
X-ray Sun 



SDO 4500 Angstroms: photosphere 

T~5000K 



SDO 304 Angstroms: chromosphere 

T~5x104K 



SDO 1600 Angstroms: upper photosphere 

T~105K 



SDO 171 Angstroms: quiet corona 

T~6x105K 



SDO 211 Angstroms: active corona 

T~2x106K 



SDO 94 Angstroms: flaring regions 

T~6x106K 



SDO: dark plasma (3/27/2012) 



SDO: solar flare (4/16/2012) 



SDO: coronal mass ejection (7/2/2012) 



Aims of the course 
•  Introduce the equations needed to model the internal structure of   
  stars. 

•  Overview of how basic stellar properties are observationally  
  measured. 

•  Study the microphysics relevant for stars: the equation of state, the  
  opacity, nuclear reactions. 

•  Examine the properties of simple models for stars and consider 
  how real models are computed. 

•  Survey (mostly qualitatively) how stars evolve, and the endpoints of  
  stellar evolution. 

•  Discuss a handful of ongoing research areas in stellar physics. 



Stars are relatively simple physical systems 

Sound speed in the sun 



Problem of Stellar Structure 
We want to determine the structure (density, temperature,  
energy output, pressure as a function of radius) of an isolated  
mass M of gas with a given composition (e.g., H, He, etc.) 

r Known: 

Mass 
+ 
Composition 

Unknown: 

Density 
Temperature 
Energy 
Pressure 



Simplifying assumptions 
1.  No rotation  spherical symmetry    ✔ 

For sun: rotation period at surface ~ 1 month 
        orbital period at surface ~ few hours 

2.  No magnetic fields      ✔ 
For sun: magnetic field ~ 5G,  ~ 1KG in sunspots 
         equipartition field ~ 100 MG 
Some neutron stars have a large fraction of their energy in B fields 

3.  Static        ✔ 
For sun: convection, but no large scale variability 
Not valid for forming stars, pulsating stars and dying stars. 

4.  Newtonian gravity      ✔ 
For sun: escape velocity ~ 600 km/s << c 
Not true for neutron stars  



The Variables of Stellar Structure 

radius 

enclosed mass 

mass density 

Pressure 

gravity 

Temperature 

Luminosity flow 

Composition 

ρ r( )
m r( )
r

P r( )
g r( )
T r( )
Lr r( )
Xi r( )



Eulerian vs. Lagrangian 

Eulerian 
Characterize quantities 
as a function of radius. 

Lagrangian 
Characterize quantities 
as a function of enclosed 
mass. 

time A time B 

r r

mm



The Variables of Stellar Structure 

enclosed mass 

radius 

mass density 

Pressure 

gravity 

Temperature 

Luminosity flow 

Composition 

ρ m( )
r m( )
m

P m( )
g m( )
T m( )
Lr m( )
Xi m( )



Values for the Sun 

 Mass ≡  1M  ≈  2 ×1033g

 Radius ≡  1R  ≈  7 ×1010 cm

 Luminosity ≡  1L  ≈  4 ×1033erg/s

Surface Temperature ≈  5,800 K

Composition ≈  70% H   28% He   2% metals



The Equations of Stellar Structure 

mass in shell = density ×  volume of shell

dm = ρ × 4πr2dr



The Equations of Stellar Structure 

1. Mass Conservation 

dm
dr

= 4πr2ρ
dr
dm

=
1

4πr2ρ
eulerian lagrangian 



The Equations of Stellar Structure 
F = ma

−P r + dr( )4πr2 − Gm
r2

dm

rr + dr
P(r)

P(r + dr)
g(r)

P r( )4πr2
Force pushing outwards: 

Force pushing inwards: 

 
P r( )4πr2 − P r + dr( )4πr2 − Gm

r2
dm = rdm

 
→ −dP4πr2 − Gm

r2
dm = rdm

 
→ −

dP
dm

4πr2 − Gm
r2

= r = 0



The Equations of Stellar Structure 

2. Hydrostatic Equilibrium 

dP
dr

= −ρGm
r2

dP
dm

= −
Gm
4πr4

eulerian lagrangian 

Need equation of state: P = f ρ,T ,Xi( )

e.g., for an ideal gas: P =
R
µ
ρT



The Equations of Stellar Structure 

ε  = energy generation rate per unit mass (erg/s/g)

change in Lm = ε × dm Lm

Lm+dm



The Equations of Stellar Structure 

3. Energy Generation 

dLr
dr

= 4πr2ρε dLm
dm

= ε

eulerian lagrangian 

Need nuclear physics: ε = f ρ,T ,Xi( )

e.g., for the proton-proton chain: ε ≈ ε0ρT
4



The Equations of Stellar Structure 

κEnergy flow:   

•  radiation 

•  convection 

•  conduction 

Depends on opacity       (area/mass) 

low opacity 

high opacity 

unimportant 

For radiation:  

radiation pressure decreases outward  
photons have net movement outward in their random walk. 



Random walk of photon through the sun. 

Straight path:   2.3 seconds 
Random walk:  30,000 years 



The Equations of Stellar Structure 

4. Energy Flow 

dT
dr

= −
3κρLr

16πacr2T 3
dT
dm

= −
3κLm

64π 2acr4T 3

eulerian lagrangian 

Need opacity: κ = f ρ,T ,Xi( )

e.g., for electron Thomson scattering: κ ≈κ 0



Solving the Equations 

Solve in 1 dimension from center to surface 

dr
dm

=
1

4πr2ρ
dP
dm

= −
Gm
4πr4

dLm
dm

= ε
dT
dm

= −
3κLm

64π 2acr4T 3

Need microphysics:  P ρ,T ,Xi( ),  ε ρ,T ,Xi( ),  κ ρ,T ,Xi( )



Boundary Conditions 

Boundary conditions are incomplete at each end 

 

Center r = 0( ) :    m = 0,    Lr = 0,    P = Pc ,    T = Tc

Surface r = R( ) :    m = M ,    Lr = L,    P  0,    T  0

 

Center m = 0( ) :    r = 0,    Lr = 0,    P = ?,    T = ?

Surface m = M( ) :    r = ?,    Lr = ?,    P  0,    T  0

Lagrangian 



Complications 
1.  Stars are luminous 

 radiate away energy  must change in time 
 chemical composition is changing.  Must account for dXi/dt 

2.  Convection is very complicated and important   

3.  Convection can change chemical composition 

4.  Opacities are hard to calculate.   And they matter! 



Homology Relations 
To calculate the luminosity or radius of a star of mass M, we must solve  
these differential equations.   However, we can get approximate scaling  
relations by using Homology. 

Assume that each differential or local quantity simply scales with the  
global value of that quantity. 

 

dr
dm

R
M

For example, 

dr
dm

=
1

4πr2ρ  

R
M

1
R2ρ

So, becomes 



Homology Relations 
If we also know how pressure, opacity, and nuclear generation rate scale  
with density and temperature, we can solve all these equations to get  
scaling relations. Then we can turn these scaling relations into actual  
equations by normalizing to the Sun. 

 L  M αFor example, suppose we find that 

This means that L = const × M α

For the Sun, this is  L = const × M
α

Dividing the two equations we get 

 

L
L

=
M
M

⎛
⎝⎜

⎞
⎠⎟

α



Observations of stars 

Hyades open cluster 



Observations of stars 



Astronomers count photons! 

We can measure three things about a photon: 

•  What direction did it come from? 

•  When did it arrive? 

•  What was its energy (wavelength/color)? 



Different types of observing modes 

1.  Count photons in a fixed region of the sky (aperture),  
 a fixed window of time (exposure time), and a fixed  
 wavelength range (filter or band). 

    what we call “photometry”  

2.  Count photons as a function of direction in a fixed  
 window of time (exposure time), and a fixed  
 wavelength range (filter or band). 

    what we call “imaging”  



Different types of observing modes 

3.  Count photons as a function of wavelength in a  
 fixed region of the sky (aperture), and a fixed window  
 of time (exposure time). 

    what we call “spectroscopy”  

4.  Count photons as a function of time in a fixed region  
 of the sky (aperture), and a fixed wavelength range  
 (filter or band). 

    what we call “time series photometry”  



Different types of observing modes 

5.  Count photons as a function of direction AND time  
 in a fixed wavelength range (filter or band). 

    what we call “time series imaging”  

6.  Count photons as a function of wavelength AND  
 time in a fixed region of the sky (aperture). 

    what we call “time series spectroscopy”  



Different types of observing modes 

7.  Count photons as a function of direction AND  
 wavelength in a fixed window of time (exposure time). 

    what we call “integral field spectroscopy”  

8.  Count photons as a function of direction AND time  
 AND wavelength. 

    the holy grail of observational astronomy… 



Luminosity and flux 

Luminosity   L : energy/time (erg/s) 
Flux   f  : luminosity/area (erg/s/cm2) 

Inverse square law: 

f = L
4πd 2





Photometric filters 



SDSS filters 



Photometric Filters 

Astronomical fluxes are usually measured using filters 

fg = F λ( )Sg λ( )
0

∞

∫ dλThe flux in the SDSS g filter is: 

fr = F λ( )Sr λ( )
0

∞

∫ dλThe flux in the SDSS r filter is: 



Apparent magnitude 

A star that is 5 magnitudes brighter (smaller m) has 100x the flux. 

m = −2.5 log f + const

m1 − m2 = −2.5 log f1 f2( )
f1
f2
= 10 m2 −m1( ) 2.5



Absolute magnitude 
M = apparent magnitude the star would have if it were 10pc away. 

m − M = 5 log d
10pc

⎛
⎝⎜

⎞
⎠⎟

f = L
4πd 2

distance modulus 

m − M = −2.5 log L 4πd 2

L 4π 10pc( )2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= −2.5 log d

10pc
⎛
⎝⎜

⎞
⎠⎟

−2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f10 =
L

4π 10pc( )2



Hipparcos Data 



Bolometric magnitudes 
M is measured in a band.  To get the light from all wavelengths, 
we must add a correction. 

Bolometric correction: 
Mbol = MV + BC
mbol = mV + BC

BC depends on band and star spectrum.  By definition, BC=0 for  
V-band and T=6600K 



Color 
Color = crude, low resolution, estimate of spectral shape 

B −V = mB − mV = MB − MV = −2.5 log fB
fV

⎛
⎝⎜

⎞
⎠⎟

•  distance independent 

•  indicator of surface temperature 

•  by definition, (B-V)=0 for Vega (T~9500K) 



Color 

•  Measure a star’s brightness through two different filters 

R 

B 

V 

•  Take the ratio of brightness: (redder filter)/(bluer filter) 
 if ratio is large   red star 
 if ratio is small  blue star  e.g., V/B 



Color 

The color of a star measured like this tells us its temperature! 

B V 

wavelength (nm) 



Stellar spectra 
The solar spectrum can be approximated as 

•  a blackbody 

 + 

•  absorption lines (looking at hotter layers through  
   cooler outer layers) 





Blackbody radiation 

Bν T( ) = 2hν
3

c2
1

ehν kT −1

L = 4πR2σTe
4

erg s-1 cm-2 Hz-1 st-1 

hνmax ~ 2.8kT

•  Effective temperature of a star = T of a blackbody that gives the same 
  Luminosity per unit surface area of the star. 

For sun: Te = 5,778 K 

Stefan–Boltzmann law 



Blackbody Spectrum or thermal spectrum 



Stellar spectra are not perfect blackbodies 



Atomic energy levels 

•  electrons orbit the nucleus  
  in specific energy levels 

•  electrons can jump between  
  energy levels given the right 
  energy 



Emission of light 

e- 

photon 

atom 



Absorption of light 

e- 

photon 

atom 



Energy levels for Hydrogen 

Energy 



Visible spectrum shows  
signature of hydrogen atoms 

Emission line spectrum 

Absorption line spectrum 

E = hν =
hc
λ

UV 

Visible 
IR 



Wavelength of light 



Spectrum of Sun 



Spectral lines 
Strength of lines depends on temperature. 

e.g., Balmer lines:   
transitions from n=2 to higher states 

n=1 

n=3 
n=2 

T <  5,000K:  all Hydrogen is in ground (n=1) state  no lines 

T > 20,000K:  all Hydrogen is ionized  no lines 

T ~ 10,000K:  some Hydrogen is in n=2 state  strong lines 

•  Spectral lines are observational indicators of Te 



Stellar spectra 



Spectral lines 

Lines depend on temperature in stellar atmosphere  
+ 

ionization potentials for relevant species 

e.g.,   H  HeI  HeII  CaI  CaII  FeI 
 13.6eV  24.6eV  54.5eV  6.1eV  11.9eV  7.9eV 

Ionization occurs when kT ~ ionization potential/10 



Spectral classification 

Te:  40K     20K    10K    6.7K    5.5K    4.5K    3.5K 

early type late type 



Spectral classification 



Spectral classification 



Spectral classification 

Oh Be A Fine Girl/Guy Kiss Me 

Only Bored Astronomers Find Gratification Knowing Mnemonics 

Omnivorous Butchers Always Find Good Kangaroo Meat  



Luminosity class 
Stars of same type have different line widths 

Same T, different R        different surface gravity g  
        different surface pressure P 

Pressure broadening:  orbitals of atoms are perturbed due  
to collisions          broadening of spectral lines.  

Since                        ,  changes in R at fixed T are changes in L 

Spectral line widths        luminosity classification 

Ia  Ib  II  III  IV  V  VI  VII 

Supergiants Luminous 
giants 

Giants Subgiants Dwarfs Subdwarfs White 
dwarfs 

L = 4πR2σTT
4



Luminosity class 



Special stars 

C:  carbon stars - same Teff as K, M stars, but higher abundance of 
      C than O  all O goes to form CO.  Remaining C forms C2, CN. 

S:   same Teff as K, M stars, but have extra heavy elements 

W:  Wolf-Rayet - He in atmosphere instead of H, strong winds 

L:   cooler than M stars.  Some do not have fusion. 

T:   cool brown dwarfs (700-1,000K).  Methane lines are prominent. 

The Sun is a G2V star 



The first Hertzsprung-Russell (H-R) diagram 



Hipparcos Color-Magnitude Diagram 



Hipparcos Color-Magnitude Diagram 



Plot luminosity vs. temperature 

Luminosity 

Temperature 

blue red 

low 

high 



Understanding the H-R diagram 

Luminosity 

Temperature 

blue red 

low 

high 
A 

B 

L = 4πR2σT 4



Understanding the H-R diagram 

Luminosity 

Temperature 

blue red 

low 

high 
A C 

L = 4πR2σT 4



Understanding the H-R diagram 

Luminosity 

Temperature 

blue red 

low 

high 

D 

C 

L = 4πR2σT 4



Understanding the H-R diagram 

Luminosity 

Temperature 

blue red 

low 

high 

D 

C A 

B 

L = 4πR2σT 4



Understanding the H-R diagram 

Luminosity 

Temperature 

blue red 

low 

high cool, huge 
luminous 

hot, big 
luminous 

hot, tiny 
faint 

cool, small 
faint 

sun 

L = 4πR2σT 4



Hipparcos H-R diagram 



Theoretical H-R diagram 



Chemical composition 

Primordial (Big Bang) nucleosynthesis: protons fuse to form He and heavier 
elements 3 minutes after the Big Bang.  Ends 20 minutes later. 
Alpher, Bethe & Gammow,  Physical Review L, 1948 

75% H  25% He   0.01% D 

Subsequent fusion inside massive stars and enrichment of the inter-stellar  
medium via supernovae, leads to future generations of stars with more  
heavy elements. 



Stellar populations in the Milky Way 



Stellar populations in the Milky Way 

Pop I Pop II Pop III 

Spatial 
Distribution 

Disk, |z|<200pc Halo/spheroid Have not 
been found 

Kinematics 
(coherent) 

Disk rotation 
(220 km/s) 

No rotation 

Kinematics 
(dispersion) 

~30 km/s large 

Metallicity Z~0.02 Z<0.01 Z~0 

Age Young Old Primordial 



Determining stellar properties 

Measurements: 

•  position on sky 

•  flux in different bands 

•  spectrum 

•  time dependence of 
  above 

Physical parameters: 

•  distance   d 

•  luminosity   L 

•  temperature   Te 

•  radius   R 

•  mass    M 

•  age    t 

•  chemical composition  Xi 



Determining distance 

Standard candle 

Standard ruler 

d =
L
4π f

⎛
⎝⎜

⎞
⎠⎟

1
2

d =
R
θ

R

L

d

θ



Determining distance: Parallax 

tanπ =
R
d
≈ π π

d
R

Define new distance unit: parsec (parallax-second) 

1pc = 1AU
tan ′′1( ) = 206,265AU = 3.26ly d

1pc
⎛
⎝⎜

⎞
⎠⎟
=
1
′′π

R = 1AU = 1.5 ×1013cm

RULER 



Determining distance: Parallax 



Determining distance: Parallax 

Point spread function (PSF) 



Determining distance: Parallax 

Need high angular precision to probe  
far away stars. 

e.g., to get 10% distance errors 

σ d

d
=
σπ

π
= dσπ → d =

σ d

d
⎛
⎝⎜

⎞
⎠⎟
1
σπ

dmax =
0.1
σπ

Mission Dates 
Earth telescope 

Hipparcos 1989-1993 

Gaia 2013-2018 

SIM cancelled 

σπ

~ 20 µas
~ 4 µas

~ 1 mas
~ 0.1 as

5 kpc
25 kpc

100 pc
1 pc
dmax



Determining distance: moving cluster method 

vt

d

Proper motion 

µ =
dθ
dt

=
d
dt

R
d

⎛
⎝⎜

⎞
⎠⎟
=
vt
d

d
1pc

⎛
⎝⎜

⎞
⎠⎟
=

vt 1kms
-1( )

4.74 µ ′′1 yr-1( )

R



Determining distance: moving cluster method 

1.  Measure proper motions of stars in a cluster 
2.  Obtain convergent point 
3.  Measure angle between cluster and convergent point  
4.  Measure radial velocity of cluster 
5.  Compute tangential velocity 
6.  Use proper motion of cluster to get distance 

RULER 

d =
vr tanθ
4.74µ

θ
vrvt

d



Determining distance: secular parallax 

•  Parallax method is limited by 2AU baseline of earth’s orbit 

•  Sun moves ~4AU/yr toward Vega relative to local rotation of  
  Galactic disk 

•  Over a few years, this can build up to a large baseline 

•  Unfortunately, other stars are not at rest, rather have  
  unknown motions 

•  However, if we average over many stars, their mean motion 
  should be zero (relative to local rotation) 

•  Can therefore get the mean distance to a set of stars 



Determining distance: secular parallax 
RULER 



Determining distance: Baade-Wesselink (moving stellar 
atmosphere) 

CANDLE 

For pulsating stars, SN, novae, measure flux and 
effective temperature at two epochs, as well as the 
radial velocity and time between the epochs. R1R2

f1, f2 ,T1,T2 ,vr t( ),Δt

f1
f2
=
L1
L2

=
R1
R2

⎛
⎝⎜

⎞
⎠⎟

2
T1
T2

⎛
⎝⎜

⎞
⎠⎟

4

→
R1
R2

=
f1
f2

⎛
⎝⎜

⎞
⎠⎟

1
2 T2
T1

⎛
⎝⎜

⎞
⎠⎟

2

R2 − R1 = vr × Δt

Solve for R1 and R2.  R and T         L         d 



Determining distance: spectroscopic parallax 

•  Stellar spectra alone can give us the luminosity class + spectral 
  class  position on HR diagram 

•  This gives the absolute magnitude, which gives the distance 
  modulus. 

•  Basically, compare a star’s spectrum to an identical spectrum of  
  another star with known luminosity. 

