color cut that we adopt for
the analyses in xx 3.3 and 4.3. [See the electronic edition of the Journal for a
color version of this figure.]
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Figure 13 shows, as a representative case, the projected cor-
relation function obtained with the tilted color division for the
�20 < Mr < �19 volume-limited sample. The red galaxywp(rp)
has a steeper slope and a higher amplitude at all rpP10 h�1 Mpc;
at rp > 10 h�1 Mpc the two correlation functions are consistent
within the (large) statistical errors. Power-law fits for these sam-
ples using the full covariance matrix give r0 ¼ 5:7 h�1 Mpc and
� ¼ 2:1 for the red sample, and r0 ¼ 3:6 h�1 Mpc and � ¼ 1:7
for the blue sample. The change in slope contrasts with the results
for the luminosity dependence, where (with small variations) the
slope remains fairly constant and only the clustering amplitude
changes. The results for the color dependence in the other lumi-
nosity bins, and in luminosity-threshold samples and the flux-
limited sample, are qualitatively similar (see Figs. 22 and 23
below). The behavior in Figure 13 is strikingly similar to that
found by Madgwick et al. (2003, Fig. 2) for flux-limited samples
of active and passive galaxies in the 2dFGRS, where spectro-
scopic properties are used to distinguish galaxies with ongoing
star formation from those without.
Figure 14 shows the luminosity dependence of wp(rp) sepa-

rately for blue galaxies (middle panel ) and red galaxies (bottom
panel ). We divide wp(rp) by a fiducial power law corresponding
to �(r) ¼ (r/5:0 h�1 Mpc)�1:8, and we show the luminosity de-
pendence for the full (red and blue) samples again in the top
panel (repeating Fig. 10, but here showing b2 instead of b). We

Fig. 13.—Projected correlation function of the full volume-limited sample of
all galaxies with �20 < Mr < �19 and of the blue and red galaxies in this
sample, with the color cut indicated by the tilted line in Fig. 12. Lines show the
best-fit power laws. [See the electronic edition of the Journal for a color version
of this figure.]

Fig. 14.—Luminosity and color dependence of the galaxy correlation function. Top, middle, and bottom panels show projected correlation functions of all galaxies,
blue galaxies, and red galaxies, respectively, in the indicated absolute-magnitude ranges. All projected correlation functions are divided by a fiducial power law
corresponding to �(r) ¼ (r/5 h�1 Mpc)�1:8. [See the electronic edition of the Journal for a color version of this figure.]
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focus on the four central luminosity bins, since the�18 < Mr <
�17 sample is too small once it is divided by color, and the
�23 < Mr < �22 sample consists mainly of red galaxies alone.
Blue galaxies exhibit a roughly scale-independent luminosity
dependence reminiscent of the full sample, but even the most
luminous blue galaxy bin only has r0 � 5 h�1 Mpc. The red gal-
axies are always more clustered than the fiducial power law on
small scales, regardless of luminosity, and the luminosity depen-
dence for red galaxies is more complex. At large scales, the lu-
minous red galaxies are the most strongly clustered, but at small
scales faint red galaxies have the highest and steepest correla-
tion function, with wp(rp) of all samples intersecting at rp �
1 h�1 Mpc. All of these trends would also hold if we adopted a
fixed color cut at g� r ¼ 0:7 instead of the tilted color cut used
in this section.

Figure 14 demonstrates that the luminosity and color de-
pendence of the galaxy correlation function is not trivially sep-
arable, nor is the luminosity dependence a simple consequence
of the color dependence (or vice versa). The effect of color is in
some sense stronger, since red galaxies of any luminosity are
more clustered than blue galaxies of any luminosity (at least for
rpP 3 h�1 Mpc). However, luminosity dependence of cluster-
ing remains evident within the red and blue populations sepa-
rately. The overall appearance of Figure 14 is roughly like that
of Figure 7 of Norberg et al. (2002), who divide their samples
into early and late spectral types, but we find systematically dif-
ferent slopes for red and blue galaxies, a steadier luminosity
trend for blue galaxies, and a much more noticeable scale depen-
dence of relative bias for red galaxies. These differences could
reflect the difference in the sample definitions (color vs. spectral
type) and overall selection (r band vs. bJ band). The strong small-
scale clustering of faint red galaxies in our sample agrees with
the results for faint early-type galaxies in Norberg et al. (2002),
and with the results of Hogg et al. (2003), who find that these gal-
axies reside in denser environments than red galaxies of inter-
mediate luminosity. Kayo et al. (2004) find qualitatively similar
trends for the dependence of the redshift-space two-point corre-
lation amplitude on luminosity, color, and morphological type.

4. HALO OCCUPATION DISTRIBUTION MODELING
OF THE SDSS GALAXY CLUSTERING

4.1. Halo Occupation Distribution Framework and Formalism

We now turn to physical interpretation of these results us-
ing the halo occupation distribution (HOD) framework, which
describes the bias between galaxies and mass in terms of the
probability distribution P(N |M ) that a halo of virial mass M
contains N galaxies of a given type, together with prescriptions
for the relative bias of galaxies and dark matter within virialized
halos. Because the real-space correlation function describes a
limited (but important) subset of the information encoded in
galaxy clustering, we will have to fit restricted HOD models
with a small number of free parameters, and we will assume that
the underlying cosmological model is known a priori. How-
ever, relative to power-law fits, HODmodeling fits the data more
accurately (in most cases) and in a way that we consider more
physically informative. In the longer run, constraints from mul-
tiple galaxy clustering statistics can be combined to test the HOD
predictions of galaxy formation models (e.g., Kauffmann et al.
1997, 1999; Benson et al. 2000; Somerville et al. 2001; Yoshikawa
et al. 2001;White et al. 2001; Berlind et al. 2003; Kravtsov et al.
2004), and to obtain simultaneous constraints on cosmologi-
cal parameters (see discussions by Berlind & Weinberg 2002;
Zheng et al. 2002; Weinberg 2002; van den Bosch et al. 2003a;

Z. Zheng & D.Weinberg 2005, in preparation; and an initial ap-
plication to SDSS data by Abazajian et al. 2005).

We assume a spatially flat �CDM cosmological model with
matter density parameter �m ¼ 0:3. For the matter fluctuation
power spectrum, we adopt the parameterization of Efstathiou
et al. (1992) and assume that the spectral index of the inflationary
power spectrum is ns ¼ 1, the rms matter fluctuation (linearly
evolved to z ¼ 0) at a scale of 8 h�1 Mpc is �8 ¼ 0:9, and the
shape parameter is� ¼ 0:21. These parameters are in good agree-
ment with joint analyses of cosmic microwave background (CMB)
anisotropies and the 2dFGRS or SDSS galaxy power spectrum
(Percival et al. 2002; Spergel et al. 2003; Tegmark et al. 2004b)
or with amore recent analysis that incorporates constraints from
the SDSS Ly� forest and galaxy-galaxy lensing (Seljak et al.
2005b). We have verified that our results do not change signif-
icantly if we use CMBFAST (Seljak & Zaldarriaga 1996) to com-
pute the linear theory power spectrum instead of the Efstathiou
et al. (1992) form.

We focus first on luminosity-threshold samples, mainly be-
cause the theoretical predictions for HODs have been studied
more extensively for samples defined by mass or luminosity
thresholds (e.g., Seljak 2000; White et al. 2001; Yoshikawa
et al. 2001; Berlind et al. 2003; Kravtsov et al. 2004; Zheng
2004). The larger galaxy numbers in luminosity-threshold sam-
ples also allow higher precisionwp(rp) measurements. Our adopted
HOD parameterization is motivated by Kravtsov et al.’s (2004)
recent work on substructures in high-resolution dissipationless
simulations. They find that when the HOD is divided into con-
tributions of central and satellite objects, it assumes a simple
form. For a subhalo sample above a threshold in maximum cir-
cular velocity (known empirically to correlate with luminosity),
the mean occupation number for central substructures can be
modeled as a step function, i.e., hNceni ¼ 1 for halos with mass
M 
Mmin and hNceni ¼ 0 forM < Mmin, while the distribution
of satellite substructures can be well approximated by a Poisson
distribution with the mean following a power law, hNsati ¼
(M /M1)

� , with � � 1. This way of separating central and sat-
ellite substructures naturally explains both the general shape of
the mean occupation function hN iM and, more importantly, the
transition from sub-Poisson fluctuations at low occupation num-
ber to Poisson fluctuations at high occupation number found
in semianalytic and numerical galaxy formation models (e.g.,
Benson et al. 2000; Berlind et al. 2003). Zheng et al. (2004)
show that the Kravtsov et al. (2004) formulation also provides
a good description of results from the semianalytic models and
hydrodynamic simulations.

