


SDO 4500 Angstroms: photosphere

T~5000K

SDO/AIA 4500 2012-08-20 12:00:07 UT




SDO 304 Angstroms: chromosphere

T~5x10%K

SDO/AIA 304 2010-08-23 00:07:21 UT




’@; SDO 1600 Angstroms: upper photosphere
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T~10°K

SDO/AIA 1600 2012-08-20 10:58:41 UT




SDO 171 Angstroms: quiet corona
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T~6x10°K

SDO/AIA 171 2012-08-20 16:39:00 UT




’@‘, SDO 211 Angstroms: active corona
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T~2x10°K

SDO/AIA 211 2012-08-20 16:22:13 UT




@; SDO 94 Angstroms: flaring regions
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T~6x10°K

SDO/AIA 94 2012-08-20 16:46:14 UT




SDO: dark plasma (3/27/28




@, SDO: solar flare (4/16/20'1-2)
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’@; SDO: coronal mass ejection (7/2/2012)
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Aims of the course

« Introduce the equations needed to model the internal structure of
stars.

» Overview of how basic stellar properties are observationally
measured.

» Study the microphysics relevant for stars: the equation of state, the
opacity, nuclear reactions.

« Examine the properties of simple models for stars and consider
how real models are computed.

» Survey (mostly qualitatively) how stars evolve, and the endpoints of
stellar evolution.

 Discuss a handful of ongoing research areas in stellar physics.



Stars are relatively simple physical systems

Sound speed in the sun
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Problem of Stellar Structure

We want to determine the structure (density, temperature,
energy output, pressure as a function of radius) of an isolated
mass M of gas with a given composition (e.g., H, He, etc.)

Known: Unknown:
Mass Density

+ Temperature
Composition Energy

Pressure



Simplifying assumptions

1. No rotation = spherical symmetry

For sun: rotation period at surface ~ 1 month
orbital period at surface ~ few hours

2. No magnetic fields

For sun: magnetic field ~ 5G, ~ 1KG in sunspots
equipartition field ~ 100 MG
Some neutron stars have a large fraction of their energy in B fields

3. Static

For sun: convection, but no large scale variability
Not valid for forming stars, pulsating stars and dying stars.

4. Newtonian gravity
For sun: escape velocity ~ 600 km/s << ¢
Not true for neutron stars



The Variables of Stellar Structure

radius

enclosed mass
mass density
Pressure
gravity
Temperature
Luminosity flow

Composition



Eulerian vs. Lagrangian

Eulerian

Characterize quantities
as a function of radius.

Lagrangian

Characterize quantities
as a function of enclosed
mass.

time A time B



The Variables of Stellar Structure

enclosed mass
radius

mass density
Pressure
gravity
Temperature
Luminosity flow

Composition



Values for the Sun

Mass = IM, = 2x107¢g
Radius = 1R, = 7x10"”cm
Luminosity = 1L, =~ 4 x10"erg/s

U

Surface Temperature = 5,800 K

Composition = 70% H 28% He 2% metals



The Equations of Stellar Structure

mass in shell = density X volume of shell

dm = px 4mr’dr



The Equations of Stellar Structure

1. Mass Conservation

dm dr 1

= 4 2 — =
dr P dm 4rnr’p

eulerian lagrangian



The Equations of Stellar Structure

F = ma

Force pushing outwards:

P(r)47rr2

Force pushing inwards:

G
—P(r+dr)dnr’ ——mdm
e
5 Gm
P(r)477:r — (r+dr)47z?r ——dm—rdm
r’
P
— —dP47r? —G—mdm—rdm > — g Ar® _G_m_,r, =0

2
e dm r



The Equations of Stellar Structure

2. Hydrostatic Equilibrium

dP

dr

Gm

r

eulerian

aP Gm
dm drr”
lagrangian

Need equation of state: P = f(p,T,Xl.)

R
e.g. foranidealgas: P=—pT

u




The Equations of Stellar Structure

€ = energy generation rate per unit mass (erg/s/g)

m+dm

change in L =& Xdm



The Equations of Stellar Structure

3. Energy Generation

dL dL
" = 47r’pe " =g
dr dm
eulerian lagrangian

Need nuclear physics: € = f(p,T,Xi)

e.g., for the proton-proton chain: &€ = é‘OpT4



The Equations of Stellar Structure

Energy flow: Depends on opacity K (area/mass)
e radiation low opacity
e convection high opacity
« conduction unimportant

For radiation:

radiation pressure decreases outward =
photons have net movement outward in their random walk.



Random walk of photon through the sun.

Straight path: 2.3 seconds
Random walk: 30,000 years



The Equations of Stellar Structure

4. Energy Flow

dar 3kpL.,
dr 16macr°T"
eulerian

Need opacity:

dal’ 3kL

dm 64 acr'T’
lagrangian

K = f(p’T’Xi)

e.g., for electron Thomson scattering:

K =K,




Solving the Equations

Need microphysics: P(p,T,Xl.), S(p,T,Xl.), K(p,T,Xl.)

dr 1 dP Gm

dm B 4rr’p dm ~ Anrt

dL arl 3k L

m m

= &  ———
dm dm 64racr'T?