•  This method sucks in accuracy (+/- 1 magnitude error in  
  absolute magnitude  50% error in distance) 

•  But it can be applied to all stars 

CANDLE 



Determining distance: main sequence fitting 

•  Measure the colors and magnitudes of stars  
  in a cluster (e.g., r and g-r) 

•  Plot the HR diagram:  r  vs.  g-r 

•  Compare the the HR diagram of another  
  cluster of known distance:  Mr  vs.  g-r 

•  Find the vertical offset in HR diagram  
  between the main sequences of the two  
  clusters  distance modulus 

CANDLE 

m − M = 5 logd + 5



Determining distance: main sequence fitting 
CANDLE 



Determining distance: variable stars 

Cepheid variables:  
Pop I giants,   M ~ 5-20 Msun 

Pulsation due to feedback loop: 

An increase in T 
 HeIII  (doubly ionized He) 
 high opacity 
 radiation can’t escape 
 even higher T and P 
 atmosphere expands 
 low T 
 HeII  (singly ionized He) 
 low opacity 
 atmosphere contracts 
 rinse and repeat… 



Determining distance: variable stars 

RR-Lyrae variables:  
Pop II dwarfs,   M ~ 0.5 Msun 



Determining distance: variable stars 
CANDLE 

Variable stars have a tight 
period-luminosity relation 

•  Measure lightcurves: flux(t) 

•  Get period P 

•  From P-L relation, get L 

•  Use L to get distance 

Very powerful method.   
Cepheids can be seen very  
far away.  Used to measure H0 

P-L relation is calibrated on local 
variables with parallax measurements 



Determining distance: dynamical parallax 

For binary star systems on main sequence 

•  Measure: period of orbit P,  angular separation     ,	


     fluxes f1 and f2 

•  Kepler’s 3rd law: 

•  Assume 

•  Use Kepler to get 

•  Use        to get preliminary distance 

•  Use distance and fluxes to get luminosities L1, L2  

•  Use mass-luminosity relation for main sequence to get better masses 

•  Iterate until convergence 

CANDLE 

a
M1 M 2

θ

P2 = 4π 2

G M1 + M 2( ) a
3

 M1 = M 2 = M

a

θ

θ



Determining Luminosity 

1.  Measure flux or magnitude 

       Measure distance 

2.  Measure spectrum 

 line ratios and widths (I.e., compare 
 the star to a star of identical spectrum 
 that has a known L) 

L = 4πd 2 f

M = m − 5 logd − 5

T ,L



Determining Temperature 

1.  Spectral lines  --->  spectral type 

2.  Colors  
 (cheap and accurate) 

3.  Blackbody fitting or Wien’s law:  h     ~ 2.8kT 
 (not good for very hot or cool stars) 

4.  Stellar atmosphere modeling 
 (uncertain) 

5.  Measure angular size and flux 
 (need very high resolution imaging) 

L = 4πR2σT 4 → T =
L

4πR2σ
⎛
⎝⎜

⎞
⎠⎟

1
4
→ T =

4πd 2 f
4π θRd( )2σ

⎛

⎝
⎜

⎞

⎠
⎟

1
4

L = 4πd 2 fR = θRd

T =
f

σθR
2

⎛
⎝⎜

⎞
⎠⎟

1
4

ν



Determining Radius 

•  Very difficult because angular sizes are tiny. 
  The sun at 1pc distance has an angular radius of ~0.5mas 

•  Important because of:  

•  surface gravity 

•  density 

•  Temperature 

•  testing models 

 
g  GM

R2

 
ρ  M

R3

T ~ L R2( )1 4



Determining Radius: Interferometry 

Interferometry yields high resolution images 

1.  Speckle interferometry 

 ~ 0.02 as 

Diffraction limited: 

e.g., for HST (DT=2.4m),         =0.05 as 

θ =
1.22λ
DT

θ



Determining Radius: Interferometry 

2.  Phase interferometry 

 ~ 0.01 as 

Fringes disappear when 

3.  Intensity Interferometry 

 ~ 0.5 mas 

The sun’s radius could be measured out to ~1-10pc 

d ×θ = λ 2



Determining Radius 

•  Luminosity + Temperature    Radius 

•  Baade-Wesselink (moving atmosphere) 

•  Lunar Occultation 
 As a star disappears behind the moon, a Fresnel  diffraction pattern 
 Is created that depends slightly on 

 ~ 2 mas,  only good for stars in ecliptic.   

θR



Determining radius: eclipsing binaries 



Determining radius: eclipsing binaries 



Determining Mass 

Only possible for binaries. 

` 
Kepler’s 3rd law: 

For Sun-Earth system: 

a
M1 M 2

G M1 + M 2( )P2 = 4π 2a3

 

M1 + M 2 ≈ M

P = 1yr
a=1AU

 GM 1yr( )2 = 4π 2 1AU( )3

 

M1 + M 2

M

⎛
⎝⎜

⎞
⎠⎟

P
1yr

⎛
⎝⎜

⎞
⎠⎟

2

=
a

1AU
⎛
⎝⎜

⎞
⎠⎟
3



Determining Mass: visual binaries 

Visual binaries are binaries where the angular separation is 
detectable and the orbit can be traced out. 

•  Find the center of mass of the system  
  (c.o.m. must move with constant velocity) 

a2M1 M 2

M1 + M 2 =
dα( )3
P2

a1

α1 α2

M1a1 = M 2a2 →

α = α1 +α2

a = dα

M1

M 2

=
a2
a1

=
α2

α1

a
v = 2πa / P

•  Measure the period, semi-major angular separation 
  and distance. 

•  Solve for individual masses.  Very sensitive to distance errors:  

•  If distance is not known, radial velocity data is sufficient to get 
  e.g., for a circular orbit:  

 M  d 3



Determining Mass: visual binaries 



Determining Mass: visual binaries 

If the orbit is inclined, then we must know the inclination angle 

M1 + M 2 =
α
cos i

⎛
⎝⎜

⎞
⎠⎟
3 d 3

P2

M1

M 2

=
a2
a1

=
α2 cos i
α1 cos i

=
α2

α1

i

i

Don’t need i 

Need i 

In an inclined orbit, the center of mass does not lie at the ellipse focus. 
Find the projection that fixes this  cos i 



Determining Mass: spectroscopic binaries 

Spectroscopic binaries are unresolved binaries that are only 
detected via doppler shifts in their spectrum. 

•  Single line binaries:  single set of shifting spectral lines 

•  Double line binaries:  two sets of spectral lines (one from each star) 

•  Two sets of lines, but for different spectral types 



Determining mass: spectroscopic binaries 



Determining Mass: spectroscopic binaries 

•  Measure velocities and period 

a2M1 M 2a1
a1 =

v1P
2π

a2 =
v2P
2π

a = a1 + a2 =
P
2π

v1 + v2( )

a1
a2

=
v1
v2

→

•  Can get a lower limit on M1+M2 since sin i <1 

v2

v1

M1

M 2

=
v1
v2

M1 + M 2 =
a3

P2
=
P v1 + v2( )3
2π( )3

vr ,1 + vr ,2 = v1 + v2( )sin i

M1 + M 2 =
P vr ,1 + vr ,2( )3
2π sin i( )3



Determining Mass: spectroscopic binaries 

Need to measure both radial velocities - only possible with double line 
binaries. 

Need to know sin i.  This is possible when: 

•  also an eclipsing binary:  sin i = 1 

•  also a visual binary:  measure orbit 

•  compute M1+M2 for a statistical sample where <sin3i> is known 
  (For an isotropic distribution, <sin3i>=0.42.  However, no Doppler shift will be   
   observed if i=0, so there is a selection effect that favors high inclinations) 



Determining Mass: surface gravity 

•  Pressure broadening of spectral lines  surface gravity  

•  Measure radius R    

•  Sensitive to errors in R 

g = GM
R2

M =
gR2

G



Determining Mass: Gravitational lensing 



Gravitational lensing 



Determining Mass: Gravitational lensing 



Determining Mass: gravitational microlensing 

Case of lensing when multiple images are unresolved and we only detect 
an increase in the flux of one image. 

image 

image 

source 

lens θ

α
b

α =
4GM
c2b M

DL DSL

General Relativity: 

Can compute the amplification 
of light due to multiple images 

A = f M ,DL ,DSL ,θ( )



Determining mass: gravitational microlensing 



Determining mass: gravitational microlensing 



Determining mass: gravitational microlensing 



Determining Chemical Composition 

Observational: number density relative to Hydrogen, normalized to sun. 

e.g., iron abundance 
 
Fe H[ ] ≡ log n(Fe)

n(H)
⎛
⎝⎜

⎞
⎠⎟ ∗

− log n(Fe)
n(H)

⎛
⎝⎜

⎞
⎠⎟

Fe H[ ] = 0 Fe H[ ] = +1

Theoretical: fractional abundances by mass 

X:  Hydrogen    Y:  Helium    Z:  metals  Sun: (0.7, 0.28, 0.02) 

Need high resolution spectra + stellar atmosphere models to get 
abundances via fitting. 

Fe H[ ]
So, for solar abundance:      ,  10 times more iron: 

In our galaxy,          ranges from -4.5 to +1. 



M6 cluster 

Hipparcos stars 

The lack of blue dwarfs tells us 
that the age of M6 is sufficiently 
old that the massive blue stars 
have died. 

Yellow and red stars are still  
present because they live longer  
lives.   

Determining age: Main Sequence turn-off 



•  All stars arrived on the main-
sequence (MS) at about the 
same time. 

•  The massive stars on the top 
left of MS are the first to go. 

•  The cluster is as old as the most 
luminous star that remains on 
the MS. 

•  The position of the hottest, 
brightest star on a cluster’s MS 
is called the main-sequence 
turnoff point. 

Determining age: Main Sequence turn-off 



Which cluster is oldest? 

Determining age: Main Sequence turn-off 



63 million years 16 billion years 

1 billion years 

Metallicity 

Determining age: Isochrone Fitting 



1.4 billion years 2 billion years 2.6 billion years 

Determining age: Isochrone Fitting 

Open clusters 



NGC 188: 7 billion years 

6, 7, 8 billion years 

Determining age: Isochrone Fitting 



47 Tuc: 12 billion years 

Determining age: Isochrone Fitting 



M55: 12.5 billion years 

Determining age: Isochrone Fitting 



M5: 13-14 billion years 

Determining age: Isochrone Fitting 



Measurement Errors 
•  errors in brightness/colors 
•  errors in distance/luminosity 
•  errors in cluster membership 

Theoretical Errors 
•  uncertain chemical abundances 
•  uncertain amount of dust 
•  uncertain stellar physics 

Typical error < 1 billion years  

Determining age: Isochrone Fitting 



Global Energetics 

Total stellar energy  

W = gravitational potential energy Ω
+ kinetic energy due to bulk motions (turbulence, pulsation)
+ internal energy from microscopic processes U



Gravitational Potential Energy 
Gravitational potential energy  

Ω : energy required to assemble the star by collecting material from 
the outside universe. 
= negative of energy required to disperse the star. 

r

dm

dΩ = −
Gmdm

′r 2 d ′r
r

∞

∫

Ω = −
Gm
r
dm

0

M

∫

which depends on the density profile ρ r( )

=  − Gm
r
dm



Gravitational Potential Energy 

e.g., for 
m = ρ0

4
3
πr3

M = ρ0
4
3
πR3

⎫

⎬
⎪⎪

⎭
⎪
⎪

Ω = −
Gm
r
dm

0

M

∫  = − GM
1 3

R
m2 3 dm

0

M

∫  

ρ r( ) = ρ0

In general, Ω = − qGM
2

R
q > 3

5
and               since           with ρ ↓ r

 
ρ  r−1 →  q = 2

3  ρ  r
−2 →  q = 1

→  m
M

=
r
R

⎛
⎝⎜

⎞
⎠⎟

3

→  r = R m
M

⎛
⎝⎜

⎞
⎠⎟

1
3

= − 3
5
GM 2

R



Internal and Kinetic Energy 
Internal energy  

U : Kinetic energy due to motions of particles (thermal, not bulk) 
+ energy in atomic and molecular bonds. 

U = − Edm
M
∫ Where      : local specific internal energy (erg/g) E

K : Total kinetic energy (thermal + bulk) 

Kinetic energy  



The Virial Theorem 

Consider all particles in a star at positions       with momenta 

 
Q = pi ⋅

ri
i
∑

evaluate   

 
ri  

pi

dQ
dt

(energy units:                                 ) 
m ⋅ v ⋅ r
t

= m ⋅ v2

 
ri  

pi

what are the units of           ?   
dQ
dt



The Virial Theorem 

 

dQ
dt

 =  d
dt

m ⋅ ri ⋅
ri

i
∑

 
Q = pi ⋅

ri
i
∑

 
=  d

dt
d
dt

1
2
m ⋅ ri

2⎛
⎝⎜

⎞
⎠⎟i

∑

 
=  1

2
d 2

dt 2 m ⋅ ri
2( )

i
∑

 
m ⋅ ri

2

i
∑
is just the total moment 
of inertia of the system. 

dQ
dt

 =  1
2
d 2I
dt 2



The Virial Theorem 

 

dQ
dt

  =   dpi
dt

⋅ ri    +
i
∑    pi ⋅

dri
dti

∑

 
Q = pi ⋅

ri
i
∑

=  2K

 

               
A

                          
B

  

B: 
 

pi ⋅
dri
dti

∑   =  m ⋅ vi ⋅
i
∑ vi

 
=  2 1

2
m ⋅ vi

2

i
∑ (2 x total kinetic energy) 



The Virial Theorem 

=  Ω

A: 
 

dpi
dt

⋅ ri
i
∑   =  d

dt
m ⋅ ri( ) ⋅ r

i
∑

gravitational 
potential 
energy 

 
=  m ⋅ ri ⋅

ri
i
∑

 
=  


Fi ⋅
ri

i
∑

 

Fi is the sum of all gravitational forces on particle i 

 
=  


Fij

j≠ i
∑

 
ri

 
rj

 
rj −
ri

 


Fij  =  G

mimj

rij
2

rj −
ri( )

rij  
=  −G

mimj

rij
3
ri −
rj( )

 


Fi ⋅
ri

i
∑  = 


Fij ⋅
ri

j≠ i
∑

i
∑  = ⋅ ⋅ ⋅+ 


Fij ⋅
ri +

Fji ⋅
rj + ⋅ ⋅ ⋅

 

Fij = −


Fji( )  

= ⋅ ⋅ ⋅+ 

Fij ⋅
ri −
rj( ) + ⋅ ⋅ ⋅

 
= 


Fij ⋅
ri −
rj( )

j>i
∑

i
∑

 
= −G

mimj

rij
3 ⋅ ri −

rj( )2

j>i
∑

i
∑ = −G

mimj

rijj>i
∑

i
∑



The Virial Theorem 

In a globally static system:  

1
2
d 2I
dt 2  =  2K  +  Ω

d 2I
dt 2

= 0 2K = −Ω

For a collisionless system:  W = K +Ω W =
1
2
Ω = −K

What about a collisional system?  How does the 2K term relate to the 
internal energy of a gas?  

bound!  



The Virial Theorem 
Kinetic theory:  pressure in a gas is caused by the sum of collisions 
                         of particles and momentum transfer 

Particle i colliding with wall in x-direction   

l

Δpi = 2px,i = 2mivx,i
Time between collisions of same particle with wall   

Δt = 2l
vx,i

Force due to particle i   

Fi =
Δpi
Δt

=
mivx,i

2

l
Total force on wall   

F =
mivx,i

2

li
∑ =

1
l

mivx,i
2

i
∑



The Virial Theorem 
Kinetic theory:  pressure in a gas is caused by the sum of collisions 
                         of particles and momentum transfer 

l

Total force on all 6 walls   

F =
2
l

mi vx,i
2 + vy,i

2 + vz,i
2( )

i
∑ =

2
l

mivi
2

i
∑

Total force on 1 wall   

F =
1
3l

mivi
2

i
∑

Pressure   

P =
F
A
=
2K
3V

=
2
3l
K

2K = 3P ⋅V



The Virial Theorem 
In reality, pressure is changing over volume 
(can think of our box as a volume element dV)   

2K = 3 PdV
V
∫

In a star’s spherical shells   

dm = ρdV 2K =
3P
ρ
dm

M
∫ Depends on the equation of state 

For a relation btw P and E of   P = γ −1( )ρE (       -law equation of state) 

2K = 3 γ −1( )Edm
M
∫ = 3 γ −1( ) Edm

M
∫ = 3 γ −1( )U

is only equal to       if                           i.e., for an ideal monoatomic gas K U γ =
5
3

γ



The Virial Theorem 

W = Ω +U

3 γ −1( )U +Ω = 0

Total 
energy 

= Ω−
Ω

3 γ −1( )

= Ω 1− 1
3 γ −1( )

⎛

⎝⎜
⎞

⎠⎟

= Ω
3γ − 4
3 γ −1( )

Virial theorem: 

Total energy must be < 0 for star to  
be stable.  Otherwise, it has enough  
energy to disperse itself. 

→γ >
4
3

•  Ideal gas                  : safely bound 

•  Radiation                  : unstable γ =
4
3

⎛
⎝⎜

⎞
⎠⎟

γ =
5
3

⎛
⎝⎜

⎞
⎠⎟

As radiation pressure becomes more 
important, star becomes less bound.   



The Virial Theorem 

 

W < 0 →  
Ω < 0
U > 0

⎧
⎨
⎩

3 γ −1( )U +Ω = 0

As a star radiates, it loses energy (without other energy sources). 

W = Ω
3γ − 4
3 γ −1( )Virial theorem: 

star contracts and heats up 

γ = 5 3

γ = 4 3

Ω



The Virial Theorem: Applications 

n
µ
NA

:
:
:

⎧
⎨
⎪

⎩⎪

3 γ −1( )U +Ω = 0

•  For an ideal monoatomic gas: γ =
5
3

 →  U = −
Ω
2

Internal temperature 

•  Also, the energy density is: E =
3
2
nkT  →  U =

3
2
nkTV

number density of particles 

mean molecular weight 

Avogadro’s number 

⎫
⎬
⎪

⎭⎪
 n = ρNA

µ

U =
3
2
ρNA

µ
kTV  =  3

2
NA

µ
kMT →  T =

2
3

µ
NAk

U
M

•  Virial theorem: U = −
Ω
2

 =  q
2
GM 2

R



The Virial Theorem: Applications 

•  Internal T >> surface T    strong T gradient 

Internal temperature 

•  Most of the sun is highly ionized 

T =
q
3
µG
NAk

M
R  

T = 5 ×106K q
3 5

⎛
⎝⎜

⎞
⎠⎟

M
M

⎛
⎝⎜

⎞
⎠⎟

R
R

⎛
⎝⎜

⎞
⎠⎟

−1

(actual central temperature of sun is 15 million K) 

•  T is sufficiently high for nuclear fusion (~1 million K) 

•  Fusion happens due to gravitational energy 



Timescales 

•  Virial theorem: 
d 2I
dt 2

≈
GM 2

R

Dynamical timescale 

 
vesc
2 

GM
R

 
tdyn 

R
vesc

•  Escape velocity: 

1
2
d 2I
dt 2

= 2K +Ω

I
tdyn
2 ≈

GM 2

R
→  tdyn ≈

R ⋅ I
GM 2

⎛
⎝⎜

⎞
⎠⎟

1 2

I ≈ MR2

⎫
⎬
⎪

⎭⎪
→  tdyn ≈

R3

GM
⎛
⎝⎜

⎞
⎠⎟

1 2

≈ Gρ( )−1 2

•  Timescale for collapse: 

 


R

GM
R

⎛
⎝⎜

⎞
⎠⎟
1 2  tdyn  Gρ( )−1 2

For sun, tdyn~ 1 hour 



Timescales 

•  Star contracts slowly maintaining hydrostatic equilibrium 

ΔR < 0

Kelvin-Helmholtz timescale 

Ω = −qGM
2

R

•  Virial theorem: 

•  Energy is lost from the system: radiation 

Timescale for star to radiate away its  
thermal/gravitational energy. 

dΩ
dR

= qGM
2

R2

⎫
⎬
⎪

⎭⎪
→  ΔΩ = +qGM

2

R2 ΔR
ΔΩ < 0

γ =
5
3

 →  W =
Ω
2

 →  ΔW < 0

ΔW =
ΔΩ
2

half goes to increasing U and half goes to luminosity 



Timescales 

•  Suppose contraction is solely responsible for maintaining luminosity 

Kelvin-Helmholtz timescale Timescale for star to radiate away its  
thermal/gravitational energy. 

L = −
dW
dt

= −
d
dt

Ω
2

⎛
⎝⎜

⎞
⎠⎟

= −
1
2
dΩ
dR

dR
dt

dR
dt

≈ −
R
tKH

tKH =
q
2
GM 2

LR

 
tKH = 2 ×107yr M

M

⎛
⎝⎜

⎞
⎠⎟

2
L
L

⎛
⎝⎜

⎞
⎠⎟

−1
R
R

⎛
⎝⎜

⎞
⎠⎟

−1

•  Too short a timescale to have happened. 

= −
q
2
GM 2

R2
dR
dt



Timescales 
Nuclear timescale Timescale for star to burn its H fuel and leave the  

Main Sequence. 

tnuc =
total available energy

luminosity
tnuc =

ε fcoreMc
2

L

 
tnuc ≈ 10

10 yr M
M

⎛
⎝⎜

⎞
⎠⎟

−2.5

           efficiency of nuclear burning (41H  4He) ~ 0.007  

            mass fraction of core (star leaves main sequence after core burns) ~ 0.1 

 

L
L

≈
M
M

⎛
⎝⎜

⎞
⎠⎟

3.5
For sun, tnuc~ 10 billion years 

For stars of solar mass or greater: 

ε =

fcore =



Timescales 

 tdyn    tKH    tnuc

tdyn  ~ 1 hour
tKH  ~ 20 million years
tnuc  ~ 10 billion years

It is valid to assume that stars on the main sequence are in  
dynamical and thermal equilibrium. 



Equation of State 

To derive the E.O.S., we need to consider: 

•  Quantum statistics (bosons vs. fermions) 

•  Non-relativistic vs. relativistic particles 

•  Degenerate vs. non-degenerate matter 

P = f ρ,T ,Xi( )



Equation of State 

logρ

logT

4 −

10 −

6 −

8 −

−2 0 2 4 6 8 10

radiation 
pressure 

degenerate 
non-relativistic 
electrons 

degenerate 
relativistic 
electrons 

ideal gas 

Sun 



Equation of State 

Radiation pressure and degenerate relativistic electrons 

This sets limits on  
the masses of stars 

For most normal stars, ideal gas + radiation pressure 
are the important contributions 

P = Pgas + Prad

γ =
4
3

  (star is not bound)

= nkT +
1
3
aT 4

n is the number density of all atoms and free electrons 



Mean Molecular Weight 

To calculate the number density n, we need to know: 
•  constituents of plasma 
•  state of ionization 

Available particles:  ions  +  free electrons 

n = nI + ne = nI ,i + ne,i( )
i
∑

Each species i : 

Ai :  nuclear mass number
Zi :  nuclear charge
Xi :  fraction by mass

e.g.,  A1H
= 1,   A4He

= 4,   A12C
= 12

usually  Zi =
Ai
2

  for metals



Mean Molecular Weight 

1 mole = amount that has as many atoms of substance as  
there are atoms of 12C in 12g of 12C. 