As implemented here, this HOD formulation has three free
parameters:Mmin , the minimum halo mass for galaxies above the
luminosity threshold, M1, the mass of a halo that on average
hosts one satellite galaxy above the threshold, and �, the power-
law slope of the satellite mean occupation function. One of these,
which we take to be Mmin , is fixed by matching the observed
space density of the sample, leavingM1 and � as free parameters
to fit wp(rp). This parameterization thus has the same number of
adjustable degrees of freedom as an (r0, �) power law, allowing a
fair comparison of goodness of fit. However, this parameteriza-
tion is not a unique choice (we discuss some variations below),
and achieving a fully accurate fit to the predictions of galaxy
formation models requires additional parameters to describe the
shapes of the low mass cutoff for central and satellite galaxies.
The HOD parameterization adopted in Z04, with the mean oc-
cupation function changing from a plateau of hN iM ¼ 1 to a
power law above a given halo mass, can be regarded as a sim-
plified version of the one used in this paper.
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In halo-based calculations, the two-point correlation func-
tion �(r) is decomposed into two components (see, e.g., Zheng
2004),

�(r) ¼ ½1þ �1h(r)	 þ �2h(r); ð7Þ

where the one-halo term �1h(r) (dominant at small scales) and the
two-halo term �2h(r) (dominant at large scales) represent con-
tributions by galaxy pairs from the same halos and from different
halos, respectively. The ‘‘1+’’ in equation (7) arises because the
total number of pairs (proportional to 1þ �) is the sum of the
number of one-halo and two-halo pairs ( proportional to 1þ �1h
and 1þ �2h). Our computations of these two terms follow those
in Z04 and Zheng (2004), as briefly reviewed below.

We calculate the one-halo term in real space through (e.g.,
Berlind & Weinberg 2002)

1þ �1h(r) ¼
1

2�r2n̄2g

;

Z 1

0

dM
dn

dM

hN (N � 1)iM
2

1

2Rvir(M )
F 0 r

2Rvir

� �
; ð8Þ

where n̄g is the mean number density of galaxies of the given
sample, dn/dM is the halo mass function (Sheth & Tormen 1999;
Jenkins et al. 2001), hN (N � 1)iM /2 is the average number of
galaxy pairs in a halo of mass M, and F(r/2Rvir) is the cumula-
tive radial distribution of galaxy pairs. For luminosity-threshold
samples, one galaxy is always assumed to reside at the center
of a halo. With the separation of central and satellite galaxies,
F 0(x) is then the pair-number weighted average of the central-
satellite pair distribution F 0

cs(x) and the satellite-satellite pair
distribution F 0

ss(x) (see, e.g., Berlind & Weinberg 2002; Yang
et al. 2003),

hN (N � 1)iM
2

F 0(x) ¼ hNcenNsatiMF 0
cs(x)

þ hNsat(Nsat � 1)iM
2

F 0
ss(x): ð9Þ

For our parameterization, the occupation number of satellite gal-
axies follows a Poisson distribution,which implies that hNsat(Nsat �
1)i ¼ hNsati2. In cases where we allow a smooth cutoff in
Ncen , we further assume that hNcenNsatiM ¼ hNceniM hNsatiM , but
NsatT1 when Ncen is significantly below one in any case. The
central-satellite galaxy pair distribution, F 0

cs(x), is just the nor-
malized radial distribution of galaxies. In this paper, we assume
that the satellite galaxy distribution follows the dark matter dis-
tribution within the halo, which we describe by a spherically
symmetric NFW profile (Navarro, Frenk, & White 1995, 1996,
1997) truncated at the virial radius (defined to enclose a mean
overdensity of 200). The satellite-satellite galaxy pair distribu-
tion F 0

ss(x) is then the convolution of the NFW profile with it-
self (see Sheth et al. 2001a). For the dependence of NFW halo
concentration on halo mass, we use the relation given by Bullock
et al. (2001), after modifying it to be consistent with our slightly
different definition of the halo virial radius.

On large scales, the two-halo term is a weighted average of
halo correlation functions, where the weight is proportional to
the halo number density times the mean galaxy occupation. On
intermediate scales, one must also convolve with the finite halo
size, and it is easier to do the calculation in Fourier space and

transform it to obtain the real space correlation function. To achieve
the accuracy needed to model the SDSS data, we improve upon
the original calculations of Seljak (2000) and Scoccimarro et al.
(2001) by taking into account the nonlinear evolution of matter
clustering (Smith et al. 2003), halo exclusion, and the scale-
dependence of the halo bias factor (see Z04 and Zheng 2004 for
details).
We project �(r) to obtain wp(rp) using the first part of equa-

tion (3) and setting rmax ¼ 40 h�1 Mpc. Under the plane-parallel
approximation, for an ideal case where rmax ! 1, the projected
correlation function is not affected at all by redshift-space dis-
tortion. However, since the measured wp(rp) is derived from a
finite projection out to rmax, redshift distortion cannot be com-
pletely eliminated, especially at large rp. We have verified that
increasing both �max in the measurement and rmax in the HOD
modeling to 80 h�1 Mpc has almost no effect on the inferred HOD.
Still, we choose to only fit data points with rp < 20 h�1 Mpc to
avoid any possible contamination by redshift-space distortion.
When fitting and evaluating �2, we use the full jackknife co-
variance matrix.

4.2. Modeling the Luminosity Dependence

As discussed in x 3.2, the Sloan Great Wall produces an
anomalous high-amplitude tail at large rp for the Mr < �20
sample with zmax ¼ 0:10, and we therefore use zmax ¼ 0:06 to
get a more reliable estimate of wp(rp) for this luminosity thresh-
old. Figure 15 shows fits to wp(rp) for Mr < �20 samples with
zmax ¼ 0:10 and 0.06, with the mean occupation function hN iM
shown in the right-hand panel and the predicted and observed
wp(rp) in the left-hand panel. The quality of fit is much better for
the shallower sample (�2/dof ¼ 0:68 vs. 1.65), but the fit pa-
rameters are nearly identical. Given the underlying matter cor-
relation function of the adopted cosmology and the requirement
of matching the observed number density, there is simply not
much freedom to increase the large-scale values of wp(rp) while
remaining consistent with the data at rpP 3 h�1 Mpc, where the
one-halo contribution is important. Our derived HOD parame-
ters (although not the �2 values) are thus relatively insensitive
to statistical fluctuations or systematic uncertainties in wp(rp) at
rpk 5 h�1 Mpc, where the difference in wp(rp) is largest. The
HOD parameters are similarly insensitive to the choice of halo
bias factors.We generally adopt the formula of Sheth et al. (2001b)
for halo bias as a function of mass, since we have tuned our
treatment of halo exclusion and the scale dependence of halo
bias assuming these results. If we instead use the formula of
Seljak & Warren (2004) (with the same treatment of exclusion
and scale dependence), then we find negligible change in the
best-fit HODs, but the predicted amplitude of wp(rp) at large
scales is generally lower, increasing �2 for some samples and
decreasing it for others.
Figure 16 shows HOD fits to the projected correlation func-

tions of samples of different luminosity thresholds. Table 3 lists
the HOD parameters and �2 values for HOD and power-law fits
to these samples. With the same number of degrees of freedom,
HOD modeling generally yields a better fit than a power-
law correlation function. The brightest sample is a strong ex-
ception, which wewill discuss below. The two faintest samples are
mild exceptions, but the small volume probed by these samples
makes their overall normalization somewhat uncertain, perhaps
by an amount that exceeds the internal jackknife error estimates.
The Mr < �21 correlation function has a marked inflection
at rp � 2 h�1 Mpc. Z04 showed that this feature is naturally
explained in the HOD framework by the transition near the
virial diameter of large halos from the steeply falling one-halo
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term dominant at smaller scales to the flatter two-halo term dom-
inant at larger scales (see their Figs. 2 and 3). Figure 17 plots the
wp(rp) data and the HOD fits divided by an r�0:8

p power law.
While the power-law departures are not as striking for less lu-
minous samples, nearly all of them show some change in slope
at rp � 2 h�1 Mpc, as the HOD fits generally predict, lending
further support to the results of Z04.