Solve in 1 dimension from center to surface




Boundary Conditions

Center (r=0): m=0, L =0, P=P, T=T,

Surface (r=R): m=M, L =L, P~0, T~0

Lagrangian

Center (m=0): r=0, L =0, P=?, T=2?

Surface(m:M): r=? L = P~0, T~O0

7

Boundary conditions are incomplete at each end




Complications

Stars are luminous
radiate away energy = must change in time
chemical composition is changing. Must account for dX/dt

Convection is very complicated and important
Convection can change chemical composition

Opacities are hard to calculate. And they matter!



Homology Relations

To calculate the luminosity or radius of a star of mass M, we must solve
these differential equations. However, we can get approximate scaling
relations by using Homology.

Assume that each differential or local quantity simply scales with the
global value of that quantity.

dr R

For example, - o~

an M

dr 1 R 1

becomes — ~

dm 4rr’p M R°p

So,




Homology Relations

If we also know how pressure, opacity, and nuclear generation rate scale
with density and temperature, we can solve all these equations to get
scaling relations. Then we can turn these scaling relations into actual

equations by normalizing to the Sun.
For example, suppose we find that L ~ Ma

This means that L = const X M

For the Sun, thisis L = const X M g

L
Dividing the two equations we get ———
L@
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Globular Cluster NGC 6093

'Q'b'S'.e'Natio-n‘s_'Of stars

Fiehtage

PRC99-26 « Space Telescope Science Institute « Hubble Heritage Team (AURA/STScl/NASA)




Astronomers count photons!

We can measure three things about a photon:
 What direction did it come from?
« When did it arrive?

 What was its energy (wavelength/color)?



1.

Different types of observing modes

Count photons in a fixed region of the sky (aperture),
a fixed window of time (exposure time), and a fixed
wavelength range (filter or band).

what we call “photometry”

Count photons as a function of direction in a fixed
window of time (exposure time), and a fixed
wavelength range (filter or band).

what we call “imaging”



Different types of observing modes

3. Count photons as a function of wavelength in a
fixed region of the sky (aperture), and a fixed window
of time (exposure time).

what we call “spectroscopy”

4. Count photons as a function of time in a fixed region
of the sky (aperture), and a fixed wavelength range
(filter or band).

what we call “time series photometry”



Different types of observing modes

5. Count photons as a function of direction AND time
in a fixed wavelength range (filter or band).

what we call “time series imaging”

6. Count photons as a function of wavelength AND
time in a fixed region of the sky (aperture).

what we call “time series spectroscopy”



Different types of observing modes

/. Count photons as a function of direction AND
wavelength in a fixed window of time (exposure time).

what we call “integral field spectroscopy”

8. Count photons as a function of direction AND time
AND wavelength.

the holy grail of observational astronomy...



Luminosity and flux

Luminosity L : energy/time (erg/s)
Flux f : luminosity/area (erg/s/cm?)

Inverse square law:

3 L
Amd’

f




The Electromagnetic Spectrum
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Photometric filters

HST/NICMOS
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SDSS filters
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Photometric Filters

Astronomical fluxes are usually measured using filters

The flux in the SDSS g fiter is:  f, = JF(/’L)Sg(/l)dl
0

The flux in the SDSS rfilteris:  f = ]:F(/I)Sr (A)dA
0



Apparent magnitude

m=-2.5log f + const

A star that is 5 magnitudes brighter (smaller m) has 100x the flux.

m, —m, = —2.510g(f1/f2)

S 1gm-m)/23
f




Absolute magnitude

M = apparent magnitude the star would have if it were 10pc away.

L

L

— Jio =
! 4rd’ :
_ -
m—M =-25log Lj4xd .
_L/471'(10pc) |
m—M = SIOg(

d
10 pc

47r(10pc)2

—2.51og

-

distance modulus




Hipparcos Data

Table 3.6.4. The 150 most luminous stars in the Hipparcos Catalogue.