Ai
NA

=
mass of mole

# of atoms per mole

e.g.,  1 mole  of  12C    weighs 
 1 mole  of   1H    weighs 
 1 mole  of   4He  weighs  

12g 
  1g 
  4g 

⎫
⎬
⎪

⎭⎪
≈ Ai

Avogadro's number: NA = 6 ×1023

=  mass per atom



Mean Molecular Weight 
Ions 

nI ,i =
mass unit volume( )  of i

mass of 1 ion( )  of i
=

ρXi

Ai
NA

=
ρNAXi

Ai

nI = nI ,i =  
i
∑ ρNA

Xi

Aii
∑

µI

NA

=
mass of mole for a mixture of ions

# of atoms per mole
=  mean mass per atom

nI =
ρNA

µI

µI
−1 =

Xi

Aii
∑



Mean Molecular Weight 
electrons 

ne,i = nI ,i ⋅Zi ⋅ yi = ρNA
Xi

Ai
Ziyi

ne = ne,i =  
i
∑ ρNA

XiZiyi
Aii

∑

ne =
ρNA

µe

µe
−1 =

XiZiyi
Aii

∑

also need to know ionization fraction yi 

yi =
0 :  completely neutral
1 :  completely ionized

⎧
⎨
⎪

⎩⎪

Mixture of ions + electrons 

n = ρNA

µ
µ−1 = µI

−1 + µe
−1

     is the mean weight of 
     particles in units of 1H 
µ



Mean Molecular Weight 

 
1H    0.71

 
4He   0.27
 
16O   0.01
 
12C    0.004

 
20Ne   0.0006

 
56Fe   0.0015

 
14N    0.001

Composition of Sun 

 
28Si   0.001

 
24Mg   0.0008

 
32S    0.0004

 
1H    0.34

 
4He   0.64

In the core 

1H , 4He,  metals( ) ≡ X,Y ,Z( )

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

These were fused inside stars 



Mean Molecular Weight 

•  Fully ionized gas with zero metals  (Z=0, yi=1) 

µI
−1 =

X
AH

+
Y
AHe

µe
−1 =

XiZiyi
Aii

∑ µ−1 = µI
−1 + µe

−1µI
−1 =

Xi

Aii
∑

=
X
1
+
Y
4

µe
−1 =

X ⋅ZH ⋅ yH
AH

+
Y ⋅ZHe ⋅ yHe

AHe

=
X ⋅1 ⋅1
1

+
Y ⋅2 ⋅1
4

µ−1 =
1+ 3X
4

+
1+ X
2

=
3+ 5X
4

= X +
1− X
4

X = 0.7→ µ = 0.62

=
1+ X
2

=
1+ 3X
4

= X +
1− X
2



Mean Molecular Weight 

•  In the core, all H is converted to He (X=0) 

µe
−1 =

XiZiyi
Aii

∑ µ−1 = µI
−1 + µe

−1µI
−1 =

Xi

Aii
∑

X = 0→ µ = 1.3

•  Adding metals (fully ionized) 

µI
−1 =

X
AH

+
Y
AHe

+
Z
AZ

= X +
Y
4
+
Z
AZ

µe
−1 =

X ⋅ZH ⋅ yH
AH

+
Y ⋅ZHe ⋅ yHe

AHe

+
Z ⋅ AZ

2
⋅ yZ

AZ
= X +

Y
2
+
Z
2

µ−1 = 2X +
3
4
Y +

Z
AZ

+
Z
2

= 2X +
3
4
Y +

1
2
Z

X = 1→ µ = 0.5
Z = 1→ µ = 2

0 



Equation of State 
Equations of state may be derived assuming  
Local Thermodynamic Equilibrium (LTE) 
At any position in the star, thermodynamic equilibrium 
holds locally even though it does not hold globally. 

Particle-particle and photon-particle mean free paths are short 
relative to other length/time scales. 

For example, the pressure scale height (height over which the 
pressure changed by a factor of e) is much longer than the mean 
free path. 

λP = −
d lnP
dr

⎛
⎝⎜

⎞
⎠⎟
−1

= −
1
P
dP
dr

⎛
⎝⎜

⎞
⎠⎟
−1

=
P
gρ   R in most of star 

Compare that to the mean free path  λγ  1cm



Distribution Functions 
Statistical mechanics gives us the phase-space density of a particle species. 

n p( ) = 1
h3

gj
exp ε j + ε p( ) − µ( ) kT⎡⎣ ⎤⎦ ±1j

∑ ΔxΔyΔzΔpxΔpyΔpz = h
3

 p =
p

gj
ε j

ε p( ) ε p( ) = p2c2 + m2c4( )1 2 − mc2

•               : momentum 

•               : degeneracy of state j  (# of states having same energy) 

•               : energy of state j relative to some reference level 

•               : kinetic energy 

= 1+ p2c2

m2c4
⎛
⎝⎜

⎞
⎠⎟

1 2

mc2 − mc2 ≈ 1+ 1
2
p2c2

m2c4
⎛
⎝⎜

⎞
⎠⎟
mc2 − mc2 =

p2

2m

= p2c2 + m2c4( )1 2 − mc2 ≈ pc

 pc mc2

 pc mc2UR: 

NR: 

•                    : chemical potential 

•               : + for fermions (Fermi-Dirac), - for bosons (Bose-Einstein) ±

µ =
∂E
∂N

⎛
⎝⎜

⎞
⎠⎟

µi
i
∑ dNi = 0 e.g.,  H + + e− → H 0 + γ

1µ
H + +1µe−

−1µ
H 0 = 0



Distribution Functions 

•  Space density 
n = n p( )4π p2 dp

0

∞

∫

We can get equation of state quantities from n(p) 
Integrate over all phase space assuming spherical symmetry 

P =
1
3

p ⋅ v( )n p( )4π p2 dp
0

∞

∫

E = ε p( )n p( )4π p2 dp
0

∞

∫
•  Internal energy  
   (per unit volume) 

•  Pressure 

P ⋅V =
1
3

mivi
2

i
∑ → P =

1
3V

pivi
i
∑

Kinetic theory 



Blackbody Radiation 

For photons:  •             (2 polarization states) 

•               (no excited states) 

•                    (fully relativistic) 

•              

•   bosons, so “-” 

g = 2
εγ = 0
ε p( ) = pc

µγ = 0

n p( ) = 1
h3

gj
exp ε j + ε p( ) − µ( ) kT⎡⎣ ⎤⎦ ±1j

∑

n p( ) = 1
h3

2
exp pc kT( ) −1



Blackbody Radiation 

nγ = n p( )4π p2 dp
0

∞

∫

n p( ) = 1
h3

2
exp pc kT( ) −1

=
8π
h3

p2dp
exp pc kT( ) −10

∞

∫

pc
kT

= x

dp = kT
c
dx

p2 = kT
c

⎛
⎝⎜

⎞
⎠⎟
2

x2

=
8π
h3

kT
c

⎛
⎝⎜

⎞
⎠⎟
3 x2dx
ex −10

∞

∫

= 2.4 8π
h3

kT
c

⎛
⎝⎜

⎞
⎠⎟
3

≈ 2.4

= 20.28T 3cm−3

Density 



Blackbody Radiation 

Eγ = pc( )n p( )4π p2 dp
0

∞

∫

n p( ) = 1
h3

2
exp pc kT( ) −1

=
8πc
h3

p3dp
exp pc kT( ) −10

∞

∫

=
8πc
h3

kT
c

⎛
⎝⎜

⎞
⎠⎟
4 x3dx

ex −10

∞

∫

pc
kT

= x

dp = kT
c
dx

p3 = kT
c

⎛
⎝⎜

⎞
⎠⎟
3

x3

=
π 4

15
8πc
h3

kT
c

⎛
⎝⎜

⎞
⎠⎟
4

Energy 

=
π 4

15

=
8π 5k 4

15h3c3
⎛
⎝⎜

⎞
⎠⎟
T 4 = aT 4

a = 7.5 ×10−15 erg cm−3K−4



Blackbody Radiation 

Pγ =
1
3

pc( )n p( )4π p2 dp
0

∞

∫

n p( ) = 1
h3

2
exp pc kT( ) −1Pressure 

=
1
3
aT 4=

1
3
Eγ

P = γ −1( )E =
1
3
E →γ =

4
3



Blackbody Radiation 
n p( ) = 1

h3
2

exp pc kT( ) −1Spectrum 

ε p( )n p( )4π p2dp
The energy density of photons with momentum between p and p+dp is 

=
8π
h3

pc( ) p2dp
exp pc kT( ) −1

The energy density of photons with frequency between v and v+dv is 

8π
h3

hν hν c( )2 h c( )dν
exp hν kT( ) −1

pc = hν
dp = h c( )dν

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Bνdν =
8πhν 3

c3
1

exp hν kT( ) −1dν Planck function 

Bν : erg cm−3  Hz−1( )



Ideal Monoatomic Gas 

For atoms:  •               (single energy state) 

•                      (non-relativistic) 

•                      (+/-1 term can be neglected) 

ε j = ε0

ε p( ) = p2

2m
 µ kT  −1

n p( ) = 1
h3

gj
exp ε j + ε p( ) − µ( ) kT⎡⎣ ⎤⎦ ±1j

∑

n p( ) = 1
h3

g
exp ε0 + p

2 2m − µ( ) kT⎡⎣ ⎤⎦

n p( ) = g
h3
eµ kT e−ε0 kT e− p

2 2mkT



Ideal Monoatomic Gas 

n = n p( )4π p2 dp
0

∞

∫ =
4πg
h3

eµ kT e−ε0 kT e− p
2 2mkT p2 dp

0

∞

∫
p2 2mkT = x

dp = mkT
p

dx

p = 2mkT( )1 2 x1 2

Density n p( ) = g
h3
eµ kT e−ε0 kT e− p

2 2mkT

 A
  

= A e− x 2mkTx( ) mkT
2mkTx( )1 2

dx
0

∞

∫

=
A
2
2mkT( )3 2 x1 2e− x dx

0

∞

∫ =
π
2

= Aπ
1 2

4
2mkT( )3 2 =

g
h3

2πmkT( )3 2 eµ kT e−ε0 kT



Ideal Monoatomic Gas 

P =
1
3

pv( )n p( )4π p2 dp
0

∞

∫ =
1
3
4πg
h3

eµ kT e−ε0 kT p2

m
e− p

2 2mkT p2 dp
0

∞

∫
p2 2mkT = x

dp = mkT
p

dx

p = 2mkT( )1 2 x1 2

Pressure n p( ) = g
h3
eµ kT e−ε0 kT e− p

2 2mkT

 A
  

= A 1
3m

e− x 2mkTx( )2 mkT
2mkTx( )1 2

dx
0

∞

∫

=
1
3m

A
2
2mkT( )5 2 x3 2e− x dx

0

∞

∫

=
1
3m

A
2
2mkT( )5 2 −x3 2e− x

0

∞
+
3
2

x1 2e− x dx
0

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥

= nkT

u = x3 2 du = 3 2( )x1 2dx
v = −e− x dv = e− x

0 

= kT A
2
2mkT( )3 2 x1 2e− x dx

0

∞

∫



Ideal Monoatomic Gas 

E = p2 2m( )n p( )4π p2 dp
0

∞

∫

Energy n p( ) = g
h3
eµ kT e−ε0 kT e− p

2 2mkT

=
3
2
P =

3
2
nkT

P = γ −1( )E =
2
3
E →γ =

5
3



Degenerate Fermions 

•             (2 spin states) 

•                  (no excited states) 

•   

•   fermions, so “+” 

g = 2

ε0 = mc
2

ε p( ) = p2c2 + m2c4( )1 2 − mc2

n p( ) = 1
h3

gj
exp ε j + ε p( ) − µ( ) kT⎡⎣ ⎤⎦ ±1j

∑

n p( ) = 2
h3

1
exp ε p( ) − µ − mc2( )( ) kT⎡

⎣
⎤
⎦ +1

= mc2 1+ p mc( )2 −1( )

For fermions:  



Degenerate Fermions 
n p( ) = 2

h3
1

exp ε p( ) − µ − mc2( )( ) kT⎡
⎣

⎤
⎦ +1

A completely degenerate gas behaves as if T → 0

The probability that an energy state is occupied is 

f ε( ) = 1
exp ε p( ) − µ − mc2( )( ) kT⎡

⎣
⎤
⎦ +1

=
1   if   ε < µ − mc2( )
0   if   ε > µ − mc2( )

⎧
⎨
⎪

⎩⎪

Critical energy:  Fermi energy εF = µ − mc2

Particles cannot have greater energy than this.  



Degenerate Fermions 

f ε( )

Fermi momentum pF

ε εF

1

0
10

Raising T slightly 

x = p
mc

→ xF =
pF
mc

εF = mc2 1+ xF
22 −1( )

Chemical potential is thus µF = mc2 + εF
This is the maximum total energy of particles 



Degenerate Fermions 

n = n p( )4π p2 dp
0

∞

∫

Density 

=
8π
3

mc
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3

=
8π
h3

p2 dp
0

pF

∫ =
8π
h3

pF
3

3

n p( ) = 2
h3

1
exp ε p( ) − µ − mc2( )( ) kT⎡

⎣
⎤
⎦ +1

For electrons: ne =
8π
3

mec
h

⎛
⎝⎜

⎞
⎠⎟

3

xF
3 = 5.9 ×1029 xF

3  cm−3



Degenerate Fermions 

Pressure 

=
8π
3h3

v ⋅ p3 dp
0

pF

∫

n p( ) = 2
h3

1
exp ε p( ) − µ − mc2( )( ) kT⎡

⎣
⎤
⎦ +1

P =
1
3

pv( )n p( )4π p2 dp
0

∞

∫
v = dε

dp

ε p( ) = mc2 1+ p mc( )2 −1( )

= mc2 1
2
1+ p

mc
⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

−1 2

⋅2 p
mc

⋅
1
mc

=
p
m
1+ p

mc
⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1 2=
8π
3mh3

p4dp

1+ p mc( )20

pF

∫



Degenerate Fermions 

Pressure 

P =
8π
3mh3

p4dp

1+ p mc( )20

pF

∫
p
mc

= x

dp = mcdx

p4 = mc( )4 x4

=
8π
3mh3

mc( )5 x4dx
1+ x20

xF

∫ =
8πm4c5

3h3
x4dx
1+ x20

xF

∫

=
π
3

mc
h

⎛
⎝⎜

⎞
⎠⎟
3

mc2 xF 2xF
2 − 3( ) 1+ xF2( )1 2 + 3sinh−1 xF⎡

⎣
⎤
⎦



Degenerate Fermions 

Energy 

=
8π
h3

mc2 1+ p mc( )2 −1( ) p2 dp
0

pF

∫

n p( ) = 2
h3

1
exp ε p( ) − µ − mc2( )( ) kT⎡

⎣
⎤
⎦ +1

E = ε p( )n p( )4π p2 dp
0

∞

∫

=
8π
h3

mc2 1+ x2 −1( ) mc( )3 x2 dx
0

xF

∫

= 8π mc
h

⎛
⎝⎜

⎞
⎠⎟
3

mc2 1+ x2 −1( )x2 dx
0

xF

∫

=
π
3

mc
h

⎛
⎝⎜

⎞
⎠⎟
3

mc2 8xF
3 1+ xF

2 −1( ) − xF 2xF2 − 3( ) 1+ xF2( )1 2 − 3sinh−1 xF⎡
⎣⎢

⎤
⎦⎥

p
mc

= x

dp = mcdx

p2 = mc( )2 x2



Degenerate Fermions 

P =
8π
3

mc
h

⎛
⎝⎜

⎞
⎠⎟
3

mc2 x4dx
1+ x20

xF

∫

E = 8π mc
h

⎛
⎝⎜

⎞
⎠⎟
3

mc2 1+ x2 −1( )x2 dx
0

xF

∫

n = 8π
3

mc
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3 = AxF

3

= Amc2 x4dx
1+ x20

xF

∫

= 3Amc2 1+ x2 −1( )x2 dx
0

xF

∫

 A
  



Degenerate Fermions 

Look at limiting  
cases: NR, UR 

NR:  xF 1 P ≈ Amc2 x4 dx
0

xF

∫ = Amc2 xF
5

5
= Amc2 1

5
n
A

⎛
⎝⎜

⎞
⎠⎟
5 3

n = AxF
3

P = Amc2 x4dx
1+ x20

xF

∫ E = 3Amc2 1+ x2 −1( )x2 dx
0

xF

∫

=
mc2

5
A−2 3n5 3

E ≈ 3Amc2 1+ 1
2
x2 −1⎛

⎝⎜
⎞
⎠⎟
x2 dx

0

xF

∫ =
3
2
Amc2 x4 dx

0

xF

∫ =
3
2
P

P = γ −1( )E =
2
3
E →γ =

5
3



Degenerate Fermions 

Look at limiting  
cases: NR, UR 

UR:  xF  1 P ≈ Amc2 x3 dx
0

xF

∫ = Amc2 xF
4

4
= Amc2 1

4
n
A

⎛
⎝⎜

⎞
⎠⎟
4 3

n = AxF
3

P = Amc2 x4dx
1+ x20

xF

∫ E = 3Amc2 1+ x2 −1( )x2 dx
0

xF

∫

=
mc2

4
A−1 3n4 3

E ≈ 3Amc2 x −1( )x2 dx
0

xF

∫ = 3Amc2 x3 dx
0

xF

∫ = 3P

P = γ −1( )E =
1
3
E →γ =

4
3



Degenerate Fermions 

γ

xF
0.01 0.1 1 10 100

1.0 −
1.2 −
1.4 −
1.6 −
1.8 −
2.0 −

•  Completely degenerate  
   gas has same gamma  
   as ideal gas. 

•  In the relativistic limit, it  
   behaves like radiation. 



Degenerate Fermions 
Convert to mass density: n = 8π

3
mc
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3 n = NAρ

µ

e.g., electrons: ne =
NAρ
µe

=
8π
3

mec
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3

ρ
µe

=
8π
3NA

mec
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3 = 9.7 ×105 xF

3  g cm−3

e.g., neutrons: nn =
NAρ
µn

=
8π
3

mnc
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3

ρ
µn

=
8π
3NA

mnc
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3 = 6.1×1015 xF

3  g cm−3



Degenerate Fermions 

•  Partly degenerate gas 

Pe ≈ Pe,nd
2 + Pe,d

2( )1 2

•  Partly relativistic gas 

Pe,d ≈ Pe,d ,NR
−2 + Pe,d ,UR

−2( )−1 2

Useful approximations 

These interpolation formulae are good to ~2%  

This formula picks out  
the smallest pressure 



Equation of State Summary 
•  Start with                   at some point in star ρ,   T ,   Xi

•  Assume Local Thermodynamic Equilibrium 

•  Total gas pressure is the sum of components 

P = Prad + Pion + Pe
•  The radiation pressure is 

Prad =
1
3
aT 4 a = 7.5 ×10−15 erg cm−3K−4( )

•  The ion ideal gas pressure is 

Pion =
NAk
µI

ρT NA = 6.022 ×10
23mole−1( )



Equation of State Summary 
•  The electron pressure can be a mixture of 
   non-degenerate and degenerate pressure 

•  Where the electron non-degenerate pressure is 

•  And the electron degenerate pressure can be  
  non-relativistic or relativistic  

Pe,nd =
NAk
µe

ρT

Pe ≈ Pe,nd
2 + Pe,d

2( )1 2

Pe,d ≈ Pe,d ,NR
−2 + Pe,d ,UR

−2( )−1 2



Equation of State Summary 
•  Where the non-relativistic, degenerate pressure is 

•  And the ultra-relativistic, degenerate pressure is 

•  Compute the mean molecular weights from Xi 

Pe,d ,NR =
3
8π

⎛
⎝⎜

⎞
⎠⎟
2 3 h2

5me

NA

µe

⎛
⎝⎜

⎞
⎠⎟

5 3

ρ5 3

µI
−1 =

Xi

Aii
∑

Pe,d ,UR =
3
8π

⎛
⎝⎜

⎞
⎠⎟
1 3 hc
4

NA

µe

⎛
⎝⎜

⎞
⎠⎟

4 3

ρ4 3

µe
−1 =

XiZiyi
Aii

∑

•  Get the ionization fractions from the Saha equation. 



The Boltzmann Equation 

n = g
h3

2πmkT( )3 2 eµ kT e−ε0 kTIdeal gas : 

Consider two species of particles: atoms in different energy  
levels that can be excited or de-excited via photons. 