Figure 18 plots the derived HOD parameters as a function
of the threshold luminosity. The characteristic minimum mass
Mmin of halos that can host a galaxy increases as we go to high-
luminosity samples. For low-luminosity samples (Lthres < L�,
with M �

r � �20:5), the minimum host halo mass Mmin is ap-
proximately proportional to the threshold luminosity. Halos near
Mmin generally contain a single, central galaxy above the lumi-
nosity threshold, and this linear relation suggests that the stellar
light of this central galaxy is approximately proportional to the
halo mass in this low-luminosity regime. However, as we move
to high-luminosity galaxies (Lthres > L�), the minimum mass of
hosting halos increases more steeply than a naive linear relation
Mmin / L. This departure is consistent with the well-established
fact that these luminous galaxies are found only in group or clus-
ter environments (see, e.g., Loh 2003; Blanton et al. 2005a). In
these high-mass halos, a larger fraction of baryon mass goes into
satellites below the luminosity threshold and into a shock-heated
intragroup medium, leaving less for the central galaxies. The steep-
ening of the relation betweenMmin and the threshold luminosity
toward high luminosity is in good agreement with galaxy for-
mation models (see, e.g., Zheng et al. 2004). Dynamical mass
estimates of galaxies from velocity dispersions of stars (e.g.,
Padmanabhan et al. 2004) or satellite galaxies (e.g., Prada et al.
2003; McKay et al. 2002) and aperture mass measured from
weak lensing (e.g., McKay et al. 2001; Sheldon et al. 2004;
Tasitsiomi et al. 2004) do not show as strong a dependence on
galaxy luminosity, even after correcting to the halo virial mass.
However, these results do not necessarily conflict with ours,
since Mmin represents the characteristic minimum mass, not

average mass, for galaxies above a given luminosity. Scatter in
the relation between galaxy luminosity and host halo mass can
substantially weaken the dependence of the average halo mass
on galaxy luminosity, as shown by Tasitsiomi et al. (2004).

Figure 18 (left) also shows a small departure from the linear
relation at the low-luminosity end: relatively larger halos are
needed to host faint galaxies. This departure could be a hint of
feedback processes suppressing the masses of galaxies in these
low-mass halos, but this subtle deviation from linearity is sen-
sitive to our idealized assumption of a sharp Mmin threshold for
central galaxies, so with wp(rp) data alone we cannot address this
point reliably.

Open circles in Figure 18 (left) show the mass scale M1 of
halos that on average host one satellite galaxy above the lumi-
nosity threshold (in addition to the central galaxy). For the sam-
ples analyzed here, the derived M1 and Mmin have an almost
perfect scaling relation: M1 � 23Mmin (dashed line). This strik-
ing result tells us that a halo hosting two galaxies above a lumi-
nosity thresholdmust be, on average, at least 20 times as massive
as a halo hosting only one galaxy above the threshold. This re-
sult is consistent with the slowly rising plateau of hN iM found for
SPH and semianalytic model galaxies by Berlind et al. (2003)
and for N-body subhalos by Kravtsov et al. (2004). Berlind
et al. (2003) show that in the regime where 1� hN iM � 2, higher
mass halos tend to host higher mass central galaxies rather than
multiple galaxies of comparable mass. The exact scaling factor
depends on our assumption of the spatial distribution of galaxies
inside halos. If we reduce the concentration parameter of the
galaxy distribution at each halo mass by a factor of 2, we can still
get reasonable fits to the data, but M1 and � decrease to allow
more galaxies in low-mass, high-concentration halos, and the
scaling factor drops toM1/Mmin � 17. If we increase the concen-
trations by a factor of 2, then the linear scaling relation becomes
less accurate, and the factor is M1/Mmin � 30. The roughly
constant factor of �20 at all luminosities agrees qualitatively
with predictions from N-body simulations, SPH simulations, and

Fig. 15.—HODfits to the projected correlation function of theMr < �20 sample, which has the greatest sensitivity to limiting redshift ( Fig. 9). In the left panel, open
circles show the measured wp(rp) for zmax ¼ 0:10, and the dashed curve shows the predicted wp(rp) for the best-fit HOD model, whose mean occupation function is
shown by the dashed curve in the right panel. Filled circles show the measuredwp(rp) for zmax ¼ 0:06, the same cutoff used for theMr < �19 sample. Solid curves show
the mean occupation function (right) and predicted wp(rp) (left) from fitting these data points. Values of �2/dof for the best-fit power laws and HOD models are listed in
the right panel. Reducing zmax eliminates the anomalous high-amplitude tail ofwp(rp) at large rp, thereby greatly improving the statistical quality of the HOD (and power-
law) fit, but it has little effect on the values of the best-fit HOD parameters.
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TABLE 3

Best-Fit Halo Occupation Distribution Parameters for Luminosity-Threshold Samples

M max
r log10Mmin

a log10M1
a � N b �2

HOD �2
power law

�22.0 ................ 13.91 14.92 1.43 7 20.74 (3.33)c 3.81

�21.5 ................ 13.27 14.60 1.94 10 8.81 13.81

�21.0 ................ 12.72 14.09 1.39 11 2.18 35.78

�20.5 ................ 12.30 13.67 1.21 11 11.65 14.57

�20.0 ................ 12.01 13.42 1.16 11 6.09 7.48

�19.5 ................ 11.76 13.15 1.13 11 11.70 17.53

�19.0 ................ 11.59 12.94 1.08 11 3.87 15.06

�18.5 ................ 11.44 12.77 1.01 11 11.94 9.38

�18.0 ................ 11.27 12.57 0.92 11 13.33 10.04

Note.—HOD parameters listed here are for the parameterization with sharp cutoff in hN iM.
a Mass is in units of h�1 M�.
b This is the number of data points used in the fitting.
c The value of �2 quoted in parentheses is for the case of an exponential cutoff in hN iM.

Fig. 16.—Luminosity dependence of the HOD. Left panels show the measured wp(rp) and the best HOD fit for each luminosity-threshold sample. Right panels show
the corresponding hN iM curves (which shift to the right as the luminosity threshold increases). Also labeled are values of reduced �2 for the best power-law fit and HOD
fit (ordered from top to bottom by decreasing luminosity threshold). The separation of central and satellite galaxies is illustrated for the rightmost hN iM curve in the
bottom right panel (dotted lines). For the brightest sample (Mr < �22), we show the effect of adding an exponential cutoff profile in hN iM (dashed curve, top right),
which leads to an improved HOD fit (dashed curve, top left). [See the electronic edition of the Journal for a color version of this figure.]



semianalytic models (see Kravtsov et al. 2004; Zheng et al.
2004), but establishing quantitative agreement over this large
dynamic range in luminosity remains a challenge for further
theoretical studies of galaxy formation. The large value of this
factor probably reflects the combination of halo merger statis-
tics and dynamical friction timescales; near-equal mass mergers
of halos are relatively rare, and they are followed fairly quickly
by mergers of their central galaxies.