HIP HD o 5 Vv My n O opln ] Mo % ug Vi Name
24436 34085 78.634 -08.202 0.18 -6.69 422 0.81 0.192 1.95 1.87 -0.56 2.19 B Ori
100453 194093 305.557 +40.257 223 -6.12 2.14  0.51 0.238 2.60 2.43 -0.93 5.76 v Cyg
39429 66811 120.896 -40.003 221 -5095 233 051 0219 35.09 -30.82 16.77 71.39 ¢ Pup
48002 85123 146.776  -65.072 292 -5.56 2.01 0.40 0.199 12.57 -11.55 4.97 29.65 v Car
30438 45348 95.988 -52.696 -0.62 -5.53 10.43 0.53 0.051 30.98 19.99 23.67 14.08 a Car
68702 122451 210.956 -60.373 0.61 -542 621  0.56 0.090 42.21 -33.96 -25.06 32.22 B Cen
25985 36673 83.183 -17.822 2.58 -5.40 254  0.72 0.283 3.61 3.27 1.54 6.75 a Lep
48774 86440 149.216 -54.568 352 -534 1.69 0.50 0.296 13.43 -13.13 2.83 37.68 o Vel
39953 68273 122.383 -47.337 e =2 3.88 0.53 0.137 11.54 -5.93 9.90 14.10 y Vel
26727 37742 85.190 -01.943 1.74 -5.26 3.99 0.79 0.198 4.73 3.99 2.54 5.62 £ Ori
27989 39801 88.793 +07.407 045 -5.14 7.63 1.64 0.215 29.41 27.33 10.86 18.27 a Ori
85927 158926 263.402 -37.104 1.62 -5.05 464 090 0.194 31.24 -8.90 -29.95 31.92 A Sco
25930 36486 83.002 -00.299 225 -499 356 0.83 0.233 1.76 1.67 0.56 235 8 Ori
35264 56855 109.286 -37.097 271 -492 2.98 0.55 0.185 12.68 -10.57 7.00 20.17 m Pup
46974 83183 143.611 -59.230 408 -4.83 1.65 0.49 0.297 12.74 -11.23 6.02 36.61 h Car
27366 38771 86.939 -09.670 207 -4.65 4.52 077 0.170 1.96 1.55 -1.20 2.06 x Ori
38518 64760 118.326 -48.103 422 -4.65 1.68 0.50 0.298 7.66 -4.90 5.89 21.62 J Pup
47854 84810 146.312  -62.508 3.69 -4.64 2.16 047 0.218 15.31 -12.88 8.28 33.60 1 Car
41037 71129 125.629 -59.510 1.86 -4.58 5.16 049 0.095 34.03 -25.34 22.72 31.27 eCar
18246 24398 58.533 +31.884 2.84 -455 332 095 0.226 10.16 4.41 -9.15 14.50 £ Per
37819 63032 116.314 -37.969 3.62 -4.52 235 0.55 0.234 12.31 -10.77 5.97 24.84 ¢ Pup
43023 75063 131.507 -46.042 3.87 -4.52 2.10 0.53 0.252 13.15 -12.23 4.82 29.67 a Vel
15863 20902 51.081 +49.861 1.79 -4.50 5.51 0.66 0.120 3547 24.11 -26.01 30.51 o Per
45556 80404 139.273  -59.275 221 -442 471 0.46 0.098 23.11 -19.03 13.11 23.26 1 Car
85267 157246 261.349 -56.378 2.87 0.75 0.261 15.87 -0.77 -15.85 26.21 y Ara

331 -440



Bolometric magnitudes

M is measured in a band. To get the light from all wavelengths,
we must add a correction.

M, =M, +BC
m,, =m, +BC

Bolometric correction:

BC depends on band and star spectrum. By definition, BC=0 for
V-band and T=6600K



Color

Color = crude, low resolution, estimate of spectral shape

B-V=m,—m,=M,—M, —2510g(—j

« distance independent

* indicator of surface temperature

* by definition, (B-V)=0 for Vega (T~9500K)



Color

* Measure a star’s brightness through two different filters

» Take the ratio of brightness: (redder filter)/(bluer filter)
if ratio is large - red star
if ratio is small - blue star e.g., V/B



i 15,000 K star
ol /
- the Sun (5,800 K)
g T
ST 3,000 K star
=
= 104 -
o
9 -
£ 102 =
0 [ | |
10
10 102 T1108 104 105

BV

wavelength (nm)

The color of a star measured like this tells us its temperature!



Stellar spectra

The solar spectrum can be approximated as

* a blackbody

+

« absorption lines (looking at hotter layers through
cooler outer layers)



Solar Radiation Spectrum
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Blackbody radiation

erg s’ cm2 Hz1 st

hv_  ~28kT

« Effective temperature of a star = T of a blackbody that gives the same
Luminosity per unit surface area of the star.

L — 477:R2(7T4 Stefan—Boltzmann law
e

Forsun: T,=5,778 K



Blackbody Spectrum or thermal spectrum
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Stellar spectra are not perfect blackbodies

Spectrum of a hot star compared to blackbodies
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Atomic energy levels

®
* electrons orbit the nucleus
in specific energy levels
* electrons can jump between
energy levels given the right
S energy




Emission of light

photon ——

atom



Absorption of light

photon ——

atom



Energy levels for Hydrogen

A this electron

gains enough
energy to
- escape the
jonization atom.
level 13.6 eV
level 3 12.1 eV
level 2 10.2 eV
exactly falling from
10.2eV level 2 to
allows level 1 requires
electron | electron | glectron | electron to
cannot | cannot | to jump | give up10.2 eV
accept | accept | to level 2
| -0 11 eV Y 0 eV
(ground

state)

Energy



jonization

level 5
el 4 Visible spectrum shows
lovel 2 2R AN signature of hydrogen atoms
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Spectrum of Sun
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Spectral lines

Strength of lines depends on temperature.

n=3 y
e.g., Balmer lines:
transitions from n=2 to higher states n=2

n=1

T < 5,000K: all Hydrogen is in ground (n=1) state =» no lines
T>20,000K: all Hydrogen is ionized =» no lines
T~10,000K: some Hydrogen is in n=2 state = strong lines

 Spectral lines are observational indicators of T,



Relative Flux

Stellar spectra
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Spectral lines