H1 + γ → H2 1µH1
+ 0 = 1µH2

n1
n2

=
g1 h

3( ) 2πmkT( )3 2 eµ1 kT e−ε1 kT

g2 h3( ) 2πmkT( )3 2 eµ2 kT e−ε2 kT
=
g1e

−ε1 kT

g2e
−ε2 kT

n1
n2

=
g1
g2
e− ε1 −ε2( ) kT

e.g.,  



The Boltzmann Equation 

Total number of atoms: 

ntot
ni

=
n1
ni

+
n2
ni

+ ⋅ ⋅ ⋅

ni
ntot

=
gi
G
e−εi kT

ntot = ni
i
∑

=
g1
gi
e−ε1 kT eεi kT + g2

gi
e−ε2 kT eεi kT + ⋅ ⋅ ⋅

=
1
gi
eεi kT g1e

−ε1 kT + g2e
−ε2 kT + ⋅ ⋅ ⋅( ) =

1
gie

−εi kT
gje

−ε j kT

j
∑

G = gje
−ε j kT

j
∑Partition function: 

Like an effective statistical weight for all states 



The Saha Equation 
Consider an atomic gas that is partly ionized 

ε0 = 0

ε+ = χ

H + + e− ↔ H 0 + γ 1µ+ +1µ− = 1µ0e.g.,  

•  charged ions in ground state 

•  free electrons 

•  neutral ions in ground state 

n+ =
g+

h3
2πmpkT( )3 2 eµ+ kT e−χ kT

n− =
g−

h3
2πmekT( )3 2 eµ− kT

n0 = g0

h3
2πmpkT( )3 2 eµ0 kT

n+n−

n0
=
g+g−

g0
2πmekT( )3 2

h3
e−χ kTCombine to eliminate 

chemical potentials 



The Saha Equation 
This is only for atoms in the ground state. 

n0 = ni
0

i
∑

n+n−

n0
=
g+g−

g0
2πmekT( )3 2

h3
e−χ kT

In general, we have neutral and ionized atoms in multiple states 
Use Boltzmann to generalize to all states of a given atom 

n0
0 n1

0 n2
0 n0

+ n1
+ n2

+

n+ = ni
+

i
∑



The Saha Equation 
n+n−

n0
=
g+g−

g0
2πmekT( )3 2

h3
e−χ kT Boltzmann: 

ni
ntot

=
gi
G
e−εi kT

n0
+n−

n0
0

n0
0

n0
=
g0
0

G0

n0
+

n+ =
g0
+

G+

n0
+n−

n0
0 =

n+ g0
+

G+ n
−

n0 g0
0

G0

=
n+n−

n0
G0

G+

g0
+

g0
0

LHS: RHS: 

=
g0
+g−

g0
0

2πmekT( )3 2
h3

e−χ kT

n+ne
n0

=
2G+

G0

2πmekT
h2

⎛
⎝⎜

⎞
⎠⎟
3 2

e−χ kTg− = 2
n− = ne

Saha! 

Can generalize 
to: n j+1ne

n j

g0
+g−

g0
0



The Saha Equation 

y = n+

nI

n+ne
n0

=
2G+

G0

2πmekT
h2

⎛
⎝⎜

⎞
⎠⎟
3 2

e−χ kT

G0 ≈ 2

Example: pure H 

G+ = 1

ne = n
+

nI = n
+ + n0

n+ = ynI

ne = ynI

n0 = 1− y( )nI
⎫
⎬
⎪

⎭⎪

n+ne
n0

=
ynI ⋅ ynI
1− y( )nI

=
y2

1− y
nI

y2

1− y
=
1
nI

2πmekT
h2

⎛
⎝⎜

⎞
⎠⎟
3 2

e−χ kT nI = NAρ

y2

1− y
=

4 ×10−9 g cm−3

ρ
T 3 2e−1.578×105 T 50% ionized at T=104K 

for low densities 



The Saha Equation 
Example: Balmer line strength 
Strength of Balmer lines depend on  
fraction of H gas that is in the n=2 
excited state. 

n2
0

nI

n0

nI
= 1− y

n = 1

n = 2
n = 3

n = ∞

0

10.2eV

13.6eV

We want  

n2
0

n0
=
g2
0

G0 e
−ε2 kTBoltzmann gives us 

n2
0

nI
=
n2
0

n0
n0

nI
⎫
⎬
⎪

⎭⎪

n2
0

nI
= 1− y( ) g2

0

G0 e
−ε2 kT

g2
0 = 8
G0 = gie

−εi kT

i
∑ ≈ 2

ε2 = 10.2 eV



The Saha Equation 
y2

1− y
=
1
n
2πmekT
h2

⎛
⎝⎜

⎞
⎠⎟
3 2

e−χ kTn2
0

n0
= 1− y( ) g2

0

G0 e
−ε2 kT

T
5k 10k 15k 20k

 

n0

n
 0.6

Saha 1− y Boltzmann  e−1 T

T
5k 10k 15k 20k

n2
0

nI

 

n2
0

n0
 2 ×10−5



The Saha Equation 
A different way to write the Saha equation 

n+ne
n0

=
2G+

G0

2πmekT
h2

⎛
⎝⎜

⎞
⎠⎟
3 2

e−χ kT

log n+ne
n0

⎛
⎝⎜

⎞
⎠⎟
= log 2G+

G0

⎛
⎝⎜

⎞
⎠⎟
+
3
2
log 2πmekT

h2
⎛
⎝⎜

⎞
⎠⎟
+ log e−χ kT( )

log n+

n0
⎛
⎝⎜

⎞
⎠⎟
+ logne = log

2G+

G0

⎛
⎝⎜

⎞
⎠⎟
+
3
2
log 2πmek

h2
⎛
⎝⎜

⎞
⎠⎟
+
3
2
logT − ln10 χ

kT

Pe = nekT → logne = logPe − log k − logT

log n+

n0
⎛
⎝⎜

⎞
⎠⎟
= log 2G+

G0

⎛
⎝⎜

⎞
⎠⎟
+
5
2
logT − logPe −

5040χ
T

− 0.48



The Saha Equation 

For density n and separation a :   n = 4
3
πa3⎛

⎝⎜
⎞
⎠⎟
−1

The Saha equation works best at moderate densities 

•  At very low densities (e.g., corona), we must worry about  
  whether LTE applies. 

•  At very high densities, atoms are not isolated. 
Isolated atom Neighboring atoms 

Overlap of potentials of neighboring atoms lowers the effective ionization 
energy, which leads to greater ionization than Saha predicts. 

set a = radius of first Bohr orbit of H = 0.5 ×10−8 cm  → ρ  3 g cm−3

Above this density, even the ground state is affected and all H is ionized. 



The Saha Equation 

ΓC =
Z 2e2 a
kT

•  For ions of charge Z, the ratio of electrostatic energy to 
  thermal energy is a measure of whether Coulomb effects 
  affect the ideal-ness of an ideal gas.  

Important in very low mass stars 

ΓC = 1→ ρ = 85 g cm−3 T
106K

⎛
⎝⎜

⎞
⎠⎟

3



Equation of State 

logT

logρ
−2 −

4 −

0 −

2 −

3 4 5 6 7

•  ideal gas vs. radiation 

−4 −

−6 −

−8 −

pressure ionized 

For pure H 

•  degenerate vs. not 

•  neutral vs. ionized 

•  pressure ionized 

•  Coulomb effects 

•  crystalline structure 

ρ = 1.5 ×10−23T 3

ρ = 6 ×10−9T 3 2

ρ = 8 ×10−9T 3 2e−1.58×10
5 T

ρ ≈ 1

ρ = 8.5 ×10−17T 3

ρ = 4.2 ×10−10T 3



Adiabatic Exponents 
Q :  heat erg g−1( )

dQ = dE + PdVρ = dE + Pd 1
ρ

⎛
⎝⎜

⎞
⎠⎟

= dE −
P
ρ2
dρ

First law of thermodynamics 

Γ1 =
∂ lnP
∂ lnρ

⎛
⎝⎜

⎞
⎠⎟ ad

= −
∂ lnP
∂ lnVρ

⎛

⎝
⎜

⎞

⎠
⎟
ad

Γ2

Γ2 −1
=

∂ lnP
∂ lnT

⎛
⎝⎜

⎞
⎠⎟ ad

=
1
∇ad

Vρ :  specific volume cm3g−1( ) = 1
ρ

E :  specific internal energy erg g−1( )

Γ3 −1 =
∂ lnT
∂ lnρ

⎛
⎝⎜

⎞
⎠⎟ ad

= −
∂ lnT
∂ lnVρ

⎛

⎝
⎜

⎞

⎠
⎟
ad

∇ad =
∂ lnT
∂ lnρ

⎛
⎝⎜

⎞
⎠⎟ ad

∂ lnρ
∂ lnP

⎛
⎝⎜

⎞
⎠⎟ ad

=
Γ3 −1
Γ1

=
Γ2 −1
Γ2



Adiabatic Exponents 

Ideal Gas: Γ1 = Γ2 = Γ3 =
5
3

Radiation: Γ1 = Γ2 = Γ3 =
4
3

Γ3  is equivalent to the γ  in 
the γ -law equation of state
P = γ −1( )ρE

For mixtures of gas and radiation, as well as for cases where  
chemical reaction happen, the adiabatic exponents can differ  
from each other. 

•        describes how pressure responds to compression 
         (relevant for dynamical processes like pulsations)  

•        describes how temperature responds to changes in pressure 
         (relevant for determining whether convection takes place) 

•        describes how temperature responds to compression 

Γ2

Γ3

Γ1



Adiabatic Exponents:  Ideal gas + Radiation 

P = Pgas + Prad =
NAk
µ

ρT +
1
3
aT 4

E = Egas + Erad =
3
2
NAk
µ

T + a T
4

ρ

=
NAk
µ

T
Vρ

+
1
3
aT 4

=
3
2
NAk
µ

T + aT 4Vρ

Pressure 

Specific Internal Energy 



Adiabatic Exponents:  Ideal gas + Radiation 

dQ =
∂E
∂T

⎛
⎝⎜

⎞
⎠⎟Vρ

dT +
∂E
∂Vρ

⎛

⎝
⎜

⎞

⎠
⎟
T

dVρ + PdVρ = 0

=
3NAk
2µ

+ 4aT 3Vρ
⎛
⎝⎜

⎞
⎠⎟
dT + aT 4( )dVρ +

NAk
µ

T
Vρ

+
1
3
aT 4

⎛

⎝
⎜

⎞

⎠
⎟ dVρ = 0

P =
NAk
µ

T
Vρ

+
1
3
aT 4 E =

3
2
NAk
µ

T + aT 4Vρ

=
3NAk
2µ

+ 4aT 3Vρ
⎛
⎝⎜

⎞
⎠⎟
dT +

NAk
µ

T
Vρ

+
4
3
aT 4

⎛

⎝
⎜

⎞

⎠
⎟ dVρ = 0

=
3NAk
2µ

T
Vρ

+ 4aT 4
⎛

⎝
⎜

⎞

⎠
⎟
Vρ

T
dT +

NAk
µ

T
Vρ

+
4
3
aT 4

⎛

⎝
⎜

⎞

⎠
⎟ dVρ = 0

=
3
2
Pgas +12Prad

⎛
⎝⎜

⎞
⎠⎟
dT
T

+ Pgas + 4Prad( ) dVρ

Vρ

= 0

Adiabatic change 
dQ = 0



Adiabatic Exponents:  Ideal gas + Radiation 

dP =
∂P
∂T

⎛
⎝⎜

⎞
⎠⎟Vρ

dT +
∂P
∂Vρ

⎛

⎝
⎜

⎞

⎠
⎟
T

dVρ =
NAk
µ

1
Vρ

+
4
3
aT 3

⎛

⎝
⎜

⎞

⎠
⎟ dT + −

NAk
µ

T
Vρ
2

⎛

⎝
⎜

⎞

⎠
⎟ dVρ

P =
NAk
µ

T
Vρ

+
1
3
aT 4 E =

3
2
NAk
µ

T + aT 4Vρ

=
NAk
µ

T
Vρ

+
4
3
aT 4

⎛

⎝
⎜

⎞

⎠
⎟
1
T
dT + −

NAk
µ

T
Vρ

⎛

⎝
⎜

⎞

⎠
⎟
1
Vρ

dVρ

= Pgas + 4Prad( ) dTT − Pgas
dVρ

Vρ

= dP =
∂P
∂T

⎛
⎝⎜

⎞
⎠⎟ ad

dT =
P
T

∂ lnP
∂ lnT

⎛
⎝⎜

⎞
⎠⎟ ad

dT

→ Pgas + 4Prad( ) dTT − Pgas
dVρ

Vρ

−
Γ2

Γ2 −1
Pgas + Prad( ) dTT = 0

Γ2

Γ2 −1

= Pgas + 4Prad −
Γ2

Γ2 −1
Pgas + Prad( )⎛

⎝⎜
⎞
⎠⎟
dT
T

− Pgas
dVρ

Vρ

= 0

Equation 
of state 



Adiabatic Exponents:  Ideal gas + Radiation 

Pgas + 4Prad −
Γ2

Γ2 −1
Pgas + Prad( )⎛

⎝⎜
⎞
⎠⎟
dT
T

− Pgas
dVρ

Vρ

= 0

3
2
Pgas +12Prad

⎛
⎝⎜

⎞
⎠⎟
dT
T

+ Pgas + 4Prad( ) dVρ

Vρ

= 01st Law of 
Thermodynamics 

Equation 
of State 

Ax + By = 0
Cx + Dy = 0

⎫
⎬
⎪

⎭⎪
→

A
C

=
B
D

Pgas + 4Prad −
Γ2

Γ2 −1
Pgas + Prad( )

3
2
Pgas +12Prad

= −
Pgas

Pgas + 4Prad

Pgas = βP

Prad = 1− β( )P
βP + 4 1− β( )P − Γ2

Γ2 −1
P

3
2
βP +12 1− β( )P

= −
βP

βP + 4 1− β( )P



Adiabatic Exponents:  Ideal gas + Radiation 
β + 4 1− β( ) − Γ2

Γ2 −1
3
2
β +12 1− β( )

= −
β

β + 4 1− β( ) →
4 − 3β − Γ2

Γ2 −1

12 − 21
2
β

= −
β

4 − 3β

→ 4 − 3β −
Γ2

Γ2 −1
⎛
⎝⎜

⎞
⎠⎟
4 − 3β( ) = −β( ) 12 − 21

2
β⎛

⎝⎜
⎞
⎠⎟

→ 16 −12β −12β + 9β 2 −
Γ2

Γ2 −1
4 − 3β( ) = −12β +

21
2
β 2

→
Γ2

Γ2 −1
4 − 3β( ) = 16 −12β −

3
2
β 2 →

Γ2 −1
Γ2

=
4 − 3β

16 −12β − 3
2
β 2

→
1
Γ2

= 1− 4 − 3β

16 −12β − 3
2
β 2

=
16 −12β − 3

2
β 2 − 4 + 3β

16 −12β − 3
2
β 2

=
12 − 9β − 3

2
β 2

16 −12β − 3
2
β 2



Adiabatic Exponents:  Ideal gas + Radiation 

1
Γ2

=
12 − 9β − 3

2
β 2

16 −12β − 3
2
β 2

→ Γ2 =
16 −12β − 3

2
β 2

12 − 9β − 3
2
β 2

→ Γ2 =
32 − 24β − 3β 2

24 −18β − 3β 2

Similarly, we get: 

Γ1 =
32 − 24β − 3β 2

24 − 21β

Γ2 =
32 − 24β − 3β 2

24 −18β − 3β 2

Γ3 =
32 − 27β
24 − 21β



Adiabatic Exponents:  Ionization Zones 
Thermodynamics of partially ionized gas is different because 
•  The number of free particles is not constant 
•  Ionization energy is required to increase n  

n+ = ynI

ne = ynI

n0 = 1− y( )nI
⎫
⎬
⎪

⎭⎪

y2

1− y
=
1
nI

2πmekT
h2

⎛
⎝⎜

⎞
⎠⎟
3 2

e−χ kT

nI = NAρ

Assuming a pure H ideal gas 

=
A
NAρ

T 3 2e−χ kT

y2

1− y
=
A
NA

VρT
3 2e−χ kT



Adiabatic Exponents:  Ionization Zones 

P = n0 + n+ + ne( )kT

E =
3
2
n0 + n+ + ne( ) kT

ρ
+
n+χ
ρ

= 1+ y( )NAρkT →

E = 1+ y( ) 3
2
NAkT + yNAχ

Pressure 

Specific Internal Energy 

= 1− y( )nI + ynI + ynI⎡⎣ ⎤⎦ kT

= 1+ y( )nIkT

= 1+ y( )nI
3
2
kT
ρ

+
ynI
ρ

χ

P = 1+ y( )NAk
T
Vρ



Adiabatic Exponents:  Ionization Zones 

dQ =
∂E
∂T

⎛
⎝⎜

⎞
⎠⎟Vρ ,y

dT +
∂E
∂Vρ

⎛

⎝
⎜

⎞

⎠
⎟
T ,y

dVρ +
∂E
∂y

⎛
⎝⎜

⎞
⎠⎟ T ,Vρ

dy + PdVρ = 0

= 1+ y( ) 3
2
NAk

⎡
⎣⎢

⎤
⎦⎥
dT +

3
2
NAkT + NAχ

⎡
⎣⎢

⎤
⎦⎥
dy + 1+ y( )NAk

T
Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dVρ = 0

= 1+ y( ) 3
2
NAkT

⎡
⎣⎢

⎤
⎦⎥
dT
T

+ 1+ y( ) 3
2
NAkT + 1+ y( )NAχ

⎡
⎣⎢

⎤
⎦⎥
dy

1+ y

                                   + 1+ y( )NAkT⎡⎣ ⎤⎦
dVρ

Vρ

= 0

Adiabatic change 
dQ = 0P = 1+ y( )NAk

T
Vρ

E = 1+ y( ) 3
2
NAkT + yNAχ

= Eideal
dT
T

+
2
3
dVρ

Vρ

+ 1+ 2
3

χ
kT

⎛
⎝⎜

⎞
⎠⎟
dy
1+ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0



Adiabatic Exponents:  Ionization Zones 

dP =
∂P
∂T

⎛
⎝⎜

⎞
⎠⎟Vρ ,y

dT +
∂P
∂Vρ

⎛

⎝
⎜

⎞

⎠
⎟
T ,y

dVρ +
∂P
∂y

⎛
⎝⎜

⎞
⎠⎟ T ,Vρ

dy

= 1+ y( )NAk
1
Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dT − 1+ y( )NAk

T
Vρ
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dVρ + NAk

T
Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dy

Equation 
of State P = 1+ y( )NAk

T
Vρ

E = 1+ y( ) 3
2
NAkT + yNAχ

dP = 1+ y( )NAk
T
Vρ

dT
T

−
dVρ

Vρ

+
dy
1+ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
→

= 1+ y( )NAk
T
Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dT
T

− 1+ y( )NAk
T
Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dVρ

Vρ

+ 1+ y( )NAk
T
Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dy
1+ y

dP = P dT
T

−
dVρ

Vρ

+
dy
1+ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



Adiabatic Exponents:  Ionization Zones 

dy = dy
df
df = dy

df
∂f
∂T

⎛
⎝⎜

⎞
⎠⎟Vρ

dT +
∂f
∂Vρ

⎛

⎝
⎜

⎞

⎠
⎟
T

dVρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
1− y( )2

2y 1− y( ) + y2
A
NA

Vρ
3
2
T 1 2e−χ kT + T 3 2e−χ kT χ

kT 2
⎛
⎝⎜

⎞
⎠⎟
dT +

A
NA

T 3 2e−χ kT dVρ
⎡

⎣
⎢

⎤

⎦
⎥

Saha Equation 
f y( ) = y2

1− y
=
A
NA

VρT
3 2e−χ kT

=
1− y( )2

2y 1− y( ) + y2
A
NA

VρT
3 2e−χ kT 3

2
1
T
+

χ
kT 2

⎛
⎝⎜

⎞
⎠⎟
dT +

dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
1− y( )2

2y 1− y( ) + y2
y2

1− y
3
2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
dT
T

+
dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



Adiabatic Exponents:  Ionization Zones 

dy =
1− y( )2

2y 1− y( ) + y2
y2

1− y
3
2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
dT
T

+
dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dy =
1− y( )y

2 1− y( ) + y
3
2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
dT
T

+
dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dy =
1− y( )y
2 − y

3
2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
dT
T

+
dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dy
1+ y

=
1− y( )y

1+ y( ) 2 − y( )
3
2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
dT
T

+
dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 D y( )
  



Adiabatic Exponents:  Ionization Zones 

dy
1+ y

= D y( ) 3
2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
dT
T

+
dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Eideal
dT
T

+
2
3
dVρ

Vρ

+ 1+ 2
3

χ
kT

⎛
⎝⎜

⎞
⎠⎟
dy
1+ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

dP = P dT
T

−
dVρ

Vρ

+
dy
1+ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1st Law of 
Thermodynamics 

Equation 
of State 

Saha 



Adiabatic Exponents:  Ionization Zones 

Eideal
dT
T

+
2
3
dVρ

Vρ

+ 1+ 2
3

χ
kT

⎛
⎝⎜

⎞
⎠⎟
D y( ) 3

2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
dT
T

+
dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

1st Law of 
Thermodynamics Eideal

dT
T

+
2
3
dVρ

Vρ

+ 1+ 2
3

χ
kT

⎛
⎝⎜

⎞
⎠⎟
dy
1+ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

Eideal 1+ 1+ 2
3

χ
kT

⎛
⎝⎜

⎞
⎠⎟
D y( ) 3

2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dT
T

+
2
3
+ 1+ 2

3
χ
kT

⎛
⎝⎜

⎞
⎠⎟
D y( )⎡

⎣⎢
⎤
⎦⎥
dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

Eideal 1+ D y( ) 2
3
3
2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dT
T

+
2
3
1+ D y( ) 3

2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0



Adiabatic Exponents:  Ionization Zones 

dP = P dT
T

−
dVρ

Vρ

+ D y( ) 3
2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
dT
T

+
dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Equation of State 

dP = P 1+ D y( ) 3
2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dT
T

+ D y( ) −1⎡⎣ ⎤⎦
dVρ

Vρ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dP = P dT
T

−
dVρ

Vρ

+
dy
1+ y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dP =
∂P
∂T

⎛
⎝⎜

⎞
⎠⎟ ad

dT =
P
T

∂ lnP
∂ lnT

⎛
⎝⎜

⎞
⎠⎟ ad

dT =
P
T

Γ2

Γ2 −1
dT

Γ2

Γ2 −1
dT
T

= 1+ D y( ) 3
2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dT
T

+ D y( ) −1⎡⎣ ⎤⎦
dVρ

Vρ

1− Γ2

Γ2 −1
+ D y( ) 3

2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
dT
T

+ D y( ) −1⎡⎣ ⎤⎦
dVρ

Vρ

= 0



Adiabatic Exponents:  Ionization Zones 
1st Law 

Equation 
of State 1− Γ2

Γ2 −1
+ D y( ) 3

2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
dT
T

+ D y( ) −1⎡⎣ ⎤⎦
dVρ

Vρ

= 0

1+ D y( ) 2
3
3
2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dT
T

+
2
3
1+ D y( ) 3

2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dVρ

Vρ

= 0

1− Γ2

Γ2 −1
+ D y( ) 3

2
+ χ
kT

⎛
⎝⎜

⎞
⎠⎟

1+ D y( ) 2
3
3
2
+ χ
kT

⎛
⎝⎜

⎞
⎠⎟
2 =

D y( ) −1
2
3
1+ D y( ) 3

2
+ χ
kT

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

Γ2

Γ2 −1
= 1+ D y( ) 3

2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
−

D y( ) −1( ) 1+ D y( ) 2
3
3
2
+ χ
kT

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

2
3
1+ D y( ) 3

2
+ χ
kT

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥



Adiabatic Exponents:  Ionization Zones 

Γ2

Γ2 −1
= 1+ D y( ) 3

2
+

χ
kT

⎛
⎝⎜

⎞
⎠⎟
−

D y( ) −1( ) 1+ D y( ) 2
3
3
2
+ χ
kT

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

2
3
1+ D y( ) 3

2
+ χ
kT

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

Γ2

Γ2 −1
=

5
2
+ D y( ) 15

4
+ 5 χ

kT
+ χ

kT
⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

1+ D y( ) 3
2
+ χ
kT

⎛
⎝⎜

⎞
⎠⎟

D y( ) = y 1− y( )
1+ y( ) 2 − y( )

…algebra… 

Γ3 −1 =
2 + 2D y( ) 3

2
+ χ
kT

⎛
⎝⎜

⎞
⎠⎟

3+ 2D y( ) 3
2
+ χ
kT

⎛
⎝⎜

⎞
⎠⎟
2

Similarly: 



Adiabatic Exponents:  Ionization Zones 
Γ2

Γ2 −1
=
1
∇ad

=
∂ lnP
∂ lnT

⎛
⎝⎜

⎞
⎠⎟ ad

Gas heats up 
  rapid increase of ionization 
  increase in number of free particles 
  pressure goes up faster than ~T 

Pressure increases faster than normal 
In response to temperature increase 



Adiabatic Exponents:  Ionization Zones 

Γ3 −1 =
∂ lnT
∂ lnρ

⎛
⎝⎜

⎞
⎠⎟ ad

Gas is compressed 
  increase in temperature 
  rapid increase in ionization 
  energy goes into ionizing gas  
     instead of thermal energy 
  temperature does not rise as fast 

Temperature increases slower than  
normal in response to compression 



Adiabatic exponents can be less than 4/3  unstable! 