The power-law slope � of the satellite mean occupation num-
ber hNsatiM rises slowly but steadily (� ’ 0:9 to � ’ 1:2) with
luminosity for thresholds Lthres < L�, then rises more steeply for
higher luminosity thresholds (Fig. 18, right). A straightforward
interpretation of this trend would be that halos of higher mass

have greater relative efficiency at producing multiple high lu-
minosity satellites. Studies on substructures in high-resolution
numerical simulations indicate that more massive halos tend to
have relatively more substructures of higher masses (see, e.g.,
Figs. 5 and 7 ofGao et al. 2004 and Fig. 1 of De Lucia et al. 2004),
consistent with the trend we find in �. However, while the sta-
tistical error bars on � (as indicated in the figure) are small,
systematic errors in hN iM resulting from our restricted param-
eterization of the HOD could be more important. Kravtsov
et al. (2004) typically find that � ¼ 1:00 � 0:05 for samples of
N-body subhalos selected based on maximum circular veloci-
ties, while their Figures 4–6 show that hNsatiM drops faster than
a power law at the low-mass end. Motivated by this result, we

Fig. 17.—Same as left panels of Fig. 16, but each of the measured and best-fit projected correlation functions is divided by a power law / r�0:8
p . An arbitrary vertical

displacement is applied for each sample. This plot allows a close inspection of departures from a power law in wp. [See the electronic edition of the Journal for a color
version of this figure.]

Fig. 18.—HOD parameters as a function of the threshold luminosity. The left panel shows Mmin ( filled circles) and M1 (open circles). The dashed curve is the
Mmin-Mr (solid) curve scaled up by a factor of 23. The two dotted lines plotM / L for comparison. The right panel shows the power-law slope� of hNsatiM. Adopting an
exponential cutoff profile in hN iM only has a small effect on the inferred � (open circles vs. filled circles).
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tried changing our parameterization of the satellite mean occupa-
tion from hNsatiM ¼ (M /M1)

� to hNsatiM ¼ exp ½�Mcut;sat/(M �
Mmin)	(M /M 0

1), with the same truncation at M ¼ Mmin. This for-
mulation has the same number of free parameters, but it fixes
� ¼ 1 and changes the sharp cutoff atM ¼ Mmin to an adjustable
exponential cutoff. Although the number of satellites is small in
the exponential cutoff region, the freedom afforded by Mcut, sat

breaks the connection between the value of � and the normali-
zation of hNsatiM , so it has a significant impact onwp(rp); making
� > 1 or suppressing satellite numbers at low halo mass both
increase the one-halo contribution from higher mass halos.

We find that this parameterization yields wp(rp) fits close to
those of our sharp-cutoff, variable-� parameterization, as shown
for the Mr < �21 sample in Figure 19 (left). However, the re-
lation betweenMmin and the mass scaleM1, sat , where hNsatiM ¼
1, remains very close to our original result of M1; sat � 23Mmin ,
indicating that this scaling relation is robust. Another quantity
that is robust to these changes is the central-to-satellite galaxy
ratio implied from the HOD model. For the Mr < �21 sample,
85% of galaxies are central galaxies in the halos and only 15%
make up the satellite distribution. Central galaxies dominate over
satellites for nearly all of our samples, with an interesting ex-
ception that we discuss in x 4.3 below. Figure 19 (middle) shows
that the mean occupations for the two parameterizations are
in fact very similar for M < 1015 h�1 M�; we cannot distin-
guish between the parameterizations because more massive halos
are too rare to contribute significantly to wp(rp). Other com-
plementary statistics, most notably the group multiplicity func-
tion, are sensitive to hN iM at highM. In the long run, we can use
the multiplicity function to pin down the high-M regime and
add greater flexibility to our parameterization of hN iM in the
regime of the low-mass cutoff and the plateau where hN iM rises
from one to several. To illustrate the level of uncertainty in hN iM
with wp(rp) alone, Figure 19 (right) shows fits using a much
more flexible HOD parameterization (Z. Zheng & D. Weinberg
2005, in preparation) that allows a smooth cutoff in hNceniM and
describes hNsatiM by a cubic spline connecting five values spe-
cified at intervals in log10M , a total of seven free parameters of
which one is fixed by the mean galaxy density. The 10 models
shown all have ��2 � 1 with respect to the best-fit of the flex-
ible HOD parameterization, which itself has a �2 that is 1.38
lower than that of our best-fit two-parameter model. The central-
to-satellite ratio is again quite robust to these changes, with a cor-
responding 1 � range of 14.5%–16.5% for the satellite fraction.

Returning to our standard parameterization, Figure 16 shows
that no choice of parameters yields a good fit for the brightest
sample (Mr < �22): the predictedwp(rp) for the best-fit model is
�50% too high at large rp. Our HOD modeling is applied at
z � 0 and does not incorporate evolution of the growth factor,
while this bright sample extends to z � 0:22, where �8 is lower
by �10%. However, we find that the fit does not improve sub-
stantially if we lower �8 to the value at the sample’s median
redshift, zmed � 0:17. The masses of halos hosting these very
luminous galaxies are above �1014 h�1 M�, and in this regime
the analytic formula of Sheth et al. (2001b) that we adopt for the
halo bias factor may overpredict the halo bias (see their Fig. 6). A
10% overprediction of the halo bias factor would boost the large-
scale correlation function by about 20%. If we adopt the Seljak&
Warren (2004) bias factors and keep our standard treatment of
halo exclusion and scale dependence of halo bias, then we obtain
a reasonably good fit to wp(rp) for this sample, although we now
underpredict wp(rp) for some fainter samples.
Another potential explanation for this discrepancy, and the

most physically interesting one, is that our assumption of a sharp
threshold at Mmin is too idealized for this high-luminosity sam-
ple. In general, the map from halo mass to central galaxy lumi-
nosity is not one-to-one, so the transition from no central galaxy
to one central galaxy in luminosity-threshold galaxy samples
should occur over some range of mass. To illustrate the effect,
we apply an exponential cutoff profile exp (�Mmin /M ) to both
hNceniM and hNsatiM. (The model shown previously in the middle
panel of Fig. 19 applied a smooth cutoff only to satellite galax-
ies.) This parameterization leads to a much better fit (Fig. 16, top
left, dashed curve), while the number of free parameters remains
the same (stillM1 and �, withMmin fixed by the number density
constraint). A soft cutoff profile reduces the large-scale galaxy
bias factor by allowing some galaxies in the sample to populate
lower mass halos with lower bias factors. We find that changing
the HOD in this way yields slightly better fits for most other
samples but that the derived parameters (Mmin , M1, and �) are
not very different from the sharp threshold case, as demonstrated
for � in Figure 18 (right, dotted line). Allowing a smooth cutoff
in hNceniM has a much larger impact on the Mr < �22 sample
than on the lower luminosity samples because the halo bias factor
and halo space density change rapidly with mass for high-mass
halos. Tasitsiomi et al. (2004) also find that in theirN-bodymodel,
a scatter in the luminosity-maximum velocity (mass) relation helps
to reduce the predicted galaxy-mass correlation function of bright

Fig. 19.—Fits to wp(rp) of theMr < �21 sample with different HOD parameterizations. The left panel shows the measured and predicted values of wp(rp) (with two
curves nearly superposed), and the middle panel shows the corresponding hN iM . Dashed curves are results of using our standard HOD parameterization (� is a free
parameter), and solid curves are from a parameterization that fixes � ¼ 1 and adjusts the cutoff mass of hNsatiM. In the middle panel, the thin and thick dotted curves are
mean occupation numbers of satellite galaxies for the former and latter case, respectively. Fits from these two forms of HOD are very close to each other. The right-hand
panel shows hN iM fits when using a more flexible HOD parametrization (see text). Ten different models are shown, all with��2 < 1 relative to the best-fit model. The
solid lines correspond to hN iM and the dashed lines show hNsatiM.
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galaxies (�22:2 � Mr � �21:7) and thus reproduce that mea-
sured by Sheldon et al. (2004). Definitive numerical results for
the halo bias factor at high masses would allow stronger con-
clusions on this interesting point, since Figure 16 shows that the
large-scale amplitude of wp(rp) for bright samples should have
an easily measurable dependence on this scatter.

So far, we have concentrated on luminosity-threshold samples,
for which the HOD can be parameterized in a simple way. Our
step-function plus power-law parameterization is not appropriate
for a luminosity-bin sample, since high-mass halos have central
galaxies that fall out of the bin because they are too bright. How-
ever, we can infer the HOD for a sample of galaxies in a lumi-
nosity bin Lthres;1 < L < Lthres;2 from the difference in the fitted
HOD models for the two luminosity-threshold samples L >
Lthres;1 and L > Lthres;2. The separation of central and satellite
galaxies in our parameterization simplifies this translation. For
a luminosity-bin sample, the mean occupation number of cen-
tral galaxies is just the difference between two step functions,
which becomes a square window, while that of satellite galaxies
is the difference of two power-law functions. We use the pa-
rameterization with � ¼ 1 and hNsatiM ¼ exp ½�Mcut; sat /(M �
Mmin)	(M /M 0

1) (see Fig. 19), so that small differences in � do not
produce anomalous behavior in the difference of occupation
functions at high M.