Lines depend on temperature in stellar atmosphere
+

ionization potentials for relevant species

e.g., H Hel Hell Cal Call Fel
13.6eV  24.6eV 54.5eV 6.1eV  11.9eV 7.9eV

lonization occurs when kT ~ ionization potential/10



Spectral classification

Neulral )
lonized Helium lonized
Helium

Relative Strength

T,: 40K 20K

early type

Hydrogen Metlals Neutral
Metals

Molecules

A F G K M
Spectral Classification

10K 6.7K 5.5K 45K 3.5K

late type



Relative brightness

Spectral classification
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Spectral classification

L ee—

O m < kL © X =




Spectral classification

. Mass Radius .
Conventional Apparent . Hydrogen % of all Main
Class Temperature (71181 (solar (solar | Luminosity . (9]
color color = lines Sequence Stars
masses) radii)
1,400,000
O 30,000-60,000 K blue blue 64 M 168 L Weak ~0.00003%
o
blue to blue . -

B  10,000-30,000 K white blue white 18M TR, 20,000L  Medium 0.13%
A 7,500-10,000 K white white 31M 21R_~ 40L, Strong 0.6%
F 6,000-7,500 K |yellowish white  white 1.7M 14R_~ |6L Medium 3%
G |5,000-6,000 K | yellow yellowish white | 1.1 M _ 11R 121, Weak 7.6%
K 3,500-5,000 K orange yellow orange 0.8 M 09R_~ 04L, Veryweak 12.1%
M 2,000-3,500K red orange red 04M 05R ~ 0.04L Very weak  76.45%]

Oh Be A Fine Girl/Guy Kiss Me
Omnivorous Butchers Always Find Good Kangaroo Meat

Only Bored Astronomers Find Gratification Knowing Mnemonics



Luminosity class

Stars of same type have different line widths

Same T, different R — different surface gravity g —
— different surface pressure P

Pressure broadening: orbitals of atoms are perturbed due
to collisions —— broadening of spectral lines.

Since L =4nR’0,T% changes in R at fixed T are changes in L

Spectral line widths ——luminosity classification

I l, |l 1l AV, V VI VII

a

Supergiants ~ Luminous  Giants Subgiants Dwarfs Subdwarfs White
giants dwarfs



A31 Comparison of Spectral Lines for Supergiant
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Special stars

C: carbon stars - same T as K, M stars, but higher abundance of
C than O - all O goes to form CO. Remaining C forms C2, CN.

S: same T as K, M stars, but have extra heavy elements
W: Wolf-Rayet - He in atmosphere instead of H, strong winds
L: cooler than M stars. Some do not have fusion.

T. cool brown dwarfs (700-1,000K). Methane lines are prominent.

The Sun is a G2V star




The first Hertzsprung-Russell (H-R) diagram

+
E =N

Q> Z+
g
7

Figure 8.10 Henry Norris Russell’s first diagram, with spectral types
listed along the top and absolute magnitudes on the left-hand side. (Figure
from Russell, Nature, 93, 252, 1914.)



Hipparcos Color-Magnitude Diagram
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Hipparcos Color-Magnitude Diagram
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Plot luminosity vs. temperature
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Understanding the H-R diagram
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Understanding the H-R diagram
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Understanding the H-R diagram

L=4nR*cT*
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Understanding the H-R diagram
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Understanding the H-R diagram

L=4nR’cT"*
high|  hot, big cool, huge
' luminous luminous
sun
Luminosity
hot, tiny cool, small
faint faint

Tm

« Temperature




Hipparcos H-R diagram

{Temperature)




Theoretical H-R diagram
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Chemical composition

Primordial (Big Bang) nucleosynthesis: protons fuse to form He and heavier

elements 3 minutes after the Big Bang. Ends 20 minutes later.
Alpher, Bethe & Gammow, Physical Review L, 1948

5% H 25% He 0.01%D

Subsequent fusion inside massive stars and enrichment of the inter-stellar
medium via supernovae, leads to future generations of stars with more

heavy elements.



Stellar populations in the Milky Way

_ _Globular
Galactic . - clusters
halo™~_ N

.’

Galactic

. bulge * 0, Bstars
Galactic Galactic //
‘ enter //
Tl .

_— '5 ";;\éun

Gas 8 kpc

and - Emission
Open : nebula
dust cluster

30 kpc




Stellar populations in the Milky Way

Spatial
Distribution

Kinematics
(coherent)

Kinematics
(dispersion)

Metallicity

Age

Disk, |z|<200pc

Halo/spheroid

Have not

been found
Disk rotation No rotation
(220 km/s)
~30 km/s large
Z~0.02 Z<0.01 Z~0
Young Old Primordial




Determining stellar properties

Physical parameters:

Measurements:

* position on sky
» flux in different bands
e spectrum

» time dependence of
above

» distance

* luminosity

» temperature
* radius

* mass

e age

» chemical composition

< X

~

Xi




Determining distance

Standard candle
1
L )2
d=| —
(47ff ]

Standard ruler




Determining distance: Parallax

RULER

R Star B
tanwt=—=orx /
d A

Star C

R=1AU=15%x10"cm

Define new distance unit: parsec (parallax-second)