Ionization zones are responsible for stellar pulsations 

•  second ionization of He provides the most significant driving 

•  ionization zone must be in the radiative region 

Cool, luminous stars (Teff<6300K) will  
pulsate in an “instability strip” a few  
hundred K wide on HR diagram 

Adiabatic Exponents:  Ionization Zones 

T

L

Cepheids 

RR Lyrae 



First two structure equations: 

Polytropes 
dm
dr

= 4πr2ρ dP
dr

= −ρGm
r2

Temperature T does not appear in these equations explicitly,  
but is involved implicitly because pressure P usually depends  
on temperature via the equation of state. 

In some cases, however, P only depends on density and, not, T. 
in these cases, the above two equations are sufficient to define 
a solution.   

A degenerate gas is such a case. 



Assume a “polytropic relation” holds throughout the star: 

Polytropes 

P = Kρ
1+ 1

n

Polytropes are useful in two situations: 

K :  constant
n :  polytropic index

•  The equation of state is really polytropic 
      Completely degenerate gas 

•  Non-relativistic 

•  Ultra-relativistic 

•  The equation of state + an additional constraint yields 
    a polytropic relation. 

•  Isothermal ideal gas 

•  Fully convective star: convection maintains a fixed T gradient 

 P  ρ
5 3

 P  ρ
4 3

 T = T0 ,    P  ρT  ρ

 T  P
2 5 ,     P  ρT  ρP2 5 → P  ρ5 3

→ n = 3 2

→ n = 3

→ n = ∞

→ n = 3 2



Hydrostatic equilibrium 

Polytropes:  Lane-Emden Equation 

dP
dr

= −ρGm
r2

→
r2

ρ
dP
dr

= −Gm →
d
dr

r2

ρ
dP
dr

⎡

⎣
⎢

⎤

⎦
⎥ = −G dm

dr

→
d
dr

r2

ρ
dP
dr

⎡

⎣
⎢

⎤

⎦
⎥ = −G4πr2ρ →

1
r2

d
dr

r2

ρ
dP
dr

⎡

⎣
⎢

⎤

⎦
⎥ = −4πGρ

Make this equation dimensionless.  First density, 

ρ r( ) = ρcθ
n r( ) ρc = ρ r = 0( )

P = Kρ
1+ 1

n → P = Kρc
1+ 1

nθ n+1 = Pcθ
n+1 Pc = Kρc

1+ 1
n

⎛
⎝⎜

⎞
⎠⎟



Polytropes:  Lane-Emden Equation 
1
r2

d
dr

r2

ρ
dP
dr

⎡

⎣
⎢

⎤

⎦
⎥ = −4πGρ ρ = ρcθ

n P = Pcθ
n+1

1
r2

d
dr

r2

ρcθ
n

d
dr

Pcθ
n+1( )⎡

⎣
⎢

⎤

⎦
⎥ = −4πGρcθ

n

→
Pc
ρc

1
r2

d
dr

r2

θ n n +1( )θ n dθ
dr

⎡

⎣
⎢

⎤

⎦
⎥ = −4πGρcθ

n

→
n +1( )Pc
4πGρc

2

1
r2

d
dr

r2 dθ
dr

⎡
⎣⎢

⎤
⎦⎥
= −θ n

ξ =
r
rn

Next, make radius dimensionless: rn =
n +1( )Pc
4πGρc

2

⎡

⎣
⎢

⎤

⎦
⎥

1 2



Polytropes:  Lane-Emden Equation 

→
d 2θ
dξ2

+
2
ξ
dθ
dξ

+θ n = 0 ′′θ = −
2
ξ

′θ −θ n

Lane-Emden 
equation 

→
1
ξ2

2ξ dθ
dξ

+ ξ2 d
2θ
dξ2

⎛
⎝⎜

⎞
⎠⎟
= −θ n

rn
2 1
ξrn( )2

d
d ξrn( ) ξrn( )2 dθ

d ξrn( )
⎡

⎣
⎢

⎤

⎦
⎥ = −θ n

1
ξ2

d
dξ

ξ2 dθ
dξ

⎡

⎣
⎢

⎤

⎦
⎥ = −θ n→



Polytropes:  Lane-Emden Equation 
ξ =

r
rn

Boundary conditions 

′′θ = −
2
ξ

′θ −θ n ρ r( ) = ρcθ
n r( )

•  Center 

•  Surface is at first zero crossing of 

r = 0 → ρ = ρc  →
dρ
dr

= 0 →

ρ = 0 →
θ ξ( )

ξ = ξ1
Solving Lane-Emden 

ξ = 0 θ = 1  ′θ = 0

θ = 0

The Lane-Emden equation can be integrated numerically outward 
 until         . 
•  Start at         .  In steps of      compute                .  Stop when         . 
•  Get value of     , as well as full         profile. 

θ = 0
ξ = 0 dξ ′′θ ,  ′θ ,  θ θ = 0

θ ξ( )ξ1



Polytropes:  Lane-Emden Equation 
•  Analytic solutions exist for three cases: n=0, 1, and 5 

n = 0 :    θ ξ( ) = 1− ξ2

6

n = 1 :    θ ξ( ) = sinξ
ξ

n = 5 :    θ ξ( ) = 1+ ξ2

3
⎛
⎝⎜

⎞
⎠⎟

−1 2

ξ1 = 6

ξ1 = π

ξ1 = ∞

•  Polytropes with n>5 have infinite (divergent) mass. 

n = 3
2

:   P = Kρ5 3 n = 3 :   P = Kρ4 3

•  Only models with n=3/2 and n=3 are physically relevant. 



Polytropes:  Lane-Emden Equation 
Solving a differential equation numerically 

Simplest case: dy
dx

= f x, y( ) y 0( ) = y0Boundary condition: 

•  Choose step Δx

•  Start with boundary condition and evaluate y at next step  

y Δx( ) = y 0( ) + ′y 0( ) ⋅ Δx

•  Repeat for all subsequent steps 

y x( ) = y x − Δx( ) + dy
dx

x − Δx( ) ⋅ Δx

′y 0( ) = ′y0



Polytropes:  Lane-Emden Equation 
Solving a differential equation numerically 

•  Loop over steps: 

y i[ ] = y i −1[ ] + dy
dx

i −1[ ] ⋅ Δx

dy
dx

i[ ] = dy
dx

i −1[ ] + d
2y
dx2

i −1[ ] ⋅ Δx

d 2y
dx2

i[ ] = f x, y, ′y( )



Polytropes:  Lane-Emden Equation 
•  As n increases, solutions become less centrally concentrated 

θ

ξ
0 2 4 6
0 −

1−

n = 3
2 n = 3



Polytropes 
•  Total mass enclosed by r M < r( ) = ρ r( )4πr2 dr

0

r

∫

M < ξ( ) = ρcθ
n4π ξrn( )2 d ξrn( )

0

r

∫ = 4πrn
3ρc θ nξ2 dξ

0

r

∫

= 4πrn
3ρc ξ2 −

1
ξ2

d
dξ

ξ2 dθ
dξ

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥dξ

0

r

∫ = 4πrn
3ρc −ξ2 dθ

dξ
⎡

⎣
⎢

⎤

⎦
⎥

•  Total mass in star M = 4πrn
3ρc −ξ1

2 ′θ ξ1( )⎡⎣ ⎤⎦

•  Total radius of star R = rnξ1 =
n +1( )Pc
4πGρc

2

⎡

⎣
⎢

⎤

⎦
⎥

1 2

ξ1

•  Pressure - density Pc = Kρc
1+ 1

n



Polytropes 
We have four equations  we can get 4 unknowns. 

M = 4πrn
3ρc −ξ1

2 ′θ ξ1( )⎡⎣ ⎤⎦

R = rnξ1 =
n +1( )Pc
4πGρc

2

⎡

⎣
⎢

⎤

⎦
⎥

1 2

ξ1Pc = Kρc
1+ 1

n

e.g., if we know the equation of state: K, n, and the mass M, we 
can 

•   solve Lane-Emden to get     and  ξ1 ′θ ξ1( )

•   use four equations to get  rn ,  R,  ρc ,  Pc

′′θ = −
2
ξ

′θ −θ n



Polytropes:  Structure of a White Dwarf 

Consider a White Dwarf composed of a  
degenerate, non-relativistic electron gas. 

M = 4πrn
3ρc −ξ1

2 ′θ ξ1( )⎡⎣ ⎤⎦ R = rnξ1 =
n +1( )Pc
4πGρc

2

⎡

⎣
⎢

⎤

⎦
⎥

1 2

ξ1Pc = Kρc
1+ 1

n

The radius of a White Dwarf shrinks as its mass increases! 

 
R2  Pc

ρc
2

 

ρc
5 3

ρc
2

n = 3
2

,    P = Kρ5 3

= ρc
−1 3

 → ρc  R
−6

 M  rn
3ρc   R3R−6   R−3 →  R  M −1 3



Polytropes:  Structure of a White Dwarf 

As the white dwarf mass increases, its radius shrinks and  
its central density increases. 

 ρc  R
−6

 R  M −1 3

Eventually, the core will become relativistic. 

As the mass keeps growing, the relativistic core grows too. 

M

n = 3

n = 3 2



Polytropes:  Structure of a White Dwarf 

Consider a White Dwarf composed of a  
degenerate, ultra-relativistic electron gas. 

M = 4πrn
3ρc −ξ1

2 ′θ ξ1( )⎡⎣ ⎤⎦ R = rnξ1 =
n +1( )Pc
4πGρc

2

⎡

⎣
⎢

⎤

⎦
⎥

1 2

ξ1Pc = Kρc
1+ 1

n

When the white dwarf is fully relativistic, its mass decouples 
from its radius and central density! 

 
R2  Pc

ρc
2

 

ρc
4 3

ρc
2

n = 3,    P = Kρ4 3

= ρc
−2 3

 → ρc  R
−3

 M  rn
3ρc   R3R−3 → M = const



Polytropes:  Structure of a White Dwarf 
M = 4πrn

3ρc −ξ1
2 ′θ ξ1( )⎡⎣ ⎤⎦ R = rnξ1 =

n +1( )Pc
4πGρc

2

⎡

⎣
⎢

⎤

⎦
⎥

1 2

ξ1Pc = Kρc
1+ 1

n

This is the Chandrasekhar limiting mass for white dwarfs. 
No white dwarfs are observed with mass greater than this. 

rn =
4Pc

4πGρc
2

⎛
⎝⎜

⎞
⎠⎟

1 2

=
Kρc

4 3

πGρc
2

⎛
⎝⎜

⎞
⎠⎟

1 2

=
K
πG

ρc
−2 3⎛

⎝⎜
⎞
⎠⎟
1 2

=
K
πG

⎛
⎝⎜

⎞
⎠⎟
1 2

ρc
−1 3

M = 4πrn
3ρc −ξ1

2 ′θ ξ1( )⎡⎣ ⎤⎦ = 4π K
πG

⎛
⎝⎜

⎞
⎠⎟
3 2

ρc
−1ρc −ξ1

2 ′θ ξ1( )⎡⎣ ⎤⎦

M = 4π K
πG

⎛
⎝⎜

⎞
⎠⎟
3 2

−ξ1
2 ′θ ξ1( )⎡⎣ ⎤⎦

Plugging in numbers: 

 M = 1.46M



Consider energy in the form of light, passing through a medium. 
The amount of energy passing through depends on location, 
direction of flow, time, frequency of light, area through which 
light is passing. 

Radiative Transfer 

dA dΩ



Radiative Transfer 
E
Eν

Energy 

Specific Energy 

Luminosity 

Specific Luminosity 

Flux 

Specific Flux 

Intensity 

Specific Intensity 

L
Lν

F
Fν
I
Iν erg s−1cm−2st−1Hz−1

erg s−1cm−2st−1

erg s−1cm−2Hz−1

erg s−1cm−2

erg s−1

erg s−1Hz−1

erg Hz−1

erg

dE = Iν ⋅dt ⋅dA ⋅dΩ⋅dν



Iv is constant along a ray travelling on a path, whereas flux  
decreases as r-2. 

Radiative Transfer 

dA
r1

dA

r2

dA

r1

dA

r2

Fewer rays from a given 
source cross an area dA 

that is farther away 
because that area is a  
smaller fraction of the  
whole sphere at that  

radius. 

However, an equal  
number of rays cross the 
area dA per solid angle 
because as dA is further 
away, a fixed solid angle 
corresponds to a larger 
area of emitting region 

by ~r2. 



Emission coefficient 

Radiative Transfer: Emission 

j      erg s−1cm−2st−1cm−1

jν     erg s−1cm−2st−1Hz−1cm−1

dE = jν ⋅dt ⋅dV ⋅dΩ⋅dν

dIν = jνds

jv is the change of Iv per unit length along a path. 

We are only considering spontaneous emission here.  
Stimulated emission depends on Iv and is more conveniently 
treated as a “negative absorption”. 

Electrons can recombine with atoms or drop to lower energy levels  
and emit photons 



Absorption 

Radiative Transfer: Absorption 

dIν = −αν Iνds

             fractional loss of intensity over path ds 

The change in intensity depends on intensity itself because the 
more photons try to move through a medium, the more photons 
can become absorbed by it. 

dΩdsAs light passes through a 
medium, it can be absorbed. 

ανds :

αν :  cm−1              positive αν  →  energy loss



Radiative Transfer: Absorption 

αν = nσν

If absorption is due to particles with number density      and  
cross-sectional area  

n
σν

Consider a volume element  
ds ⋅dA

Total area covered by particles: 
n ⋅dV ⋅σν = n ⋅dA ⋅ds ⋅σν

Fraction of area that is covered by particles: 
n ⋅dA ⋅ds ⋅σν

dA
= n ⋅σν ⋅ds = ανds →

ds

αν = ρκνDefine opacity as: κν :  cm2g−1

Opacity is a property of the intervening material, like a  
cross-sectional area per gram of material. 



Radiative Transfer: Optical Depth 
dτν = ανdsDefine optical depth 

Optical depth is the number of e-foldings change in intensity. 
It is an alternative variable for path. 

•  Fixed        = fixed distance 

•  Fixed        = fixed change of  

τν

dIν = −αν Iνds

dIν = −Iνdτν

→
dIν
ds

= −αν Iν

→
dIν
dτν

= −Iν

→ Iν = Iν 0( )e−αν s

→ Iν = Iν 0( )e−τν

Iνdτ

ds



Radiative Transfer Equation 

Sν =
jν
αν

Change in intensity over a path length is the sum of 
emission + absorption  (source + sink terms). 

In stars, the source function is close to the blackbody Planck 
function. 

dIν = −αν Iνds + jνds

dIν = −Iνdτν + jν
dτν

αν

dIν
ds

= −αν Iν + jν

dIν
dτν

= −Iν + Sν

→

→

Source function 



•  If area dA is perpendicular to light rays 

Radiative Transfer: Net Flux 

dA

dΩ

dA

dΩ

 
n

θ

dFν = IνdΩ

•  If normal vector to area dA is at an angle     to light rays 

dFν = Iν cosθdΩ
θ

•  “Net flux” in the direction of      is 
 
Fν
n( ) = Iν cosθ dΩ∫ 

n

Flux is reduced because effective 
area is smaller. 

For an isotropic radiation field 
intensity is angle-independent.  

Fν
n( ) = Iν cosθ dΩ∫ = 0



Radiative Transfer Equation 
dIν
dτν

+ Iν = Sν

When  

→  eτν dIν
dτν

+ eτν Iν = e
τν Sν

→
d
dτν

Iνe
τν( ) = eτν Sν →  Iνe

τν = e ′τν Sν
0

τν

∫ d ′τν  +  const

τν = 0  →   Iν =  Iν 0( ) →   const =  Iν 0( )

→  Iνe
τν = Iν 0( ) + e ′τν Sν

0

τν

∫ d ′τν

→  Iν = Iν 0( )e−τν + e− τν − ′τν( )Sν
0

τν

∫ d ′τν



Radiative Transfer Equation 

Iν = Iν 0( )e−τν + e− τν − ′τν( )Sν
0

τν

∫ d ′τν

Final intensity is initial intensity diminished by absorption 
+ integrated source function also diminished by absorption. 

For  Sν = const: Iν τν( ) = Iν 0( )e−τν + Sν e− τν − ′τν( )

0

τν

∫ d ′τν

= Iν 0( )e−τν + Sν e− τν − ′τν( )⎡⎣ ⎤⎦0
τν

Iν = Iν 0( )e−τν + Sν 1− e−τν( ) as τν → ∞,    Iν → Sν



Radiative Transfer: Radiative Diffusion 
Within a star there is a net radial flux (outward) causing a departure 
from isotropy.  We can relate this flux to the temperature gradient. 

dz ds
θ

dIν
ds

= −αν Iν − Sν( ) = −ρκν Iν − Sν( )

•  plane-parallel approximation 

•  angular dependence through     only 

•   

θ

µ = cosθ ds = dz µ

→ µ ∂Iν
∂z

= −ρκν Iν − Sν( ) → Iν = Sν −
µ
ρκν

∂Iν
∂z



Radiative Transfer: Radiative Diffusion 
Iν = Sν −

µ
ρκν

∂Iν
∂z

ρκν  is the fractional loss of Iν  per unit length.
ρκν( )−1  is the mean-free-path.

This second term is the change in intensity over the mean-free-path. 

 
  

This is small  → Iν ≈ Sν ≈ Bν

Iν ≈ Bν −
µ
ρκν

∂Bν

∂z
To first order: 

Integrate to get  
flux in z-direction: Fν z( ) = Iν cosθ dΩ∫

dΩ = 2π sinθdθ = −2πdµ

= −2π Iν µ, z( )µ dµ
+1

−1

∫



Radiative Transfer: Radiative Diffusion 

Bv is isotropic so only the derivative term has a non-zero angle 
dependence. 