Figure 20 (right) shows the mean occupation functions for
three luminosity bins derived in this way from our luminosity-
threshold results. The majority of galaxies in each luminosity bin
are central galaxies, with their relative fraction increasing with
luminosity (about 55%, 65%, and 75%, respectively, and 85%
for the �22 < Mr < �21 case not shown in the plot). Our re-
stricted HOD parameterization might lead to an underestimate of
the fraction of central galaxies for low-luminosity samples; with
the more flexible cubic spline parameterization mentioned above
we find that the 1 � range of the central galaxy fraction is 69%–
78% for the �20 < Mr < �19 sample and 75%–81% for the
�21 < Mr < �20 sample, compared to 65% and 75% for the
best-fit two-parameter model. Nevertheless, the general trend of
increased central galaxy fraction with luminosity remains the

same. Figure 20 (left) compares the predicted wp(rp) curves with
the measured data points for each bin. While the threshold and
bin correlation functions are obviously not independent, it is
nonetheless encouraging that predictions derived from the thresh-
old samples match measurements for bin samples fairly well, sug-
gesting that our adopted parameterization for luminosity-threshold
samples is reasonable. Our differencing of luminosity-threshold
HODs yields a luminosity-bin HOD parameterization similar
to that adopted by Guzik & Seljak (2002) in their models of
SDSS galaxy-galaxy lensing.

Knowing the mean occupation function of galaxies in each
luminosity bin, we can also easily predict the conditional lumi-
nosity function (CLF; Yang et al. 2003), defined as the average
number of galaxies per unit luminosity that reside in a halo of
given mass. Through fitting luminosity functions and luminosity-
dependent clustering simultaneously, the CLF offers an alterna-
tive approach to HOD modeling, and it has been used to model
observations from the 2dFGRS and the DEEP2 redshift survey
and to construct mock galaxy catalogs (Yang et al. 2003; van
den Bosch et al. 2003a, 2003b; Mo et al. 2004; Yan et al. 2003,
2004). These papers have parameterized the CLF as a Schechter
(1976) function with normalization, faint-end slope, and char-
acteristic luminosity depending on halo mass. Here we take a
different approach to the CLF: instead of assuming an a priori
functional form, we ask what the measured luminosity depen-
dence of galaxy clustering can tell us about the shape of the
CLF. The information for inferring the CLF at each halo mass
is fully encoded in the best-fit HOD parameters of different
luminosity-threshold samples, and at a given halo mass M one
only needs to take differences of hN iM for adjacent luminosity
thresholds:�(L1<L<L2jM )/hN (>L1)iM �hN (>L2)iM : Fig-
ure 21 shows the inferred CLF at three halo masses for two
forms of the HOD parameterization, a steplike cutoff in hN iM in
the left-hand panels and an exponential cutoff in the right-hand
panels. Central galaxies produce a marked departure from a
Schechter-like form, especially in low-mass halos,where they con-
tain a larger fraction of the total luminosity. The prominence of
the central galaxy peak is much stronger for a step-function

Fig. 20.—Predictions of wp(rp) and HODs for luminosity-bin samples based on HOD parameters inferred from luminosity-threshold samples. The left panel
compares measured ( points) and predicted (curves) wp(rp) for three luminosity-bin samples. Right panels show the hN iM curves used for the predictions, each of which is
the difference of two luminosity-threshold hN iM curves. [See the electronic edition of the Journal for a color version of this figure.]
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parameterization than for an exponential cutoff form, but it is
present in either case. An accurate empirical determination of
the CLF via this route would require more complementary
clustering measurements so that the low-mass cutoff of hNceniM
and hNsatiM can be well constrained. Semianalytic galaxy forma-
tion models and SPH simulations suggest that the CLF can be
modeled as the sum of a truncated Schechter function represent-
ing satellite galaxies and a Gaussian function representing central
galaxies (Zheng et al. 2004), qualitatively consistent with the re-
sults in Figure 21.

4.3. Modeling the Color Dependence

As we saw in x 3.3, red galaxies are more strongly clustered
than blue galaxies. A qualitative explanation is that red galaxies
preferentially reside in galaxy groups and clusters. Within the
HOD framework, we can understand the color dependence in
a quantitative way by inferring the relative distribution of blue
and red galaxies as a function of halo mass from the clustering

data. We model the same sequence of luminosity bins shown in
Figure 14, except that our brightest sample consists of all galax-
ies with Mr < �21 instead of the �22 < Mr < �21 magnitude
bin. We again use the luminosity-dependent color cut of Fig-
ure 12 to define red and blue subsamples, so that red galaxies
correspond roughly to the distinctive red sequence. Red galax-
ies predominate in the most luminous sample, and blue galaxies
predominate in the two faintest samples. Table 4 lists the number
of galaxies and number densities in each sample.
For each luminosity sample, we simultaneously fit the pro-

jected correlation functions of red, blue, and all (red+blue) gal-
axies to infer their HOD parameters. We can obtain the mean
occupation functions for blue and red galaxies from that of all
galaxies by modeling the blue galaxy fraction, fb, as a function of
halo mass. Since our parameterization distinguishes central and
satellite galaxies, and the blue fractions for these two populations
could well be different, we separately parameterize fb for cen-
tral galaxies and for satellites. We know that red galaxies are
more common in high-mass halos, so we adopt functional forms
in which fb is a decreasing function of halo mass, such as a log-
exponential,

fb(M ) ¼ f0 exp � log10M � log10Mmin

�M

� �
; ð10Þ

or a log-normal,

fb(M ) ¼ f0 exp � (log10M � log10Mmin)
2

2�2
M

� �
: ð11Þ

We find that these two functions fit the data equally well. Mo-
tivated roughly by theoretical predictions (Zheng et al. 2004), we
adopt the log-normal form for the blue fraction fb,cen in central
galaxies and the log-exponential form for the blue fraction fb,sat in
satellite galaxies. There are two parameters in each function: f0,
the blue fraction in halos of M ¼ Mmin , and �M , a quantity
characterizing how fast the blue fraction drops. Of the four
new parameters, one (e.g., f0,cen) can be fixed by matching the
global number density of blue galaxies. We assume that red and
blue satellite galaxies follow Poisson distributions with respect
to their mean occupations hNr, satiM and hNb, satiM, just as in the full
satellite sample. It is well known that there is color /morphology
segregation within galaxy clusters (e.g., Oemler 1974; Melnick
& Sargent 1977; Dressler 1980; Adami et al. 1998): red galax-
ies are more centrally concentrated. With the wp(rp) data alone,
we have little power to constrain the relative concentration of
red and blue galaxies, since the effect shows up only on small
scales and can be compensated by changing the relative satellite

TABLE 4

Volume-limited Correlation Function Red/Blue Samples and Best-Fit HOD Parameters

Mr Ngal, red Ngal, blue n̄red n̄blue log10Mmin log10M1 � f0, cen f0, sat �M, cen �M, sat �2/dof

<�21 .............. 16142 9873 0.0726 0.0444 12.72 14.08 1.37 0.71 0.88 0.30 1.70 0.62

�21 to �20..... 2881 2789 0.245 0.237 12.00 13.38 1.16 0.55 0.31 10.0a 20.0a 0.88

�20 to �19..... 5804 8419 0.347 0.503 11.62 12.94 1.06 0.71 0.46 10.0a 7.99 0.72

�19 to �18..... 1195 3350 0.267 0.747 11.38 12.58 0.95 0.86 4.00a,b 10.0a 0.69 1.48

Notes.—TheMr < �21 sample uses 14:5 < rP17:77, and others use 10:0 < rP17:5. Themean number density (n̄ red or n̄blue) is measured in units of 10�2 h3Mpc�3.
Mass is in units of h�1 M�.

a The HOD fit is not sensitive to this value and only needs it to be large, so the value is fixed at a large number for the HOD fit.
b If the fraction of central or satellite galaxies becomes greater than 1, it is set to be 1.