1A
1pe=—2Y _206,265AU = 3.261y a1
tan(1”) lpc) wn”




Determining distance: Parallax




Determining distance: Parallax

Point spread function (PSF)



Determining distance: Parallax

Need high angular precision to probe

far away stars.

e.g., to get 10% distance errors

—=—"=do
d T

0.1
dmax:—

o

Mission Dates
Earth telescope ~0.1 as 1 pc
Hipparcos 1989-1993 ~ 1 mas 100 pc
Gaia 2013-2018 ~ 20 uas 5 kpc
SIM cancelled ~4 las 25 kpc




Determining distance

Proper motion

. moving cluster method

distant star

|

4
Ipc

)_

(vt / lkms'l)

- 4.74(p/1yr")




Determining distance: moving cluster method

RULER
L e v',\\vt
‘_"Star ﬁa ; / P
—— ///‘//;;- ,o’,,
g e il
= =" "4/". -
£ - - 5‘4:“;' ::‘—
: 9 . P
Celestial & -7 -~ ‘__.‘:'_.
— Sphere e - 2 e
. - -
Convergent -
—l Point “‘~‘:~0\':“"
Convergent o
Sun Point
Right Ascension
1.  Measure proper motions of stars in a cluster
2. Obtain convergent point
3. Measure angle between cluster and convergent point 6
4. Measure radial vglomty of. cluster V., V. tan @
5. Compute tangential velocity V, d=——
6. Use proper motion of cluster to get distance 4.74/1




Determining distance: secular parallax

 Parallax method is limited by 2AU baseline of earth’s orbit

» Sun moves ~4AU/yr toward Vega relative to local rotation of
Galactic disk

» Over a few years, this can build up to a large baseline

» Unfortunately, other stars are not at rest, rather have
unknown motions

* However, if we average over many stars, their mean motion
should be zero (relative to local rotation)

» Can therefore get the mean distance to a set of stars



Determining distance: secular parallax

RULER

)
'y |
'Nf 7y e \*‘ ’ .’
. & T~ !
% om 0 - "
! N"ﬂ"‘w""‘**ﬂ s : sin® ‘
4 , kY *
{ * f*‘*.
AR B, |




Determining distance: Baade-\Wesselink (moving stellar

atmosphere)

CANDLE

For pulsating stars, SN, novae, measure flux and
effective temperature at two epochs, as well as the
radial velocity and time between the epochs. ‘

fis o 15T v, (1) At

hoL_(RY(LY SR _(4
f2_L2_ R2 T2 RZ_ f2

R,—R =v XAt

Solve forR,andR,. RandT —L —d




Determining distance: spectroscopic parallax
CANDLE

« Stellar spectra alone can give us the luminosity class + spectral
class =» position on HR diagram

 This gives the absolute magnitude, which gives the distance
modulus.

* Basically, compare a star’s spectrum to an identical spectrum of
another star with known luminosity.

* This method sucks in accuracy (+/- 1 magnitude error in
absolute magnitude =» 50% error in distance)

 But it can be applied to all stars



Determining distance: main sequence fitting
CANDLE

» Measure the colors and magnitudes of stars
in a cluster (e.qg., rand g-r)

* Plot the HR diagram: r vs. g-r

» Compare the the HR diagram of another
cluster of known distance: M, vs. g-r

 Find the vertical offset in HR diagram
between the main sequences of the two
clusters = distance modulus

m—M =35logd+5




Determining distance: main sequence fitting
CANDLE

100+ e |
0 . B
N o
Q e o —
C 9 l...
£ 10+ . . i
2 . * Hyades
¥o! * i !
E) .' : . x' L
§ Pleiades *. 4 S5 _
(B 1'_ ‘. @ o " - -

wn un
] oo =
2 : 5y ve.
(—U .\‘ . -.'l
B, T
0.1+ e .-J:. . 5
L Y .o.
I i l 1 I l i
10,000 6,000
surface temperature (Kelvin)
Copyright © 2004 Pearson Educeation, publishing as Addison Weslay.




Determining distance: variable stars

Cepheid variables:
Pop | giants, M ~ 5-20 M,

Pulsation due to feedback loop:

Anincrease in T

=> Helll (doubly ionized He)
=>» high opacity

=» radiation can’t escape
=>» even higher T and P

=>» atmosphere expands
= low T

=> Hell (singly ionized He)
=>» low opacity

=» atmosphere contracts
=>» rinse and repeat...