Iν ≈ Bν −
µ
ρκν

∂Bν

∂z Fν z( ) = 2π Iν µ, z( )µ dµ
−1

+1

∫

Fν z( ) = 2π −
µ
ρκν

∂Bν

∂z
⎛
⎝⎜

⎞
⎠⎟
µ dµ

−1

+1

∫ = −
2π
ρκν

∂Bν

∂z
µ2 dµ

−1

+1

∫

= −
2π
ρκν

∂Bν

∂z
µ3

3
⎡

⎣
⎢

⎤

⎦
⎥
−1

+1

= −
2π
ρκν

∂Bν

∂z
2
3

Fν z( ) = −
4π
3ρκν

∂Bν

∂T
∂T
∂z



Radiative Transfer: Radiative Diffusion 

Total flux (integrating over frequency): 

Fν z( ) = −
4π
3ρκν

∂Bν

∂T
∂T
∂z

F z( ) = Fν z( )dν
0

∞

∫ = −
4π
3

∂T
∂z

1
ρκν

∂Bν

∂T
dν

0

∞

∫

Define the Rosseland mean opacity: 

ρκ R ≡

1
ρκν

∂Bν

∂T
dν

0

∞

∫
∂Bν

∂T
dν

0

∞

∫
Can be computed for any material, 
at any density and any temperature 
(albeit with difficulty). 



Radiative Transfer: Radiative Diffusion 

F z( ) = −
4π
3

∂T
∂z

1
ρκν

∂Bν

∂T
dν

0

∞

∫

= −
4π
3

∂T
∂z

1
ρκ R

∂Bν

∂T
dν

0

∞

∫

= −
4π
3

∂T
∂z

1
ρκ R

∂
∂T

Bν dν
0

∞

∫

= −
4π
3ρκ R

∂T
∂z

∂B
∂T

where B is the total intensity 



Radiative Transfer: Radiative Diffusion 

R

r
θc

Sphere of uniform brightness. 
At an exterior point, 

I =
B, θ < θc

0, θ > θc

⎧
⎨
⎪

⎩⎪

Find flux: F = I cosθ dΩ∫ = B dφ
0

2π

∫ cosθ sinθ dθ
0

θc

∫

= 2πB cosθ sinθ dθ
0

θc

∫ = 2πB xdx
0

sinθc

∫ = 2πB sin
2θc

2

sinθc =
R
r

F = πB R
r

⎛
⎝⎜

⎞
⎠⎟
2

F = πBAt surface: 
r=R 



Radiative Transfer: Radiative Diffusion 

F z( ) = −
4π
3ρκ R

∂T
∂z

∂B
∂T

F = πBWe found that the flux coming  
from an enclosed sphere is: 
Also, for a blackbody: F = σT 4

⎫
⎬
⎭
B =

σT 4

π

F z( ) = −
16σT 3

3ρκ R

∂T
∂z

Equation of radiative diffusion 

•  Applies provided that quantities change  
  slowly on scale of mean free path. 

•  Material properties enter through κ R

∂B
∂T

=
4σT 3

π



Radiative Transfer: Radiative Diffusion 
Spherical symmetry: z→ r

Lr = F r( )4πr2

σ =
ac
4

⎫
⎬
⎪

⎭⎪
Lr = −

16 ac
4

⎛
⎝⎜

⎞
⎠⎟ T

3

3ρκ R

dT
dr
4πr2

Lr = −
16πacr2T 3

3ρκ R

dT
dr

dT
dr

= −
3ρκ RLr

16πacr2T 3



The Eddington Limit 
Photons carry momentum  absorption of photons must  
lead to a force. 

L
4πr2      erg s−1cm−2( )

Spherical symmetric source with luminosity L 

•  Energy flux at distance r : 

L
4πcr2      erg cm−3( )•  Momentum flux : 

Frad =
κL

4πcr2      erg cm g−1( )
•  Multiply by opacity to get force per unit mass 

E = pc( )

F =
dp
dt

⎛
⎝⎜

⎞
⎠⎟

Opacity is the fraction of momentum flux absorbed per unit mass. 



The Eddington Limit 
Fgrav =

GM
r2

•  Inward force per mass due to gravity: 

κL
4πcr2

=
GM
r2

•  Assume opacity is due to Thompson scattering by free electrons 

κ =
α
ρ

Radiation balances gravity when Frad = Fgrav 

→ L =
4πcGM

κ
At greater luminosities, Frad>Fgrav and gas will be blown away. 

=
nσ
ρ

=
σ
m

=
σT

mH

Ledd =
4πcGMmH

σT  
Ledd = 3.2 ×10

4 M
M

⎛
⎝⎜

⎞
⎠⎟
L



The Eddington Limit 

 
Ledd = 3.2 ×10

4 M
M

⎛
⎝⎜

⎞
⎠⎟
L This is the Eddington limit 

Assumptions: 
•  Thompson scattering only 
   other opacity sources increase opacity  lower Ledd 
•  spherical symmetry 

 

L
L

⎛
⎝⎜

⎞
⎠⎟
= 34.2 M

M

⎛
⎝⎜

⎞
⎠⎟

2.4

•  Mass-Luminosity relation for very massive stars 

Formation of more massive stars cannot be spherically symmetric 

 = Ledd → Mmax  100M



Opacity Sources: Electron Scattering 
The opacity of a material depends on the composition 
the temperature     and the density     of gas. ρT

X,Y ,Z( )

κ =κ 0ρ
nT − s

1.  Electron scattering 

κ =
nσ
ρ

=
neσ e

ρ

In an ionized mixture of H and He: ne =
ρNA

µe

µe =
2

1+ X

κ e =
ρNA 1+ X( )

2
σ e

ρ
=
σ eNA 1+ X( )

2



Opacity Sources: Electron Scattering 
If electrons are non-degenerate and non-relativistic, their  
cross-section is equal to the Thompson cross-section. 

σT =
8π
3

e2

mec
2

⎛
⎝⎜

⎞
⎠⎟

2

κ e =
σT NA 1+ X( )

2

= 0.6652 ×10−24 cm2

κ e = 0.2 1+ X( )cm2g−1

Cannot use if  
•  heavy elements are abundant or gas is partially ionized  
•  density is high  degenerate 
•  temperature is high  relativistic 

e- opacity has no frequency, density or temperature dependence 

κ =κ 0ρ
nT − s ,       n = s = 0



Opacity Sources: Free-Free Absorption 
2.  Free-Free Absorption   

γ + e− + ion→ e− + ion

Since free electrons are required, free-free opacity will be 
negligible for                  since H will not be ionized. 

Zc :  average nuclear chargeκ ff ≈ 10
23 ρ
µe

Zc
2

µI

T −3.5cm2g−1

                                           A free electron cannot absorb a  
photon because energy and momentum cannot both be 
conserved.  However, the presence of a charged ion near  
the electron can make this possible. 

inverse of Bremsstrahlung 

T < 104K

κ ff ≈ 4 ×10
22 X +Y( ) 1+ X( )ρT −3.5cm2g−1

κ =κ 0ρ
nT − s ,       n = 1, s = 3.5

•  fully ionized 
•  no metals 

Kramers opacity 



Opacity Sources: Bound Absorption 
3.  Bound-Free Absorption   

A photon gets absorbed by a bound electron, ionizing it. 

κ bf ≈ 4 ×10
25Z 1+ X( )ρT −3.5cm2g−1

κ =κ 0ρ
nT − s ,       n = 1, s = 3.5

•  T>104 K 

Kramers opacity 

4.  Bound-Bound Absorption   
A photon gets absorbed and causes a transition between 
bound energy levels in an atom. 

•  Very complex calculation: absorption line profiles, line 
broadening. 
•  ~10 times smaller than f-f or b-f Kramers opacity 



Opacity Sources: H- Absorption 
5.  H- Opacity 

At low temperature, an extra electron can attach to the H atom. 

κ
H − ≈ 2.5 ×10−31 Z

0.02
⎛
⎝⎜

⎞
⎠⎟
ρ1 2T 9cm2g−1

κ =κ 0ρ
nT − s ,       n = 0.5, s = −9

H- has an ionization potential of 0.75 eV so it’s very easy to 
ionize if T > a few thousand K. 

 

3000 < T < 6000K
10−10 < ρ < 10−5g
X  0.7,   0.001 < Z < 0.03

Relevant to Sun’s 
atmosphere! 



Opacity Sources: Tabulated Opacities 
In practice, stellar models use opacities calculated using detailed 
physics. 

As a function of  ρ,  T , X, Y , Z  + breakdown of metals
•  Calculate all the relevant b-b, b-f, f-f, H-, e-, scattering effects. 
•  Get a correct Rosseland mean opacity. 

•  LANL 1960s following defense calculations 
•  OPAL Rogers & Iglesias (1992), Iglesias & Rogers (1996) 
•  Opacity Project  Seaton et al. (1994) 

•  Opacity tables do not cover whole                        space. 
    Extrapolation is dangerous. 
•  Need to do smart interpolation. 
•  Differences of as much as 30% between projects occur. 

ρ,  T , X, Y , Z



Opacity Sources: Tabulated Opacities 

logT

logκ 2 −

5 −

3−

4 −

3 4 5 6 7

1−

0 −

−1−

low ρ

high ρ

H−

f-f, b-f, b-b

e−  scattering

X = 0.7,  Z = 0.02



Opacity Sources: Tabulated Opacities 

− log 1− m M( )

logκ 2 −

5 −

3−

4 −

0 3 6 9

1−

0 −

−1−
 15M

 1M

 

m
M
 1−10−6

T  5 ×104K

X = 0.7,  Z = 0.02

 

m
M
 1−10−3

T  105K

center surface 



Opacity Sources: Tabulated Opacities 

logρ

logT

6 −

9 −

7 −

8 −

−4 −2 0 2 4 6

e- scattering 

conduction 
degenerate e- 

b-f 

f-f 



Heat Transfer by Conduction 
When the density gets very high, degenerate electrons transfer 
heat by conduction in addition to providing hydrostatic support. 

Total energy flux is additive: Ftot = Frad + Fcond

Frad = −
4acT 3

3ρκ R

dT
dr

Fcond = −
4acT 3

3ρκ cond

dT
dr

1
κ tot

=
1
κ R

+
1

κ cond

Like resistance in a parallel circuit 

•  In normal stars,          is large  conduction is negligible 

•  In degenerate dense stars, it can be smaller than  

κ cond

κ R

 In center of sun:  κ R  0.2,   κ cond  2 ×109 !!!

 In center of cool white dwarf:  κ R  0.2,   κ cond  5 ×10−5



Convection 
•  If luminosity is transported by radiation, then it must obey 

Lr = −
16πacr2T 3

3ρκ R

dT
dr

•  In a steady state, the energy transported per time at radius r 
must be equal to the energy generation rate in the stellar interior. 

→
dT
dr

 will be large if 
L  is large
κ R  is large

⎧
⎨
⎪

⎩⎪

•  The temperature gradient cannot be arbitrarily large.  If it gets 
   too steep  convection takes over as the main mode of    
   energy transport. 



Convection: Stability Criteria 
•  Uniform composition,                    profiles T r( ),  ρ r( )

•  Displace a mass element by dr without 
  exchanging heat with the environment 
  (adiabatically). 

•  Element expands to maintain pressure 
  balance with its environment. 

•  Its new density      and temperature    
  will not in general equal the ambient 
  values at            . 

r

r + dr

ρ r( ),  T r( )

ρ r + dr( ),  T r + dr( )

ρ∗,  T ∗

ρ∗ T ∗

r + dr



Convection: Stability Criteria 
•  Since the change is adiabatic: 

d lnP
d lnρ

⎛
⎝⎜

⎞
⎠⎟ ad

= Γ1

r

r + dr

ρ r( ),  T r( )

ρ r + dr( ),  T r + dr( )

ρ∗,  T ∗

→
ρ
P

dP
dρ

⎛
⎝⎜

⎞
⎠⎟ ad

= Γ1

→ dρ( )ad =
ρ

Γ1P
dP( )ad

ρ∗ = ρ r( ) + dρ( )ad = ρ r( ) + ρ
Γ1P

dP( )ad

= ρ r( ) + ρ
Γ1P

dP
dr

⎛
⎝⎜

⎞
⎠⎟ ad

dr

•  Since pressure  
  equilibrium applies: 

dP
dr

⎛
⎝⎜

⎞
⎠⎟ ad

=
dP
dr



Convection: Stability Criteria 
•  If                           : displaced element       
  will be denser than its surroundings and   
  will settle back down  STABILITY 

r

r + dr

ρ r( ),  T r( )

ρ r + dr( ),  T r + dr( )

ρ∗,  T ∗

ρ∗ > ρ r + dr( )

•  If                           : buoyancy will cause   
  element to rise further  INSTABILITY 

ρ∗ < ρ r + dr( )

•  Stability criterion is: 

ρ r( ) + ρ
Γ1P

dP
dr

dr > ρ r + dr( )

→
ρ r + dr( ) − ρ r( )

dr
<

ρ
Γ1P

dP
dr

dρ
dr

<
ρ

Γ1P
dP
dr



Convection: Stability Criteria 
•  Since the change is adiabatic: 

d lnP
d lnT

⎛
⎝⎜

⎞
⎠⎟ ad

=
Γ2

Γ2 −1

r

r + dr

ρ r( ),  T r( )

ρ r + dr( ),  T r + dr( )

ρ∗,  T ∗

→
T
P

dP
dT

⎛
⎝⎜

⎞
⎠⎟ ad

=
Γ2

Γ2 −1

→ dT( )ad =
Γ2 −1
Γ2

T
P
dP( )ad

T ∗ = T r( ) + dT( )ad

= T r( ) + 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T
P
dP( )ad

= T r( ) + 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T
P
dP
dr

dr



Convection: Stability Criteria 
•  If                           : displaced element       
  will be cooler than its surroundings and   
  will settle back down  STABILITY 

r

r + dr

ρ r( ),  T r( )

ρ r + dr( ),  T r + dr( )

ρ∗,  T ∗

T ∗ < T r + dr( )

•  If                           : element will be   
  hotter and thus rise  INSTABILITY 

T ∗ > T r + dr( )

•  Stability criterion is: 

T r( ) + 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T
P
dP
dr

dr < T r + dr( )

→
T r + dr( ) − T r( )

dr
> 1− 1

Γ2

⎛
⎝⎜

⎞
⎠⎟
T
P
dP
dr

dT
dr

> 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T
P
dP
dr



Convection: Stability Criteria 

•  Stability criterion is: 

dT
dr

>
dT
dr

⎛
⎝⎜

⎞
⎠⎟ ad

dT
dr

> 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T
P
dP
dr

r

T
ambient 

unstable 

stable 
dT
dr

<
dT
dr

⎛
⎝⎜

⎞
⎠⎟ ad

•  Too rapid a change in temperature  CONVECTION 



Convection: Stability Criteria 

•  Convert to maximum luminosity that can be carried by radiation  

> 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T
P
dP
dr

•  If L exceeds this value  CONVECTION 

dT
dr

= −
3ρκ RLr

16πacr2T 3

3ρκ RLr
16πacr2T 3 < − 1− 1

Γ2

⎛
⎝⎜

⎞
⎠⎟
T
P
dP
dr

dP
dr

= −ρGm
r2

Lr < −
16πacG
3κ R

1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T 4m
P



Convection: Stability Criteria 
•  In an unstable region, displaced 
  element is hotter than ambient gas 
   continues to rise 

r

T
T r( )

T r + dr( )
T ∗

•  Eventually, radiation will leak out 
  of the rising gas element. 
   extra energy flux from hotter to 
      cooler regions 

 
Lmax 

1
κ R

1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T 4m
P

Adiabatic change 

Actual gradient 

•  What causes convective instability in some regions of a star?  

When Lmax is low  convection 



Convection: Stability Criteria 
Near surface 

 
Lmax 

1
κ R

1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T 4m
P

Vulnerable to  
convection if 

m ≈ M
T 4

P
≈ const

 
Lmax 

1
κ R

1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

κ R  is large

Γ2 → 1

Occurs when there is a large 
contribution from atomic processes. 

Occurs in ionization zones where 
     dips below 4/3 

Remember 

Γ2 = 5 3

Γ2

So, atomic processes + ionization zones  convection will happen 
In regions where T~104-105K and H is being ionized. 

Not in high mass stars 



Convection: Stability Criteria 
Near center 

 
Lmax 

1
κ R

1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T 4m
P

Vulnerable to convection if there is a large luminosity at low mass. 

κ R  is low
Γ2  is high  Lmax  m

This happens when nuclear energy generation is a very strong 
function of T.   CNO in massive stars. 



Convection 

m M

 
log M

M

⎛
⎝⎜

⎞
⎠⎟

0.8 −

1.2 −

1.6 −

0 0.2 1

0.4 −

0 −

−0.4 −
Sun

center surface 

0.4 0.6 0.8

Massive star

Zero-age main sequence stars 



Convection 

Very low mass 
Main sequence Fully convective 

Low mass 
Main sequence 

Radiative core 
Convective surface 

High mass 
Main sequence 

Convective core 
Radiative surface 

White dwarfs Conductive 



Convection 



Convection 
Convection is incredibly difficult to model accurately because fluid 
motions are very complicated.  It is a 3D problem. 



Convection 
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Convection 
Convection is incredibly difficult to model accurately because fluid 
motions are very complicated.  It is a 3D problem. 



Convection: Energy Flux 

•  No reliable analytic way to compute 

•  Lab experiments with fluids are not relevant 
•  incompressible 
•  too viscous 
•  boundaries 

•  Hydrodynamic simulations are challenging 

•  Empirical simple model for spherically symmetric 
  stellar models:  Mixing Length Theory 



Convection: Mixing Length Theory 

1 parameter: length of mixing 

Each mass element  
rises or falls a distance  
l adiabatically 

After one mixing length,  
The element thermalizes  
with the local environment. 

l



Convection: Mixing Length Theory 
•     should scale with the pressure scale height l

λP = P
dP
dr

−1

l = α ⋅λP

(length over which pressure changes by 100%) 

α :  free parameter    α = 1.6 ± 0.1( )

•  After rising adiabatically by a distance   , the mass element will 
  be hotter than its surrounding gas by 

l

ΔT =
dT
dr

−
dT
dr ad

⎛
⎝⎜

⎞
⎠⎟
⋅ l ≡ l ⋅ Δ∇T

r

T dT
dr ad

dT
dr



Convection: Mixing Length Theory 
•  If the mass element thermalizes at constant pressure, the 
  amount of heat per unit mass released is 

ΔQ = cPΔT = cPlΔ∇T

•  If the average velocity of the mass element is     , the average 
  excess heat flux is 

v

Fconv = ρvΔQ = ρvcPlΔ∇T
heat
mass

×
mass
volume

×
length
time

=
heat

area ⋅ time

•  The mass element is accelerated due to buoyancy 

Δρ =
dρ
dr

−
dρ
dr ad

⎛
⎝⎜

⎞
⎠⎟
l ≡ lΔ∇ρ

ρ < ρambient( )

→ Δρ =
1
2
lΔ∇ρ



Convection: Mixing Length Theory 
•  The average buoyant force per unit volume is 

F = g ⋅ Δρ

•  The resulting acceleration is 

•  If the mass element starts at rest and has a constant acceleration 

=
1
2
glΔ∇ρ where  g = Gm

r2

a =
F
ρ

v = a ⋅ t

t = l
v
=

l
1
2
v
=
2l
v

⎫
⎬
⎪

⎭⎪

→ v = 2al( )1 2 → v =
1
2
2al( )1 2

=
gl
2ρ

Δ∇ρ =
Gml
2ρr2

Δ∇ρ

→ v =
l
2

Gm
ρr2

Δ∇ρ
⎛
⎝⎜

⎞
⎠⎟

1 2



Convection: Mixing Length Theory 

Fconv =
l
2

Gm
ρr2

Δ∇ρ
⎛
⎝⎜

⎞
⎠⎟

1 2

ρcPlΔ∇T

Fconv = ρvcPlΔ∇T v =
l
2

Gm
ρr2

Δ∇ρ
⎛
⎝⎜

⎞
⎠⎟

1 2

Δ∇ρ ≡
dρ
dr

−
dρ
dr ad

⎛
⎝⎜

⎞
⎠⎟
≈
ρ
T

dT
dr

−
dT
dr ad

⎛
⎝⎜

⎞
⎠⎟
≡
ρ
T
Δ∇T

Fconv =
l
2

Gm
ρr2

ρ
T
Δ∇T

⎛
⎝⎜

⎞
⎠⎟

1 2

ρcPlΔ∇T

Fconv =
l2

2
cPρ

Gm
Tr2

⎛
⎝⎜

⎞
⎠⎟
1 2

Δ∇T( )3 2



Convection: Mixing Length Theory 
•  How large an excess T gradient is needed to carry luminosity? 

Δ∇T( )3 2 =
Lr
4πr2

l2

2
cPρ

Gm
Tr2

⎛
⎝⎜

⎞
⎠⎟
1 2 =

Lr
2πl2cPρr Gm T( )1 2

e.g., at m
M

= 0.5,  l = λP = 5 ×109 cm,  solar values for T ,ρ,r,Lr ,cP

 Δ∇T  10
−10Kcm−1

 

dT
dr

≈
Tc
R
 10−4Kcm−1

Requires an excess of only ~10-6 of the temperature gradient! 



Convection: Mixing Length Theory 
•  When convection occurs in stellar interiors, the resulting 
  temperature gradient equals the adiabatic gradient. 

dT
dr

=
dT
dr

⎛
⎝⎜

⎞
⎠⎟ ad

− Δ∇T

r

T

≈ 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T
P
dP
dT

convective 
instability 

radiative 
stable T 
gradient 

•  If composition changes with radius, this may be different. 
  e.g., if     drops with r  heavier material is displaced into 
  lighter material  greater stability. 

µ

Nuclear burning  stabilizing 



Convection: Mixing Length Theory 
•  When convection is efficient, the exact value of the mixing 
  length    does not matter. 

λP

l

Near surface,     is small  larger           is needed. Δ∇T

•  Stellar radius R, surface T, etc. depend on  α

αx2 change in       few hundred K difference in Teff. 