Fig. 21.—Conditional luminosity functions of galaxies inferred from the
best-fit HOD parameters for the luminosity-threshold samples, shown at three
different halo mass scales. Results from two variants of the HOD parameter-
izations are shown: a steplike cutoff in hN iM (left) and an exponential cutoff
profile (right). Dashed lines show the contribution from central galaxies and
dotted lines the contribution from satellites. In the steplike cutoff cases, the
central galaxies contribute only to the highest magnitude bin. The CLF in each
panel is arbitrarily normalized such that the total number of galaxies in each halo
is 1.
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occupation numbers. We therefore do not consider the segrega-
tion effect here. We find that we can obtain good fits by assuming
that both satellite populations follow the same NFW profile as
the dark matter. Constraints on the profiles of red and blue sat-
ellites could be better obtained from direct analysis of identified
groups, after which these profiles could be imposed in wp(rp)
fitting. Altogether, then, we have five free parameters (M1, �,
f0, sat , �M, cen , and �M, sat ) to simultaneously fit the projected cor-
relation functions of red, blue, and all galaxies, with the param-
eters Mmin and f0,cen fixed by number density constraints.

Figure 22 shows fitting results for the luminous (Mr < �21)
sample. The best-fitting HOD parameters are listed in Table 4.
With the five-parameter model, we obtain an excellent fit to

32 data points, with �2/dof ¼ 0:62 (top left panel ),26 showing
that the different spatial clustering of red and blue galaxies can
be well explained by their different occupations of dark matter
halos. In the fits, the mean occupation number of red galaxies
rises continuously with halo mass, while hN iM for blue galax-
ies shows a minimum near 3 ; 1013 h�1 M�. As halo mass in-
creases, the total blue fraction (bottom left panel ) has a sharp
drop, a small rise, then a gentle decline. The nonmonotonic

Fig. 22.—Color dependence of the HOD for theMr < �21 sample. The top left panel shows measurements of wp(rp) and best HOD fits for red, blue, and all galax-
ies in the sample. Mean occupation numbers of these three classes of galaxies are plotted in the top right panel. The bottom right panel shows mean occupation num-
bers of central (thick curves) and satellite (thin curves) galaxies for red (dashed curves) and blue (dotted curves) galaxies. The bottom left panel plots the blue fraction
for all galaxies (solid curve), central galaxies (dotted curve), and satellite galaxies (dashed curve). [See the electronic edition of the Journal for a color version of this
figure.]

26 We have estimated error covariance matrices separately for red, blue,
and all galaxies and treated them as independent, because a jackknife estimate
of a 32 ; 32 covariance matrix would be too noisy to invert robustly. However,
we may thereby underestimate error correlations.
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behavior is easily understoodwhenwe separate the contributions
of central and satellite galaxies. In halos just aboveMmin, central
galaxies are predominantly blue, but above�2Mmin they are pre-
dominantly red. The minimum in the blue galaxy occupation
occurs for halos that are toomassive to have a blue central galaxy
but not massive enough to have any satellite galaxies above our
luminosity threshold. This transition explains why the mean
occupation number of blue galaxies can be approximated by a
Gaussian bump (or a square window) plus a power law, as used
in some HOD models (e.g., Sheth & Diaferio 2001; Scranton
2003); the two components represent blue central and satellite
galaxies, respectively (see Guzik & Seljak 2002). The blue
satellite fraction declines slowly with halo mass in the regime
M k20Mmin, where satellite galaxies are common.

Our detailed numbers for red and blue galaxy HODs should
not be taken too seriously because they depend to some degree
on our particular choice of parameterized model. This model
provides a good fit to the data, but we do not claim that the fit is
unique. Nonetheless, when we initially investigated the color
dependence using a quite different parameterization that did not
distinguish central and satellite galaxies (but accounted for sub-
Poisson fluctuations at low halo masses), we were driven to
a similar nonmonotonic behavior of the blue galaxy hN iM . Fur-
thermore, our results agree qualitatively with the behavior pre-
dicted by SPH simulations and semianalytic models of galaxy
formation. This can be seen by comparing our Figure 22 to
Figure 13 of Berlind et al. (2003), which divides the theoretical
galaxy population based on mean stellar age (which should
correlate strongly with color). Zheng et al. (2004) further analyze
these predictions in terms of central and satellite galaxies, again
showing good qualitative agreement with our results (compare
our Fig. 22 to their Fig. 4). Semianalytic and SPH calculations
both predict that a halo’s central galaxy is in general more mas-
sive and older than its satellites and that the ages of both central
and satellite galaxies correlate with halo mass (Berlind et al.
2003, Figs. 18 and 19). Physically, these trends reflect the ear-
lier formation times and more active merger histories of central
galaxies. Satellite galaxies have generally experienced most of
their growth in lower mass halos that merged into their present-
day parent halos. These physical processes thus lead rather
naturally to a trend in which low-mass halos have blue central
galaxies, higher mass halos have red central galaxies but a sig-
nificant blue fraction in their satellite populations, and the high-
est mass halos have red central galaxies and predominantly red
satellites. Figure 22 shows the impact of these processes on the
galaxy correlation function.

For galaxies of lower luminosities, we study the color division
using luminosity-bin rather than luminosity-threshold samples,
since the galaxy color distribution depends strongly on luminos-
ity, and we want to isolate the color dependence of the HOD from
luminosity dependence. Following our earlier procedure for
luminosity-bin samples, we form the mean occupation function
for galaxies with Lthres;1 < L < Lthres;2 from the difference be-
tween two luminosity-threshold samples, L > Lthres;1 and L >
Lthres;2, then predict wp(rp). We determine HOD parameters for
the full L > Lthres;2 sample by fitting wp(rp) of that sample, and
we parameterize blue fractions as for the Mr < �21 sample
discussed above, so that we still have five free parameters in
total to fit projected correlation functions for red, blue, and all
galaxies. This approach of working our way down bin by bin is
not statistically optimal, since we do not fit all the data simul-
taneously, and errors in the HOD fit at high luminosities will
propagate into lower luminosity bins. However, this procedure
is straightforward, and it is adequate for our rather qualitative

purposes here, where we seek to understand general features of
the HOD color dependence.
Figure 23 shows the results of these fits for the three luminosity-

bin samples. The HOD parameters for all the samples are spe-
cified in Table 4. For�21 < Mr < �20 (with zmax ¼ 0:06), the
fit is formally acceptable (�2/dof ¼ 0:88), but the predicted cor-
relations at large scales are systematically too high, by �0.5–
1 �. For �20 < Mr < �19, the fit is excellent for all, red, and
blue galaxies, with the HODmodel nicely explaining the strong
inflection of the red galaxy wp(rp) near 2 h�1 Mpc. For �19 <
Mr < �18, the fit overpredicts the correlation of galaxies on
large scales, but the small volume of this faintest sample leaves
it somewhat susceptible to cosmic variance. In every case our
fits capture the qualitative difference between red and blue
galaxy clustering, and we do not know whether the quantitative
discrepancies reflect underestimates of observational error bars
or inadequacy of this simple, five-parameter model.
If we take the fit results at face value, we see that as luminosity

decreases the central galaxies occupy lower and lower mass
halos (as already seen in Figs. 16 and 20) and become more and
more dominated by blue galaxies (56%, 71%, and 85%, re-
spectively). For all three luminosity bins, the majority (�70%–
90%) of blue galaxies are central objects. The majority of red
galaxies are also central in the brightest bins, but the fraction of
red galaxies that are satellites becomes larger with decreasing
luminosity (35%, 54%, and 72% for the three samples). Thus,
faint red galaxies are predominantly satellite systems in higher
mass halos. To put the result in physical terms, low-mass gal-
axies have late star formation and blue colors if they reside in
‘‘the field’’ (making them central objects of low-mass halos) and
become red only if they enter dense environments that truncate
their star formation, a behavior predicted in SPH simulations
(Berlind et al. 2005). Again, our detailed numbers should be
taken with a grain of salt because of the restrictions of the pa-
rameterization, but the fitting results show a sensible continuity
of behavior as we move from luminous galaxies to faint galaxies.
Since faint and bright red galaxies both reside in high-mass