Brightness

Data from a Well-Measured Cepheid

Time (usually Days)



Determining distance: variable stars

RR-Lyrae variables:
Pop Il dwarfs, M~ 0.5 Mg,

Apparent V magnitude of variable star RR Lyr

0 0.5 1 1.5 2 2,5 3

Time (days)



Determining distance: variable stars

CANDLE

Variable stars have a tight
period-luminosity relation PERIOD - LUMINOSITY RELATIONSHIP
- Measure lightcurves: flux(t) s/ al) g2
» Get period P "8 g

—

. > 103 Type Il (W Viginis)

* From P-L relation, get L g 3 Cepheids

£
» Use L to get distance _:Ej 102fa. s 000

RR Lyrae
14

Very powerful method. . o ! o n
Cepheids can be seen very 05 1 3 5 10 30 50 100
far away. Used to measure H, Period (Days)

P-L relation is calibrated on local
variables with parallax measurements



Determining distance: dynamical parallax

CANDLE
For binary star systems on main sequence
- Measure: period of orbit P, angular separation 0, a
fluxes f, and f, M, M,
2
. Kepler's 3rd law: P’ = G(]\;:: Mz)a3
*Assume M, =M,=M_ 0

« Use Keplertoget d

- Use @ to get preliminary distance

 Use distance and fluxes to get luminosities L, L,

« Use mass-luminosity relation for main sequence to get better masses

* lterate until convergence



Determining Luminosity

1. Measure flux or magnitude : L=4rd’f
M =m-5logd—->5

Measure distance

2. Measure spectrum

line ratios and widths (l.e., compare —_— T,L
the star to a star of identical spectrum
that has a known L)



Determining Temperature

Spectral lines ---> spectral type

Colors
(cheap and accurate)

Blackbody fitting or Wien's law: hv ~ 2.8kT
(not good for very hot or cool stars)

Stellar atmosphere modeling
(uncertain)

Measure angular size and flux
(need very high resolution imaging)

R=0,d L=4nd’f

1
L n 2
L:47TR26T4%T=( - j4eT: 47rdf2
4nR’C 47(0,d) o

J

1
4




Determining Radius

«  Very difficult because angular sizes are tiny.
The sun at 1pc distance has an angular radius of ~0.5mas

 Important because of:

| GM
« surface gravity 8§~ R
| M
« density s
1/4
«  Temperature T ~(L/R?)

 testing models



Determining Radius: Interferometry

Interferometry yields high resolution images

1. Speckle interferometry

~0.02 as

Diffraction limited:

12274
6 — 9909, 29-27HIP4549

DT

e.g., for HST (D;=2.4m), 6=0.05 as




Determining Radius: Interferometry

2. Phase interferometry

Incident
Wavefront

~0.01 as /
Fringes disappear when o ,
d X0 = 2«/2 1 difFf,Q?eiie
oo 4— :
Antenna Antenna
3. Intensity Interferometry L 2
~ 0.5 mas

The sun’s radius could be measured out to ~1-10pc




Determining Radius

*  Luminosity + Temperature - Radius
« Baade-Wesselink (moving atmosphere)

Lunar Occultation
As a star disappears behind the moon, a Fresnel diffraction pattern
Is created that depends slightly on HR

~ 2 mas, only good for stars in ecliptic.



Determining radius: eclipsing binaries

~ brightness

time



Determining radius: eclipsing binaries

Magnitude

Folded Light Curve for AurD Star Number 308, Frequency: 1.14100, Period: 0.87642

n
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Determining Mass
Only possible for binaries.
Loy
‘ M M,

Kepler’s 3rd law: G(M1 + M2)P2 =4n’a’

M +M,=M,
For Sun-Earth system: P = {yr —> GM, (1yr)2 — 4772 (1AU)3
a=1AU

() 2] (5]




Determining Mass: visual binaries

Visual binaries are binaries where the angular separation is
detectable and the orbit can be traced out.

* Find the center of mass of the system M1* a,
(c.o.m. must move with constant velocity)

M a o
Mlal=M2612% 1 = 2: 2

M, a «

* Measure the period, semi-major angular separation
and distance.

o=+, (doc)3

a=do

« Solve for individual masses. Very sensitive to distance errors: M ~ d°

« If distance is not known, radial velocity data is sufficient to get g
e.g., for a circular orbit: v=2ma/P



Determining Mass: visual binaries




Determining Mass: visual binaries

If the orbit is inclined, then we must know the inclination angle 1

M, a, «a,cosi «,
M

= - Don’t need j
, a4, o,cosl 0O
< i
a \ & _
M +M, = : > Need i
cosi ) P

In an inclined orbit, the center of mass does not lie at the ellipse focus.
Find the projection that fixes this = cos i



Determining Mass: spectroscopic binaries

Spectroscopic binaries are unresolved binaries that are only
detected via doppler shifts in their spectrum.

« Single line binaries: single set of shifting spectral lines

* Double line binaries: two sets of spectral lines (one from each star)

» Two sets of lines, but for different spectral types



Determining mass: spectroscopic binaries

/ l /____-\.I
. )

\ ,’"
\\ /z"

A A

Observed Spectrum




Determining Mass: spectroscopic binaries

* Measure velocities and period

vP —

27 a, v M, v
— = > =

2T

azata=—(v+v,)  —

2 .
3
P
M1+M2:a2: (V1+‘;2)
P (27)
VotV = (v1 + vz)sini _

 Can get a lower limit on M,+M, since sin i <1

P(vr’1 +v,, )3

M +M,=
1 i (27rsini)3




Determining Mass: spectroscopic binaries

Need to measure both radial velocities - only possible with double line
binaries.