Convection: Mixing Length Theory 
Convective Overshooting 
Do convective elements overshoot  
into stable regions due to inertia? 

Naively:  No because acceleration is small 
and braking is large in stable zone. 

Simulations: Overshooting extends to 
significant fraction of  

convective zone 

radiative zone 

λP

Alternative to Mixing Length model 
“Full spectrum of turbulence” 

Turbulent processes involve a range of length scales. 

It is unclear if this works better than the one-parameter model. 



Energy Generation: Gravitational Sources 
In a static star, the energy source is thermonuclear 

dLm
dm

= ε

In a contracting/expanding star, if the process is not adiabatic, 
there is an extra source/sink of energy so that 

dLm
dm

≠ ε Instead: 
dLm
dm

= ε + εgrav

In real stars, contraction/expansion is a local process.  e.g., core  
contracts while envelope expands           is a function of radius. εgrav

εgrav =
dΩ

dt ⋅dm
=
d
dt

Gm
r

⎛
⎝⎜

⎞
⎠⎟  

= −
Gm
r2
r



Energy Generation: Neutrino Losses 
excludes energy flux in neutrinos. Lm

Matter at normal densities and temperatures is completely 
transparent to neutrinos  energy loss 

 neutrino cross-section:  σν  10−44εν
2  cm  εν :  energy in MeV( )

It is only possible to get a short mean-free-path if the density 
is very high.  This is only true in the cores of SN where neutrino  
pressure is important. 

λ =
1
nσν

 λ  10
20εν

−2ρ−1cm

dLm
dm

= ε + εgrav − εν



Nuclear Energy Generation 
•  Lighter nuclei with mass Mj fuse to form a heavier nucleus 
  of mass My .  The energy liberated is 

4 × 1H  (mass 1.0079 amu) →  4He (mass 4.0026 amu)

•  The mass of a nucleus is not simply equal to the sum of 
  its constituents (i.e., protons and neutrons).  There is also 
  binding energy that holds the constituents together. 

E = ΔMc2 = M j − My
j
∑

⎛

⎝⎜
⎞

⎠⎟
c2

 ΔM  0.7% or original masses, or 26.5MeV



Nuclear Energy Generation 
•  The binding energy of a nucleus is defined to be 

•  Binding energy = energy required to separate the nucleus to 
  infinity against binding forces. 

EB = mass of constituent nucleons −  mass of bound nucleus( )c2

f = EB

A

EB = A − Z( )mn + Zmp − M nuc⎡⎣ ⎤⎦c
2 mn : neutron mass

mp : proton mass

•  The binding energy per nucleon is 



Nuclear Energy Generation 
•  To get energy from fusing lighter nuclei into heavier nuclei, 
   the total binding energy of the light nuclei must be lower than  
   that of the heavier nucleus. M nucfor light > M nucfor heavy( )

EB

A
•  A nuclear reaction can release energy if         for light element 
  is less than that for heavy element. 

e.g.,  3× 4He→ 12C 3× 4He :   3
c2 EB,He = 3× 2n + 2p − MHe( )

12C :   1
c2 EB,C = 6n + 6p − MC( )

3MHe > MC →  3EB,He < EB,C →
EB,He

4
<
EB,C

12



Nuclear Energy Generation 
•  The most tightly bound nucleus is 56Fe.  Fusion of pure 1H 
   to 56Fe yields ~8.5MeV per nucleon, the largest part of which 
   (6.6MeV) is already obtained in fusion to 4He. 

f
MeV( )

A
0 50 100 150
6 −

9 −

8 −

7 −

•  Fusion of elements with 
   A<56 yields energy. 

•  Fission of elements with 
   A>56 yields energy. 

•  Elements near 56Fe are 
  the most tightly bound  
  and are thus not much  
  use for energy production. 

•  If a star ends up with 56Fe, energy production is over. 

56Fe 



Nuclear Energy Generation: Coulomb Barrier 
•  To fuse, nuclei must surmount 
   a Coulomb barrier. 

E

r
0 r0

•  Nuclear forces dominate   
   within a radius 

•  For nuclei of charge Z1 and Z2   
  height of Coulomb barrier is 

•  At T=107 K, the thermal energy kT is ~103eV 
  classically there are ZERO particles in a thermal  
 distribution with sufficient energy to fuse at this T.  

r0 = 1.44 ×10
−13A1 3cm

EC

 
EC =

Z1Z2e
2

r0
 Z1Z2  MeV



Nuclear Energy Generation: Tunneling 
•  Quantum tunneling is required for fusion to take place. 
   Tunneling probability is  

P  increases rapidly with energy 
P  decreases with Z1, Z2      lightest elements can fuse 
                                               at lowest temperatures. 

•  Higher energies and temperatures are needed to fuse 
  heavier nuclei    well separated phases in which different 
  elements burn during stellar evolution. 

P = P0E
−1 2e−2πη

 
η =

m
2

⎛
⎝⎜

⎞
⎠⎟
1 2 Z1Z2e

2

E1 2
P0 :  depends on nuclei
m : reduced mass

H → He
He→ C,O
C,O→ Na,Ne,Si,P

T ↓



Nuclear Energy Generation: Resonances 
•  Most thermonuclear reactions in stars proceed through an 
   intermediate state called the “compound nucleus” 

α + X→ Z ∗ → Y + β
α :  projectile (proton or α  particle)
X :  target nucleus
Z ∗ :  compound nucleus in excited state

•  Reactions happen in several steps: 

•  Tunneling through the Coulomb barrier 

•  Formation of a compound excited nucleus Z*, whose 
   energy depends on the reaction and kinetic energy of 
   reacting particles. 

•  Decay of the Z* via emission of photons, neutrons,  
   protons, alpha particles, electrons, etc. 



Nuclear Energy Generation: Resonances 

•  The probability of a given output depends on the decay lifetime 
   over the sum of all possible lifetimes. 

p + 11B→ 12C∗ → 12C∗∗ + γ
→ 11B + p

→ 11C + n

→ 12N + e− + νe

→ 8Be + 4He

e.g., 

If      is the lifetime of a particular output, then the probability 
of that output is: 
τ i

Pi =
1 τ i
1 τ i

i
∑

=
τ
τ i

where  τ = 1 τ i
i
∑⎛⎝⎜

⎞
⎠⎟

−1

: total mean life of 12 C∗



Nuclear Energy Generation: Resonances 
•  Through the uncertainty principle, the energy width is  Γ iτ i = 

Pi =
Γ i

Γ j
j
∑

=
Γ i

Γ
where  Γ : total energy width of 12 C∗

•  The compound nucleus has 
Stationary energy levels 
corresponding to excited atomic  
states that can decay via photon  
emission. 

Quasi-stationary levels, which  
can decay via particles tunneling 
back through the Coulomb barrier. 

E r



Nuclear Energy Generation: Resonances 

•  The lifetimes of quasi-stationary states are shorter and they  
   have broader energy ranges. 

E r

quasi- 
stationary 

levels 

stationary 
levels 

resonant energy 

non-resonant  
energy 

•  At high energy, the width of states increases so that energy 
   levels overlap  continuum of excited levels. 



Nuclear Energy Generation: Resonances 
•  The cross-section for some astrophysically interesting   
   reactions depends critically upon the energy level  
   structure of the compound nucleus.  At resonant energies, 
       can be boosted by orders of magnitude. 

E

σ

σ

•  The maximum cross-section 
   is the geometric cross-section 

πλ2 ∝ E−1

•  Also, add dominant exponential 
  tunneling factor 

σ E( ) = S E( )E−1e−2πη

S : astrophysical cross-section: varies very slowly with E



Nuclear Energy Generation: Reaction Rates 

•  Which energies of a particle contribute most to the total    
   reaction rate? 
   High E gives higher probability for fusion per reaction, but fewer    
   potential reactions 

•  Why do nuclear reactions have a high T dependence? 

•  The energy generation rate depends on the energy released 
   per reaction times the reaction rate. 



Nuclear Energy Generation: Reaction Rates 
•  Consider particles of type j moving with velocity v relative to 
   particles of type k.  The number densities are nj and nk. 

nj

•  The number of reactions per unit time per volume is: 

 
rjk = nj ⋅nk ⋅σ ⋅ v

nk

•  To avoid double counting: 

 
rjk =

1
1+ δ jk

n jnkσv

 
v



Nuclear Energy Generation: Reaction Rates 
•  Assume that both species have Maxwell-Boltzmann velocity 
  distributions  the relative velocity is also Maxwellian. 

E kT

f E( )

E =
1
2
mv2 ,   where m is the reduced mass:   m =

mjmk

mj + mk

•  The fraction of all pairs with  
   energy between E and E+dE: 

f E( )dE =
2
π

E1 2

kT( )3 2
e−E kT dE



Nuclear Energy Generation: Reaction Rates 
•  The total reaction rate (per volume, per time) is the mono- 
   energetic rate integrated over all energies and weighted by f(E) 

where 

rjk =
1

1+ δ jk

n jnk σv

σv = σ
0

∞

∫ E( ) ⋅ v ⋅ f E( )dE

•  Replace number densities with mass fractions: Xiρ = nimi

•  If each reaction releases an amount of energy Q, then: 

ε jk =
1

1+ δ jk

Q
mjmk

ρXjXk σv energy
time ⋅mass

⎛
⎝⎜

⎞
⎠⎟



Nuclear Energy Generation: Reaction Rates 
•  All the temperature dependence is contained in  

σv = σ
0

∞

∫ E( ) ⋅ v ⋅ f E( )dE

σv
σ E( ) = S E( )E−1e−2πη

v = 2E
m

⎛
⎝⎜

⎞
⎠⎟
1 2

f E( )dE =
2
π

E1 2

kT( )3 2
e−E kT dE

= S E( )E−1e−2πη 2
m

⎛
⎝⎜

⎞
⎠⎟
1 2

E1 2 2
π

E1 2

kT( )3 2
e−E kT dE

0

∞

∫

=
23 2

πm( )1 2
1

kT( )3 2
S E( )e−2πηe−E kT dE

0

∞

∫



Nuclear Energy Generation: Reaction Rates 

•  Ignore S(E).  As E goes up, the energy distribution term 
  (Maxwellian) drops, and the tunneling term increases. 

 
η =

m
2

⎛
⎝⎜

⎞
⎠⎟
1 2 Z1Z2e

2

E1 2

σv =
23 2

πm( )1 2
1

kT( )3 2
S E( )e−2πηe−E kT dE

0

∞

∫

η = 2πηE1 2
 
= π 2m( )1 2 Z1Z2e

2



σv =
23 2

πm( )1 2
1

kT( )3 2
S E( )e −E kT −η E1 2( ) dE

0

∞

∫



Nuclear Energy Generation: Reaction Rates 

•  Integrand peaks at E0, where 
  d(Integrand)/dE = 0 

Integrand = S E( )e −E kT −η E1 2( )

E

In
te

gr
an

d 

Maxwellian Tunneling 

E0

•  Since only a narrow range of E 
   contributes to the integral, it is 
   ok to assume 
   (for non-resonant reactions)    

S E( ) ≈ S0 = const

d Integrand( )
dE

= e −E kT −η E1 2( ) −
1
kT

+
η
E
1
2
E−1 2⎛

⎝⎜
⎞
⎠⎟

η
E
1
2
E−1 2 =

1
kT

•  This is zero when: → E0 =
ηkT
2

⎛
⎝⎜

⎞
⎠⎟
2 3

Gamow peak 



Nuclear Energy Generation: Reaction Rates 
•  Evaluate the integral 

f E( ) = f E0( ) + ′f E0( ) E − E0( ) + 1
2

′′f E0( ) E − E0( )2 + ...

e −E kT −η E1 2( ) dE
0

∞

∫ = e f E( ) dE
0

∞

∫
•  Expand f(E) about the maximum at E=E0 using a  
  series expansion truncated at the quadratic term 

f E0( ) = −
E0
kT

−
η
E0
1 2

′f E0( ) = −
1
kT

+
η
2E0

3 2

′′f E0( ) = −
η
2E0

3

3
2
E0
1 2 = −

3η
4E0

5 2

η =
2E0

3 2

kT

= −
E0
kT

−
2E0
kT

= −3 E0
kT

= −
3

2E0kT

= 0



Nuclear Energy Generation: Reaction Rates 
f E( ) = f E0( ) + 1

2
′′f E0( ) E − E0( )2 + ...

= −3 E0
kT

+
1
2

−
3

2E0kT
⎛
⎝⎜

⎞
⎠⎟
E − E0( )2 + ...

= −3 E0
kT

−
3

4E0kT
E0
2 E
E0

−1
⎛
⎝⎜

⎞
⎠⎟

2

+ ...

= −3 E0
kT

−
3E0
4kT

E
E0

−1
⎛
⎝⎜

⎞
⎠⎟

2

+ ... τ = 3 E0
kT

= −τ − 1
4
τ E

E0
−1

⎛
⎝⎜

⎞
⎠⎟

2

+ ...

e f E( ) dE
0

∞

∫ = exp −τ − 1
4
τ E

E0
−1

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dE

0

∞

∫



Nuclear Energy Generation: Reaction Rates 
e f E( ) dE

0

∞

∫ = exp −τ − 1
4
τ E

E0
−1

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dE

0

∞

∫

= e−τ exp −
τ
4

E
E0

−1
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dE

0

∞

∫

= e−τ e
−
τ
4
x2

E0 dx
0

∞

∫

x = E
E0

−1
⎛
⎝⎜

⎞
⎠⎟

dx = dE
E0

= E0e
−τ e

−
τ
4
x2

dx
0

∞

∫ = E0e
−τ π

τ
⎛
⎝⎜

⎞
⎠⎟
1 2

=
τkT
3

e−τ π
τ

⎛
⎝⎜

⎞
⎠⎟
1 2

=
π 1 2

3
kTτ 1 2e−τ

e −E kT −η E1 2( ) dE
0

∞

∫ =
π 1 2

3
kTτ 1 2e−τ



Nuclear Energy Generation: Reaction Rates 
•  Plug this into the expression for the cross-section 

σv =
23 2

πm( )1 2
S0
kT( )3 2

e −E kT −η E1 2( ) dE
0

∞

∫

σv =
23 2

πm( )1 2
1

kT( )3 2
π 1 2

3
S0kTτ

1 2e−τ

σv =
22 3

3 m( )1 2
1

kT( )1 2
S0τ

1 2e−τ

σv ∝ S0τ
2e−τ

 
τ  E0

kT


kT( )2 3
kT

= kT( )−1 3

 → kT  τ −3



Nuclear Energy Generation: Reaction Rates 

•  Peak energy: E0 =
ηkT
2

⎛
⎝⎜

⎞
⎠⎟
2 3

E0
kT

=
ηkT
2

⎛
⎝⎜

⎞
⎠⎟
2 3 1
kT

 
η = π 2m( )1 2 Z1Z2e

2



 
=

π 2m( )1 2 Z1Z2e2
2

⎛

⎝⎜
⎞

⎠⎟

2 3

kT( )−1 3

m =
mjmk

mj + mk

=
AjAk
Aj + Ak

mp

 

E0
kT

=
π 2e4mp

22
⎛

⎝⎜
⎞

⎠⎟

1 3
AjAk
Aj + Ak

⎛

⎝⎜
⎞

⎠⎟

1 3

Z1Z2( )2 3 kT( )−1 3



Nuclear Energy Generation: Reaction Rates 
•  Peak energy: 

 

E0
kT

=
π 2e4mp

22
⎛

⎝⎜
⎞

⎠⎟

1 3
AjAk
Aj + Ak

⎛

⎝⎜
⎞

⎠⎟

1 3

Z1Z2( )2 3 kT( )−1 3

W = Z1
2Z2

2 AjAk
Aj + Ak

E0
kT

≈ 6.6W 1 3 T
107K

⎛
⎝⎜

⎞
⎠⎟
−1 3

The peak energy increases  
with W   separated phases  
of nuclear burning 

W 1 3

Z
H He

1−

20 −

Li Be B C

10 −

15 −

5 −



Nuclear Energy Generation: Reaction Rates 

•  Temperature dependence of energy generation rate  

= 6.6W 1 3 T
107K

⎛
⎝⎜

⎞
⎠⎟
−1 3

−
2
3

 ε jk  σv  τ 2e−τ  τ  T
−1 3

 ε jk  T
ν →ν =

∂ lnε jk

∂ lnT
=
∂ lnε jk

∂ lnτ
∂ lnτ
∂ lnT

=
∂ 2 lnτ − τ( )

∂ lnτ
∂ − lnT 3( )

∂ lnT
= 2 − ∂τ

∂ lnτ
⎛
⎝⎜

⎞
⎠⎟

−
1
3

⎛
⎝⎜

⎞
⎠⎟

= 2 − τ( ) −
1
3

⎛
⎝⎜

⎞
⎠⎟
→ ν =

τ
3
−
2
3

for lightest elements, rising to              for heavier nuclei. ν ≈ 5 ν ≈ 20
Strong T dependence  stars must be stable to T fluctuations. 



Nuclear Energy Generation: Reaction Rates 
•  We can use reaction rates to compute the time derivatives 
   of mass fractions. 

rjk =
1

1+ δ jk

X jXk
ρ2

mjmk

σvNumber of reactions  
per volume, per time: 

•  Consider the reaction A + B→ C
The abundances of A, B, and C depend on rA,B 

•  Each reaction yields one C, so the rate of change of the number    
   density of C = rA,B  

dnC
dt

= rA,B →
dXC

dt
ρ
mC

= rA,B →
dXC

dt
= AC

mp

ρ
rA,B

→
dXC

dt
= AC

mp

ρ
1

1+ δAB

XAXB
ρ2

mAmB

σv



Nuclear Energy Generation: Reaction Rates 
dXC

dt
= AC

XAXB

1+ δAB

ρ
AAABmp

σv

 
  

′rA,B

= AC
XAXB

1+ δAB

′rA,B

4He + 4He→ 8Be
8Be + 4He→ 12C
12C + 4He→ 16O

e.g., 

d 4He
dt

= 4 −2
4He 4He
2

⋅ ′r4,4 −
4He 8Be ⋅ ′r4,8 −

4He12C ⋅ ′r4,12
⎛
⎝⎜

⎞
⎠⎟

d 16O
dt

= 16 4He12C ⋅ ′r4,12( )

d 12C
dt

= 12 4He 8Be ⋅ ′r4,8 −
4He12C ⋅ ′r4,12( )

d 8Be
dt

= 8
4He 4He
2

⋅ ′r4,4 −
4He 8Be ⋅ ′r4,8

⎛
⎝⎜

⎞
⎠⎟



Nuclear Energy Generation: Reaction Rates 

4He + 4He→ 8Be
8Be + 4He→ 12C
12C + 4He→ 16O

4He 8Be ⋅ ′r4,8 =
4He12C ⋅ ′r4,12

4He 4He
2

⋅ ′r4,4 =
4He 8Be ⋅ ′r4,8

•  In “equilibrium”, the mass fractions of          and          are 
   conserved. 

8Be 12C

d 8Be
dt

=
d 12C
dt

= 0

→ 8Be = 1
2
4He

′r4,4
′r4,8

→ 12C = 8Be
′r4,8
′r4,12

=
1
2
4He

′r4,4
′r4,12



1H + 1H → 2H + e+ + νe

•  Nuclear reactions usually involve several steps. 
•  The rate is controlled by the rate of the slowest reaction in the chain. 
•  The total energy release is the sum of energies of the individual steps. 

The first step in the p-p chain is: 

This reaction is non-resonant. 

This reaction is slow because it involves a weak decay 
While two protons are flashing past each other, one of them undergoes a weak  
decay into a neutron at that exact instant. 

To make 4He, we need 4 protons, two of which must be converted 
Into neutrons via either positron decays or e- capture. 

p→ n + e+ + νe p + e− → n + νe

The proton-proton chain 



The proton-proton chain 

rpp = 1.15 ×10
9T9

−2 3X 2ρ2 exp −3.38 T9
1 3( )cm−3s−1

The reaction rate is: 

ν pp =
11.3
T6
1 3 −

2
3

The temperature sensitivity is: 

In sun: T6 ≈ 15→ν pp ≈ 4

τ p = −
np

dnp dt
=
np
2rpp

≈ 6 ×109 yr

The lifetime of a proton against destruction is: 

For center of Sun 



The proton-proton chain 

1 2 3 4 5 6 7 8 

B 
Be 
Li 
He 
H 

1H + 1H → 2H + e+ + νe
2H + 1H → 3He + γ
3He + 3He→ 4He + 1H + 1H

pp1 

3He + 4He→ 7Be + γ
7Be + e− → 7Li + νe

pp2 

First two reactions of pp1 

7Li + 1H → 4He + 4He

7Be + 1H → 8B + γ
8B→ 8Be + e+ + νe + γ

pp3 

First three reactions of pp2 

8Be→ 4He + 4He



The proton-proton chain 
1H + 1H → 2H + e+ + νe
2H + 1H → 3He + γ
3He + 3He→ 4He + 1H + 1H

pp1 

3He + 4He→ 7Be + γ
7Be + e− → 7Li + νe

pp2 

First two reactions of pp1 

7Li + 1H → 4He + 4He

7Be + 1H → 8B + γ
8B→ 8Be + e+ + νe + γ

pp3 

First three reactions of pp2 

8Be→ 4He + 4He

This reaction happens twice 

Solar neutrinos! 