halos, as satellites and central objects, respectively, the aver-
age host halo mass of red galaxies is actually lowest for interme-
diate luminosities. From our fits, we find a mean host halo mass
�(2 2:5) ; 1014 h�1 M� for red galaxies with �18 > Mr >
�19 and Mr < �22, compared to �1014 h�1 M� for �19 >
Mr > �22. This nonmonotonic behavior explains why faint and
bright red galaxies have higher correlation amplitudes (Fig. 14
here and Norberg et al. 2002) and denser local environments
(Hogg et al. 2003) than intermediate-luminosity red galaxies.
Dividing into blue and red subsamples allows another useful

measurement, the cross correlation between blue and red gal-
axies. At large scales, where the two-halo term dominates, there
is little new information in the cross correlation because it is
essentially guaranteed to approach the geometric mean of the red
and blue galaxy autocorrelations. However, in the one-halo re-
gime the cross correlation encodes information about the halo-
by-halo mixing of the red and blue populations. At one extreme,
we could imagine that some halos contain only red galaxies and
others only blue galaxies, and the ratio of the mean occupations
represents the ratio of ‘‘red halos’’ to ‘‘blue halos.’’ In this case,
the one-halo term of the cross-correlation function would be zero.
At the other extreme, the red and blue populations are fully mixed,
and the typical red-to-blue ratio in each halo is just the ratio of
mean occupations. In this case, the one-halo contribution to the
cross-correlation reaches its maximum amplitude. Our model-
ing of the autocorrelation functions has implicitly assumed this
fully mixed case, since we have taken the numbers of red and
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Fig. 23.—Color dependence of the HOD for the three luminosity-bin samples. For each luminosity bin, the left panel shows the wp(rp) measurements and best HOD
fits for red, blue, and all galaxies. The right panel shows the corresponding hN iM for these three classes of galaxies. [See the electronic edition of the Journal for a color
version of this figure.]



blue satellites within each halo to be Poisson distributed with
respect to their mean occupations. The cross-correlation mea-
surement allows an independent test of this assumption.

The one-halo term of the real space cross-correlation function
of red and blue galaxies can be computed as

1þ �rb;1h(r) ¼
1

4�r2n̄rn̄b

;

Z 1

0

dM
dn

dM
hNrNbiM

1

2Rvir(M )
F 0 r

2Rvir

; cr; cb

� �
; ð12Þ

where n̄r and n̄b are the mean number densities of red and blue
galaxies, respectively, hNr NbiM is the average number of red-
blue galaxy pairs in a halo of mass M, F(r/2Rvir; cr , cb) is the
cumulative radial distribution of red-blue galaxy pairs, and cr
and cb are the concentration parameters of red and blue galaxies
(cr ¼ cb is assumed in this paper). This equation is similar to
equation (8). With the separation of central and satellite gal-
axies, the pair distribution can be expressed as in equation (9):

hNrNbiMF 0(x; cr; cb) ¼ hNr;cenNb;satiMF 0
cs(x; cb)

þhNr;satNb;ceniMF 0
cs(x; cr)þ hNr;satNb;satiMF 0

ss(x; cr; cb); ð13Þ

where F 0
cs has the same meaning as in equation (9) and F 0

ss now
represents the cross-convolution of two NFW profiles. If red and
blue galaxies are well mixed and their occupation numbers are not
correlated, then the average number of any kind of blue-red gal-
axy pairs on the right-hand side of equation (13) can be replaced by
the product of themean occupation numbers of blue and red galax-

ies, e.g., hNr;cenNb;satiM ¼ hNr;ceniM hNb;satiM . The extreme example
of ‘‘red halos’’ and ‘‘blue halos,’’ on the other hand, corresponds
to hNr;cenNb;satiM ¼ hNr;satNb;ceniM ¼ hNr;satNb;satiM ¼ 0.
We estimate the cross-correlation function from the data in an

analogous way to the autocorrelations, using equation (1) with
DD replaced by D1D2, 2DR by D1R2 þ D2R1, and RR by R1R2,
with the subscripts denoting the two subsamples. In Figure 24we
compare the projected cross-correlation function for the Mr <
�21 sample ( filled circles) to the prediction assuming the fully
mixed case (solid line). The other points and lines in the figure
show themeasured and predicted autocorrelations (from Fig. 22)
and their geometric means. The predicted cross-correlation is
close to the measured one, although it is systematically higher
at rpP 1 h�1 Mpc (the �2 for the 11 data points is about 15,
most of which comes from small scales). At large scales, where
the two-halo term dominates, the predicted and measured cross-
correlation functions approach the geometric means as expected.
For the extreme case of distinct red and blue halos, there would
be no one-halo contribution to the cross-correlation function, and
the projected cross-correlation would flatten at rpP 2 h�1 Mpc
(see Fig. 24). This is clearly not the case in the data. Our simple
assumption of well-mixed blue and red satellite populations with
similar radial profiles appears to describe the one-halo regime of
the cross-correlation fairly accurately, although the fit is not per-
fect, and it is probably not unique. Direct measurement of the
distributions of red and blue galaxy numbers in identified groups
can test our assumption.

5. CONCLUSIONS

We have exploited the large size and high-quality imaging of
the SDSS galaxy redshift survey to study the detailed depen-
dence of the galaxy two-point correlation function on galaxy
luminosity and color. The amplitude of the projected correlation
function wp(rp) increases monotonically with luminosity, slowly
below L� and rapidly above. The real-space correlation func-
tions of luminosity-bin or luminosity-threshold samples are usu-
ally described to a first approximation by a power law �(r) ¼
(r/r0)

�1:8, with the exception of the brightest samples (�23 <
Mr < �22 luminosity bin or Mr > �22 luminosity threshold),
which have a substantially steeper �(r). However, an inflection in
wp(rp) at rp � 1 3 h�1 Mpc, which is clearly identifiable for
Mr <�21 galaxies (Z04), is also present to some degree inmany
of our other volume-limited samples, and it is unmistakably
present in the high-precision measurement from the full, flux-
limited data sample. The projected correlation function of the
bJ-selected 2dFGRS survey shows a similar feature (Hawkins
et al. 2003, Fig. 9).
Dividing galaxies by color, we find that red galaxies have

stronger clustering, steeper correlation functions at small scales,
and much stronger finger-of-God redshift-space distortions. The
blue galaxies in luminosity-bin samples usually have correla-
tion functions close to an r�1.7 power law, with amplitudes that
increase with luminosity. For red galaxies, the situation is more
complex. Red galaxy correlation functions are consistently steeper
than r�1.8, but the relative bias as a function of luminosity is
scale-dependent, with bright red galaxies exhibiting the stron-
gest clustering on large scales and faint red galaxies exhibiting
the strongest clustering on small scales. The luminosity and
color dependence ofwp(rp) are not trivially separable, nor is one
a simple consequence of the other.
Our conclusion that clustering increases with luminosity,

most markedly above L�, agrees with many previous investi-
gations (Hamilton 1988; Park et al. 1994; Loveday et al. 1995;
Benoist et al. 1996; Guzzo et al. 1997). The relative bias b/b�

Fig. 24.—Projected cross-correlation between red and blue galaxies in the
Mr < �21 sample. Points are measurements. Dotted and dashed curves are
HOD fits to autocorrelations of blue and red galaxies, respectively. The dot-
dashed curve is the geometric mean of the two fits. HOD parameters of these fits
are obtained by simultaneously fitting wp of red, blue, and all galaxies, i.e., the
same as in Fig. 22. The thick solid curve is the predicted cross-correlation
between red and blue galaxies based on these HOD parameters, with the as-
sumption that blue and red galaxies are well mixed within halos. The thin solid
curve is the two-halo term of the cross-correlation, representing the case in
which blue and red galaxies avoid residing in the same halo (see the text). [See
the electronic edition of the Journal for a color version of this figure.]