Need to know sin j. This is possible when:

» also an eclipsing binary: sin /=1

» also a visual binary: measure orbit

« compute M,+M, for a statistical sample where <sin3> is known

(For an isotropic distribution, <sin3/>=0.42. However, no Doppler shift will be
observed if /=0, so there is a selection effect that favors high inclinations)



Determining Mass: surface gravity

GM
R’

* Pressure broadening of spectral lines = surface gravity 8=

gR’?

 Measure radius R => M =

» Sensitive to errors in R



Determining Mass: Gravitational lensing

® One apparent postion
of distant galaxy

Dhstant

[ntervening
Galaxy



DL

» Discovery of Widest-separation Quasar Suprime-Cam (g',r',i")
n{ -2 }:)A Gravitational Lens December 17, 2003

Subaru Telescope, National Astronomical Observatory of Japan
Copyright © 2003, National Astrenomical Observatory of Japan, All rights reserved




Determining Mass: Gravitational lensing




Determining Mass: gravitational microlensing

Case of lensing when multiple images are unresolved and we only detect
an increase in the flux of one image.
* image

General Relativity: WO‘
o= 4GM 0 b source
b < < lens

Can compute the amplification
of light due to multiple images

~eo
~eo
~eo
~~o
S~
S~
~~o
~eo
~eo
S~
N
.

A= f(M,D,,Dy ,0) | | |
DL DSL




Determining mass: gravitational microlensing
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Determining mass: gravitational microlensing

Event 1

560 570 580
days from 2 Jan 1992




Determining mass: gravitational microlensing

Magnification
N
() o

e
(o))

llll'llllllllllllllll

O -

-1000

* OGLE
* Robonet
Canopus

T L L I L |

3 F =
E OGLE EE

2 | = iﬁ
E } 3
- 1 l L L L1 =

planetary *_g
Idevi?tionl .

9.5 10 10.

* Danish
* Perth
e MOA

-20 0

20
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Determining Chemical Composition

Theoretical: fractional abundances by mass

X: Hydrogen Y: Helium Z: metals Sun: (0.7, 0.28, 0.02)

Observational: number density relative to Hydrogen, normalized to sun.

e.g., iron abundance [Fe/H] = log(n(Fe)j _ IOg(n(Fe)j

n(H) n(H)

So, for solar abundance: |Fe/H|=0 , 10 times more iron: |[Fe/H]|=+1

In our galaxy, [FG/H] ranges from -4.5 to +1.

Need high resolution spectra + stellar atmosphere models to get
abundances via fitting.



Ahsolute
Magnitude

0.00

Determining age: Main Sequence turn-off

The lack of blue dwarfs tells us

that the age of M6 is sufficiently
old that the massive blue stars

have died.

Yellow and red stars are still
present because they live longer
lives.



luminosity (solar units)

Determining age: Main Sequence turn-off

Lifetime
10° vrs

Lifetime
10% yrs
Lifetime

10 "™ yrs

Lifetime

¢ h+x Persei — 14 milionyears 10" yrs

A Pleiades

100 million years

® NGC 188 - 7 billion years

30,000

10,000 6,000
surface temperature (Kelvin)

All stars arrived on the main-

sequence (MS) at about the
same time.

The massive stars on the top
left of MS are the first to go.

The cluster is as old as the most

luminous star that remains on
the MS.

The position of the hottest,
brightest star on a cluster’'s MS
is called the main-sequence
turnoff point.
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Determining age: Main Sequence turn-off

Which cluster is oldest?
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Determining age: Isochrone Fitting

Metallicity
T T T [ T T T I T I T T T I T T T I 1 I ] 1 1 I I 1 L I ] 1 Ll I I I )
" 2=0.0004 ' ' ‘
4 | — - 4 |- -
E . = 7 d
2 i . 2 - -
® i 4':':" | ® i |
= ,,' —
~ < ~
- X ,_ i " i 1
a0 ( 20
o o i 1
— [ 63 nlillion years K16 billion years -
0 |- 0+ B
= 1 billion years - £ i
-2 — -2 —
I — l L1 1 l | I - l I — l | I F I l | l | I — l | S — l | I -
4.4 4.2 4 3.8 3.6 3.4 4.4 4.2 4 3.8 3.6 3.4

log T, log T,



16

18

20

22

24

Determining age: Isochrone Fitting

Open clusters

| NGC2173
| 2=0.004
Age=1.4Gyr

-

| SL556

I ] ] 1 ] I

Z=0.004

| NGC2155.

Z=0.004
Age=2.6Gyr

1.4 billion years

2 billion years

0.3
V-R

2.6 billion years



Determining age: Isochrone Fitting

llion year

E(B-V)=0.09 -
(m-M)_V =11.34

. W.- 6,7,8bi
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Globular Cluster 47 Tucanae
NASA, ESA, and G. Meylan (Ecole Polytechnique Federale de Lausanne) = STScl-PRC06-33

- w

ining age

Determ
: 12 billion years

47 Tuc

Very Large Telescope (Ground-based) Hubble Space Telescope ACS

(v=¥)o



Determining age: Isochrone Fitting

M55: 12.5 billion years
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Determining age: Isochrone Fitting

Measurement Errors

e errors in brightness/colors

* errors in distance/luminosity
e errors in cluster membership

Theoretical Errors

» uncertain chemical abundances
« uncertain amount of dust
 uncertain stellar physics