Slowest 
Fastest 



The proton-proton chain 
1H + 1H → 2H + e+ + νe
2H + 1H → 3He + γ
3He + 3He→ 4He + 1H + 1H

pp1 

3He + 4He→ 7Be + γ
7Be + e− → 7Li + νe

pp2 

First two reactions of pp1 

7Li + 1H → 4He + 4He

7Be + 1H → 8B + γ
8B→ 8Be + e+ + νe + γ

pp3 

First three reactions of pp2 

8Be→ 4He + 4He

pp1 is the most direct route but it involves 
the collision of two short lived 3He nuclei. 

Relative importance of chains thus depends 
on 3He abundance. 

As T increases, equilibrium abundance of 
3He decreases. 

As T increases, importance of pp2 and pp3 
relative to pp1 increases. 



The proton-proton chain 
3He + 3He→ 4He + 1H + 1H

3He + 4He→ 7Be + γ

7Be + e− → 7Li + νe

7Be + 1H → 8B + γ

pp1: 

pp2: 

pp2: 

pp3: 

 r3,3 
3He( )2 σv 3,3

 r3,4 
3He 4He σv 3,4

pp2 will dominate when:  
 
r3,4 > r3,3   →   

4He
3He

>
σv 3,3

σv 3,4

 1

 r7,+ 
7Be × p+ σv 7,+

 r7,− 
7Be × e− σv 7,−

pp3 will dominate when:  r7,+ > r7,−   →   σv 7,+ > σv 7,−



The proton-proton chain 

ε pp = 2.4 ×10
4 ρX 2

T9
2 3 exp −3.38 T9

1 3( )ergs−1g−1

The energy generation rate is: 



The CNO cycle 

12 13 14 15 16 17 18 19 

F 
O 
N 
C 

12C + 1H → 13N + γ
13N → 13C + e+ + νe
13C + 1H → 14N + γ

CNO1 

CNO2 

14N + 1H → 15O + γ
15O→ 15N + e+ + νe
15N + 1H → 12C + 4He

15N + 1H → 16O + γ
16O + 1H → 17F + γ
17F→ 17O + e+ + νe

17O + 1H → 14N + 4He

CNO3 

17O + 1H → 18F + γ

18O + 1H → 19F + γ

18F→ 18O + e+ + νe

19F + 1H → 16O + 4He



The CNO cycle 
12C + 1H → 13N + γ
13N → 13C + e+ + νe
13C + 1H → 14N + γ

CNO1 

CNO2 

14N + 1H → 15O + γ
15O→ 15N + e+ + νe
15N + 1H → 12C + 4He

15N + 1H → 16O + γ
16O + 1H → 17F + γ
17F→ 17O + e+ + νe

17O + 1H → 14N + 4He

CNO3 

17O + 1H → 18F + γ

18O + 1H → 19F + γ

18F→ 18O + e+ + νe

19F + 1H → 16O + 4He

This is the slowest reaction and sets 
the overall rate. 

After long enough time, the most 
abundant nucleus will be 14N  
Most CNO  14N 

Timescale to reach equilibrium is long 



The CNO cycle 

εCNO ≈ 4.4 ×1025 ρXZ
T9
2 3 exp −15.228 T9

1 3( )ergs−1g−1

The approximate energy generation rate is: 

νCNO =
50.8
T6
1 3 −

2
3

The temperature sensitivity is: 

T6 ≈ 20→νCNO ≈ 18



pp chain vs. CNO cycle 

CNO is favored over pp 
when: 

•  T is high 
  Since heavier nuclei are involved 

•  Metallicity is high 
  Since CNO nuclei are needed 

Sun 



He Burning (triple     ) 
This is the inverse of the final reaction in the pp3 chain. 

The reaction is endothermic, absorbing 92 keV of energy.  Requires about 
this much energy in Gamow peak 

� 

4He+4He→8Be

� 

E0

kT
≈ 6.6W 1 3T7

−1 3 W = Z j
2Zk

2 AjAk
Aj + Ak

� 

E0 = 92keV → T =1.15 ×108K
Lower limit for He burning 

•  When T>108K, 8Be is created roughly as fast as it is destroyed (via inverse reaction) 

We can find equilibrium abundance via         , but we can also use a Saha  
equation for nuclei: 

� 

nα
2

n 8Be

= πmαkT
h2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
3 2

e−Q kT

� 

Q = 92keV

� 

T =108K → nBe
nα

= 7 ×10−9

α

σv



He Burning 

The reaction is exothermic and resonant, proceeding via an excited state 12C* 

� 

8Be+4He→12C + γ + γ

� 

12C

� 

12C*

� 

γ

� 

γ� 

7.65MeV

� 

4.44MeV

� 

α + α

� 

8Be
� 

8Be + α

� 

92keV

� 

287keV

Most 12C* decay straight back to 8Be + 4He, but some emit a photon to form a stable 12C 

� 

12C*

ground state 



He Burning 
The approximate energy generation rate is: 

The temperature sensitivity is: 

� 

ε3α = 5 ×108 ρ
2Y 3

T9
3 exp −4.4 T9( )ergs−1g−1

� 

ν 3α = 4.4
T9

− 3

� 

T9 = 0.1→ν 3α ≈ 40



He Burning 
The effect of He burning on the structure of the star depends on the central 
conditions at the moment of ignition. 

•  Low mass stars (M < 0.4Msun) develop a fully degenerate Helium core before the 
temperature rises to the He ignition threshold.  The core cannot contract or heat up 
further  no He burning  He white dwarf 

•  High mass stars (M > 1.5Msun) ignite He while the density is well below the 
degeneracy threshold (       <<106g cm-3)  No large structural changes 

•  Intermediate mass stars ignite He under conditions of partial degeneracy.  This 
allows a runaway reaction:  He flash 

ρ



He Flash 
•  Under degenerate conditions, pressure is a function of        only, not T. 

•  Upon He ignition, the energy release leads to a T rise.  However, this does not lead  
   to a P rise and hence to expansion and consequent reduction in       and T, as in a  
   non-degenrate gas. 

•  Higher T increases the rate of nuclear reactions further  runaway 

Non-degenerate core: He ignition  T   P   expand  T  stable 

Degenerate core: He ignition  T            T     unstable 

•  This continues until T is high enough in the core to lift degeneracy.  The core then  
   expands rapidly until a new stable He burning structure is attained. 

ρ

ρ

ε



Heavier elements 

(Reactions beyond 20Ne are rare.) 

� 

12C+4He→16O+ γ
16O+4He→20Ne + γ

•  Once enough 12C is formed by the triple-     reaction, further captures of        particles occur  
  simultaneously with the Carbon forming reaction.	



•  Si burning starts at T~3x109K 

•  over long timescales  56Fe 

•  over short timescales  56Ni 
  (e.g., in SN) 

•  He burning ---> C, O, Ne.  If T>109K, further reactions can occur.  Since binding energies  
  of heavy nuclei are comparable, a wide range of reactions are possible.	



� 

12C+12C→20Ne+4He
12C+12C→23Na + p
16O+16O→31P + p
16O+16O→28Si+4He
16O+16O→31S + n

Most important C burning 

Most common O burning 

α α



Summary of Results 

1. Mass Conservation 

dm
dr

= 4πr2ρ
dr
dm

=
1

4πr2ρ
eulerian lagrangian 



Summary of Results 

2. Hydrostatic Equilibrium 

dP
dr

= −ρGm
r2

dP
dm

= −
Gm
4πr4

eulerian lagrangian 

Need equation of state: P = f ρ,T ,Xi( )



Summary of Results 

3. Energy Generation 

dLr
dr

= 4πr2ρε dLm
dm

= ε

eulerian lagrangian 

Need nuclear physics: ε = f ρ,T ,Xi( )



Summary of Results 

4. Energy Flow: Radiation 

dT
dr

= −
3κρLr

16πacr2T 3

dT
dm

= −
3κLm

64π 2acr4T 3

eulerian lagrangian 

Need opacity: κ = f ρ,T ,Xi( )



Summary of Results 

4. Energy Flow: Convection 

dT
dr

= − 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
GmρT
r2P

eulerian lagrangian 

Need adiabatic exponent: Γ2 = f ρ,T ,Xi( )

dT
dm

= − 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
GmT
4πr4P



Summary of Results 

Equation of State (non-degenerate matter) 

P =
1
3
aT 4 +

NAk
µ

ρT

Mean molecular weight: 
1
µ
=
1
µi

+
1
µe

=
Xi

Ai
+

i
∑ ZiXiyi

Aii
∑



Summary of Results 

Ionization fractions yi 

n+ne
n0

=
2G+

G0

2πmekT( )3 2
h3

exp −
χ
kT

⎛
⎝⎜

⎞
⎠⎟Saha equation : 

y2

1− y
=

1
NAρ

2πmekT( )3 2
h3

exp −
χH

kT
⎛
⎝⎜

⎞
⎠⎟

e.g., Hydrogen only : 



Summary of Results 

Thermodynamics 

Γ2 =
32 − 24β − 3β 2

24 −18β − 3β 2

Adiabatic index : 

β =
Pg
Ptot

(assuming neutral or fully ionized gas) 

Γ2

Γ2 −1
=

∂ lnP
∂ lnT

⎛
⎝⎜

⎞
⎠⎟ ad



Summary of Results 

Opacity: approximations 

1
κ
≈
1

κ
H −

+
1

κ e +κ ff +κ bf

κ e = 0.2 1+ X( )cm2g−1
(assuming fully ionized and no metals) 

κ
H − ≈ 2.5 ×10−31 Z 0.02( )ρ1 2T 9cm2g−1

κ ff ≈ 4 ×10
22 X +Y( ) 1+ X( )ρT −3.5cm2g−1

κ bf ≈ 4 ×10
25Z 1+ X( )ρT −3.5cm2g−1



Summary of Results 

Opacity: tables 

   logR 
logT 

-6.0 -5.5 

6.1 -0.429 -0.409 

6.2 -0.429 -0.397 

Interpolate in density, 
temperature, and  
composition. 

logR = -5.83 

logT = 6.192 



Summary of Results 

Convection 

Convection happens when: 
dT
dr rad

>
dT
dr ad

Lm >
16πacG
3κ R

1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T 4m
P



Summary of Results 

Energy generation 

ε pp = 2.4 ×10
4 ρX 2

T9
2 3 exp −3.38 T9

1 3( )ergs−1g−1

εCNO ≈ 4.4 ×1025 ρXZ
T9
2 3 exp −15.228 T9

1 3( )ergs−1g−1

� 

ε3α = 5 ×108 ρ
2Y 3

T9
3 exp −4.4 T9( )ergs−1g−1

ε = ε pp + εCNO + ε3α



Stellar Models 

Given M and X,Y,Z,  solve structure equations 

dr
dm

dP
dm

dLm
dm

dT
dm

to get r, P, T, Lm as a function of m  

Need to know: 
ρ P,T ,X,Y ,Z( )
κ R ρ,T ,X,Y ,Z( )

ε ρ,T ,X,Y ,Z( )
Γ2 ρ,T ,X,Y ,Z( )



Stellar Models 

CENTER SURFACE 

m = 0

r = 0

Lm = 0
T = Tc
P = Pc

m = M

r = R

Lm = L
T ≈ 0
P ≈ 0

✔ 

✔ 

✔ 

✔ 



Stellar Models 

•  Some of these equations 
are indeterminant at center. 

dr
dm

=
1

4πr2ρ

dP
dm

= −
Gm
4πr4

dLm
dm

= ε

dT
dm

= −
3κLm

64π 2acr4T 3

dT
dm

= − 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
GmT
4πr4P

•  It is better to start the 
integration at a very small 
m>0. 



Stellar Models 
Central boundary conditions 

m =
4
3
πr3ρc → r = 3m

4πρc

⎛
⎝⎜

⎞
⎠⎟

1 3

At a very small m>0: 

Lm = εcmLm ≠ 0

r ≠ 0



Stellar Models 
Central boundary conditions 

•  We can get boundary conditions for P and T by expanding and 
demanding that their derivatives are zero at r=0  

P r( ) = P 0( ) + ′P 0( ) r − 0( ) + 1
2

′′P 0( ) r − 0( )2

= Pc + ′′P 0( ) r
2

2

0 

P r( ) = Pc −
2
3
πGρc

2r2

′P r( ) = −
Gmρ
r2



Stellar Models 
Central boundary conditions 

•  Similarly,  

T r( ) = T 0( ) + ′T 0( ) r − 0( ) + 1
2

′′T 0( ) r − 0( )2

= Tc + ′′T 0( ) r
2

2

0 

T r( ) = Tc −
κ cρc

2εc
8acTc

3 r
2

′T r( ) = −
3κ RρLr

16πacr2T 3

′T r( ) = 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
T
P
dP
dr

T r( ) = Tc − 1− 1
Γ2,c

⎛

⎝⎜
⎞

⎠⎟
2πGρc

2Tc
Pc

r2

Radiative 

Convective 



Stellar Models 
Surface boundary conditions 

•  We can do better than T=P=0 at surface.  

L = 4πR2σTs
4 → Ts =

L
4πR2σ

⎛
⎝⎜

⎞
⎠⎟
1 4

Ps =
1
3
aTs

4 +
NAk
µ

ρsTs

guess R and L:  

Guess          very small, i.e. 10-5 g cm-3:  ρ



Stellar Models 
Steps in constructing a stellar model 

1.  Compute                      as a function of  
 DENSITY 
•  Beware of P dropping below  
OPACITY 
•  Use approximations for crude results 
•  Interpolate using tables (use approximations 

outside table bounds) 
ENERGY GENERATION 
•  Use formulas for pp, CNO, and 3 
THERMODYNAMICS 
•           5/3 for ideal gas, 4/3 for radiation pressure 
•          departs from these values when 

•  Mixture of ideal gas and radiation 
•  Ionization zones 

1
3
aT 4

ρ,  κ ,  ε,  Γ2

α

Γ2 =
Γ2

P,  T ,  X,  Y ,  Z



Stellar Models 
Steps in constructing a stellar model 

2.  Use four structure equations to compute                 
vs.      given starting values for these (boundary 
conditions). 

•  Given values of                                                     
at shell  
 compute 4 derivatives: 

•  Use these derivatives to compute                 
 at shell      
   e.g.,  

•  Shell size                         near center and surface. 

dr
dm
, dP
dm
, dLm
dm

, dT
dm

r[i +1] = r[i]+ dr
dm

⎛
⎝⎜

⎞
⎠⎟
i[ ]× dm

m,  r,  P,  T ,  Lm ,  ρ,  κ ,  ε,  Γ2

r,  P,  T ,  Lm
m

r,  P,  T ,  Lm

i

i +1

dm < 10−4M



Stellar Models 
Steps in constructing a stellar model 

3.  Deal with lack of complete boundary conditions at 
center or surface. 
•  At center, have r, Lm, but not P, T 
•  At surface, have P, T, but not r, Lm 
•  General approach: guess values for missing 

conditions at one end, run model, and compare 
boundary conditions at other end. 
 PROBLEM: small changes in conditions at center 
can cause large differences at surface  difficult 
to reach convergence. 
 SOLUTION: Shoot from both center and surface 
and meet halfway through star. 



Stellar Models 

m = 0.5



Stellar Models 

•  Guess values for       and       and integrate outwards  
 from             to 

•  Guess values for       and      and integrate inwards 
from              to   

•  Compute discrepancies                                                           at 

•  Work in log space: 

Δr,  ΔP,  ΔT ,  ΔLm

logP,  logT ,  log r, logLm

m = M 2

m = M 2m = M

m = M 2m = 0

R L

PcTc



Stellar Models 

M M/2 

logP logT 

logr logLm 

M 0 M/2 0 

guess guess 

guess guess 

Δ logP

Δ log r
Δ logLm

Δ logT



Stellar Models 



Stellar Models 

Δ logP

Δ logT

Δ log r

Δ logLm

logPc logR

logTc logL

Discrepancies Boundary Conditions 



Stellar Models 
•  Repeat using new trial values: 

•  Compute new discrepancies in each case. 

•  Get 16 derivatives.  e.g.,   

logTc − d logTc( )  and logTc + d logTc( )   with  logPc ,  logR,  logL
logPc − d logPc( )  and logPc + d logPc( )   with  logTc ,  logR,  logL
logR − d logR( )    and logR + d logR( )    with  logPc ,  logTc ,  logL
logL − d logL( )    and logL + d logL( )    with  logPc ,  logTc ,  logR

Δ log r,  Δ logP,  Δ logT ,  Δ logLm

∂ Δ logT( )
∂ logR

=
Δ logT( )log R+d log R − Δ logT( )log R−d log R

2d logR



Stellar Models 

•  Use these derivatives to calculate improved 
boundary conditions. 

log ′Pc = logPc + δ logPc
log ′Tc = logTc + δ logTc
log ′R = logR + δ logR
log ′L = logL + δ logL

•  General idea:   

−Δ log r = δ logPc
∂ Δ log r( )
∂ logPc

→δ logPc = −Δ log r
∂ Δ log r( )
∂ logPc

⎡

⎣
⎢

⎤

⎦
⎥

−1

•  More complicated with 4 variables!   



Stellar Models 

•  Invert matrix to solve for 
 (actually take smaller steps ~0.1x)  

∂ Δ logP( )
∂ logPc

∂ Δ logP( )
∂ logTc

∂ Δ logP( )
∂ logR

∂ Δ logP( )
∂ logL

∂ Δ logT( )
∂ logPc

∂ Δ logT( )
∂ logTc

∂ Δ logT( )
∂ logR

∂ Δ logT( )
∂ logL

∂ Δ log r( )
∂ logPc

∂ Δ log r( )
∂ logTc

∂ Δ log r( )
∂ logR

∂ Δ log r( )
∂ logL

∂ Δ logLm( )
∂ logPc

∂ Δ logLm( )
∂ logTc

∂ Δ logLm( )
∂ logR

∂ Δ logLm( )
∂ logL

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

×

δ logPc

δ logTc

δ logR

δ logL

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

Δ logP

Δ logT

Δ log r

Δ logLm

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

δ logPc ,  δ logTc ,  δ logR,  δ logL

•  Iterate until convergence is reached: discrepancies 
vanish (i.e., drop below a threshold value) 



Gravitational collapse of gas 

cs = γ P
ρ

= γ nkT
ρ

= γ kT
m

•  Assume a gas cloud of mass M and diameter D 

•  Sound speed for ideal gas is 

tsound =
D
cs

== D m
γ kT

⎛
⎝⎜

⎞
⎠⎟

1 2

•  Time for sound wave to cross the cloud 

t ff =
1
Gρ

•  Time for free-fall collapse is 

t ff < tsound•  Gravity beats pressure support when 



Gravitational collapse of gas 

t ff = tsound →
1
Gρ

= D m
γ kT

⎛
⎝⎜

⎞
⎠⎟

1 2

•  Critical cloud size is then 

λJ =
γ kT
mGρ

⎛
⎝⎜

⎞
⎠⎟

1 2

MJ =
4
3
π λJ

2
⎛
⎝⎜

⎞
⎠⎟
3

ρ→•  Associated Jeans mass is 

MJ =
π
6

γ kT
mG

⎛
⎝⎜

⎞
⎠⎟
3 2

ρ5 2

This is the Jeans length 



Star Formation 



Star Formation Starting Inputs: 
Mass: 50 Msun 
Diameter: 0.375 pc 
Temperature: 10 K 
Mean mol. Weight: 2.46 
(Jeans mass = 1 Msun) 
Time evolved = 266K years 

Initial density and turbulence 
spectra. 

Computing: 
SPH code, 3.5 M particles 
100K CPU-hours on 64 CPUs 
(65 days) 
Resolution: 1-5 AU 

Bate, M. R., et al. (2002) 



Star Formation 

Original cloud    Denser cloud 



Star Formation 



Star Formation 
These simulations show: 

•  Star formation is a very chaotic and dynamic process 

•  Stars form so close together that they often interact before growing     
   to full size 

•  Young stars compete for remaining gas with more massive stars 

•  About half the objects are kicked out of the cluster before they can  
  grow enough to start fusion : brown dwarfs 

•  Many of the encounters btw. young stars and brown dwarfs strip the  
  dusty disks off the stars suggesting planetary systems could be rare 



Evolution of the Sun Stages in Evolution: 
Hayashi track 
Deuterium burning 

Main Sequence 
H  He in core 

Red Giant Branch 
He core, H  He in shell 

Tip of the Red Giant Branch 
Degenerate He core  He flash 

Horizontal Branch 
He  C,O in core, H  He in shell 

Asymptotic Giant Branch 
C,O core, He  C,O and H  He  
in shells 

Planetary Nebula 
Not massive enough to burn C,O 
Sheds outer layers. 

White Dwarf 
Degenerate C,O 



Planetary Nebulae 

Cat’s Eye 
nebula 





Post - Main Sequence Evolution 



Main Sequence Turn-off 



Pleiades Open Cluster 



Pleiades Open Cluster 



M55 Globular Cluster 



M55 Globular Cluster 





MASS FUSION REMNANT 

No fusion Brown Dwarf 

Central H burning 
Formation of degenerate core 

No He burning 
He White Dwarf 

Central H burning 
Helium flash CO White Dwarf 

Central H burning 
He ignites in non-degenerate 

core 
CO White Dwarf 

Numerous burning phases 
Type II supernova Neutron Star 

Numerous burning phases 
Type II supernova Black Hole 

Numerous burning phases 
Hypernova/Collapsar Black Hole 

 0.08M < M < 0.5M

 M < 0.08M

 0.5M < M < 2M

 2M < M < 8M

 8M < M < 20M

 20M < M < 50M

 M > 50M