ZEHAVI ET AL.24 Vol. 630



as a function of L/L�, defined using the ratio of wp(rp) values
at rp ¼ 2:7 h�1 Mpc, agrees with that inferred (from essentially
the same galaxy sample) using the large-scale power spectrum
by Tegmark et al. (2004a). This measurement is also in good
agreement with the fit of Norberg et al. (2001) derived from the
2dFGRS, over the (somewhat narrower) luminosity range of
their measurements.

Our finding of stronger clustering of ‘‘early’’ type (which in
our case means red) galaxies agrees with decades of results
obtained by a variety of techniques (e.g., Hubble 1936; Zwicky
et al. 1968; Davis & Geller 1976; Dressler 1980; Postman &
Geller 1984; Guzzo et al. 1997; Willmer et al. 1998; Norberg
et al. 2002; Zehavi et al. 2002; Madgwick et al. 2003; Goto et al.
2003; Hogg et al. 2003). For our joint luminosity-color depen-
dence analysis, the only directly comparable study is that of
Norberg et al. (2002), who analyzed a sample of similar size
drawn from the 2dFGRS. In their case, ‘‘early’’ and ‘‘late’’ type
galaxies are distinguished by spectral class (Madgwick et al.
2003) rather than broadband color. In many respects, our results
agree well with theirs. However, Norberg et al. (2002) found that
early-type galaxies have correlation function slopes close to�1.8,
while we find that red galaxies have steeper correlation functions
and exhibit scale-dependent relative bias. Our results are in good
qualitative agreement with those of Hogg et al. (2003), who find
that the mean local density around SDSS galaxies increases with
increasing luminosity and redder color, with both luminous and
faint red galaxies residing in high-density environments.

We have used HOD modeling assuming a �CDM cosmo-
logical model to translate wp(rp) measurements of pair counts
into relations between galaxies and dark matter halos. We have
adopted a simple, theoretically motivated HOD parameterization
with a step function for central galaxies above a luminosity
threshold and a power-law mean occupation for satellite galax-
ies. As in Z04, we find that HOD models naturally explain in-
flections in the observed wp(rp) as transitions from the one-halo
to two-halo regime of �(r). With two parameters that can be
adjusted to match wp(rp), our physically motivated HOD model
fits the observations better than a power law for most but not all
samples. The large-scale amplitude of wp(rp) can be chosen at
will in a power-law fit, but it cannot be pushed arbitrarily low in
an HOD model for a given cosmology, and several of our fits
overpredict this large-scale amplitude bymodest amounts. These
discrepancies could reflect cosmic variance in the measurements
that is not fully captured by jackknife error estimates, but future
measurements from larger samples, together with more robust
numerical results for halo bias factors, could lead to interesting
conflicts with HOD predictions.

The luminosity dependence of wp(rp) is well described by
HOD models in which the mean occupation hN iM shifts ‘‘hor-
izontally’’ with increasing L, showing similar growth in the halo
mass scale for central and satellite galaxies. For luminosity
thresholds spanning the range Mr ¼ �18 to Mr ¼ �21:5, we
find that the mass at which a halo hosts one satellite (on average)
above the threshold is 23 times the minimum mass for hosting a
central galaxy above the threshold. One consequence of this
large factor is that most galaxies at a given luminosity are central
galaxies of their host dark matter halos, not satellites in more
massive systems. Our derived satellite fraction for bright galax-
ies (�22 < Mr < �21) agrees well with that inferred by Seljak
et al. (2005a) fromgalaxy-galaxy lensing, althoughwe find higher
satellite fractions at lower luminosities. A second consequence is
that the conditional luminosity function at fixed halo mass has
a spike or bump at the central galaxy luminosity and cannot be
described by a Schechter (1976) function.

By adding three adjustable parameters that describe the frac-
tion of blue central and satellite galaxies as a function of halo
mass, we are able to fit the 21 additional data points that represent
the blue and red galaxy wp(rp) measurements for a given sample.
In a luminosity-threshold sample, central galaxies just above
Mmin are predominantly blue, while central galaxies in more mas-
sive halos are predominantly red. In the regime where satellites
are common, the blue galaxy fraction is a slowly declining func-
tion of halo mass. In luminosity-bin samples, the ratio of blue to
red galaxies increases with decreasing luminosity. The strong
small-scale clustering of faint red galaxies reflects the fact that
nearly all such galaxies are satellite systems inmassive halos. The
cross-correlation between red and blue galaxies supports the hy-
pothesis that the two populations are well mixed at a given halo
mass, rather than residing in distinct ‘‘red galaxy halos’’ and
‘‘blue galaxy halos.’’

Our derived trends of the HOD dependence on luminosity
and color are in qualitative agreement with the predictions of
semianalytic and numerical models of galaxy formation (Berlind
et al. 2003; Kravtsov et al. 2004; Zheng et al. 2004). They il-
lustrate the power of HOD model fitting to extract physically
informative insights from clustering measurements, such as the
scaling relation between central and satellite mass thresholds, the
dependence of central /satellite fractions on luminosity and color,
and the mixture of blue and red populations. Our results for the
luminosity and type dependence of the HOD are in good qual-
itative agreement with those of van den Bosch et al. (2003b,
Fig. 10), who fit the conditional luminosity function of early- and
late-type galaxies in the 2dFGRS and use it to extract halo oc-
cupation functions. In particular, both analyses show that blue
(late-type) galaxies dominate the low-M end of hN iM at low
luminosities, that red galaxies are prominent nearMmin for higher
luminosities, and that faint red (early-type) galaxies are predom-
inantly satellites in massive halos. Given the independent data
sets and the very different analysis methods and parameteriza-
tions, this qualitative agreement is reassuring. Magliocchetti &
Porciani (2003) find some similar results for the relative occu-
pations of early- and late-type galaxies, although a comparison is
difficult because they model measurements from a flux-limited
sample rather than a well-defined class of galaxies.

The main limitation of the present analysis is that wp(rp) alone
imposes limited constraints on the HOD (Berlind & Weinberg
2002), forcing us to adopt a restricted HOD parameterization and
a fixed cosmological model. In a companion paper (Abazajian
et al. 2005), we bring in additional constraints from CMB an-
isotropy measurements and show that these data together with
wp(rp) measurements for the Mr < �21 sample impose tight
constraints on cosmological parameters such as �m, h, and �8,
similar to those obtained from the combination of CMB data
with the large-scale SDSS galaxy power spectrum (Tegmark
et al. 2004b). The galaxy clustering measurements will become
much more powerful themselves as we bring in complemen-
tary information from other clustering statistics (see Berlind
& Weinberg 2002). For example, the group multiplicity function
will pin down the high-mass end of hN iM (Peacock & Smith
2000; Marinoni & Hudson 2002; Kochanek et al. 2003), al-
lowing us to explore more flexible parameterizations of the
low-occupancy regime when fitting wp(rp). Void probability sta-
tistics (Vogeley et al. 1994; Hoyle & Vogeley 2002) and the
Tully-Fisher (1977) relation probe the single occupancy regime
near Mmin , while measured profiles of groups and clusters can
refine the assumption that satellite populations trace halo dark
matter profiles. Three-point correlations probe the high-mass
regime of P(N |M ) (Ma & Fry 2000; Scoccimarro et al. 2001;
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Takada & Jain 2003), and they provide a diagnostic for the am-
plitude of dark matter fluctuations (Fry 1994; Feldman et al.
2001; Verde et al. 2002). Finally, with real-space clustering
tightly constrained by complementary statistics, dynamically sen-
sitive measures such as redshift-space distortions, weak lensing
by galaxies and groups (Sheldon et al. 2001, 2004; Seljak et al.
2005a), and virial masses of groups and clusters become powerful
tools for constraining�m and �8, evenwithout auxiliary data from
the CMB or other observables (Z. Zheng & D. Weinberg 2005,
in preparation).

Realizing this program will require considerable effort in the
measurements themselves, careful estimates of statistical and
systematic uncertainties, and development and testing of HOD
calculational techniques accurate enough to match the high
precision afforded by the data. By adopting theoretically moti-
vated background assumptions, we have learned an impressive
amount from the projected correlation function alone. Further
analysis of the growing SDSS data set will allow us to test these
background assumptions and develop a thorough understanding
of the relation between galaxies and dark matter.
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