Typical error < 1 billion years

| 47 Tuc
E(B-V) = 0.04 = ~-.-
[ &(v—y) = +0.030

. Ages 12, 13, 14Gyr
[Fe/H] = -0.71
21 (m-M),= 13.33°

8 .l.[ l. L l-'l."i'.l‘i.;:l.ll;l" 1| [ |'| 1 .1 ‘j"..l"j‘.:’l" 'h{
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
(v=y)o




Global Energetics

Total stellar energy

W = gravitational potential energy €2
+ kinetic energy due to bulk motions (turbulence, pulsation)

+ internal energy from microscopic processes U



Gravitational Potential Energy

Gravitational potential energy

() : energy required to assemble the star by collecting material from
the outside universe.
= negative of energy required to disperse the star.

= Gmd G
dQ=-[ZZ2ar = - =dm
p r r
M
dm Q:—J-G—mdm
0 r

which depends on the density profile p(r)



Gravitational Potential Energy

1
3 —
M =p,—nR’
3
M /3 M
Q:_JG_dm = —GM m2/3dm = —EGMZ
o R 5 R
GM’ 3

In general, |Q) = —q

and ¢ > g since pP L with r

-1 2 -2
p~r %qz; p~r — g=1



Internal and Kinetic Energy

Internal enerqgy

U : Kinetic energy due to motions of particles (thermal, not bulk)
+ energy in atomic and molecular bonds.

U = —J Edm Where [ : local specific internal energy (erg/q)
M

Kinetic energy

K : Total kinetic energy (thermal + bulk)



The Virial Theorem

Consider all particles in a star at positions 7, with momenta p,

0= Zﬁz ' ;.; o ®
, D;
dQ /i
evaluate —
dt
what are the units of — ? (energy units: myvr =m-v’ )

dt



The Virial Theorem

dQ
dt

d

— m
dt <

dv 4
dt < dt
Igvd
2~ dt?
1d’I

=2
2T
[

is just the total moment
of inertia of the system.



The Virial Theorem
Q= Zl_jz ' ’_’;

i

dt dt

& J
e A

A B

i

d_Q _ zdﬁll—,; 4+ Zp’lddl_;;

J/

1,
=2) —m-%’ [E 2K| (2xtotal kinetic energy)




The Virial Theorem

dp. d 2\ - T L
E- is the sum of all gravitational forces on particle /i = Eﬁl]
J#I
- FJ B Gml;;nj (7"]_ i) _ —Gml’;nj (—>_—’.)
i : : 4
Tij i i
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The Virial Theorem

1d*1
—— = 2K + Q
dt
. d’l
In a globally static system: F =0 =— PDK=-0
[
1
For a collisionless system: W=K+Q —> W= EQ =—-K
bound!

What about a collisional system? How does the 2K term relate to the
internal energy of a gas?




The Virial Theorem

Kinetic theory: pressure in a gas is caused by the sum of collisions
of particles and momentum transfer

Particle / colliding with wall in x-direction
— @ Ap,=2p, . =2my,
Time between collisions of same particle with wall
21
/ At = —
Vx,i
Force due to particle i
Ap, my>.
E — pl — 1 X,
At [

Total force on wall

2
F= z mi;x’i = %Zmivi,i




The Virial Theorem

Kinetic theory: pressure in a gas is caused by the sum of collisions
of particles and momentum transfer

Total force on all 6 walls

2 2
— _ = 2 2 2 Y\ _ = 2
F = l Zmi(vx,i +v,, +vz,l.)— l Zml.vi
l [

Total force on 1 wall

[ 1 2
F=—Ymv: =2
3] Z o 3]
Pressure
F 2K
=== > 2K=3P-V

A 3V



The Virial Theorem

In reality, pressure is changing over volume 2K = 3JPdV
(can think of our box as a volume element dV)

In a star’s spherical shells

3P
dm = pdV 2K = | —dm| Depends on the equation of state

u P

For a relation btw Pand Eof P = ()/ — l)pE (Y -law equation of state)
2K = j 1)Edm=3(y-1) [ Edm =3(y—1)U
M

5
K isonlyequalto U if ¥ = 3 — i.e., for an ideal monoatomic gas



The Virial Theorem

Virial theorem: 3(7/ — l)U +Q=0

Total Total energy must be < 0 for star to
energy W=Q+U be stable. Otherwise, it has enough
@) energy to disperse itself.
— ST 4
3(r=1) Sy>—
3
1
3(y-1) e |ldealgas | ¥ = 3] safely bound
_0 3y —4 4
3()’ _ 1) « Radiation | ¥ = E : unstable
As radiation pressure becomes more
important, star becomes less bound.




The Virial Theorem

Virial theorem: [3(y —1)U +Q =0 W =

y=4/3

As a star radiates, it loses energy (without other energy sources).

. Q<0
W<0 —» <. — star contracts and heats up
U>0



The Virial Theorem: Applications

Internal temperature 3(7/ — l)U +Q2=0
. . 5 Q
* For an ideal monoatomic gas: ¥y = 5 — U = —3
L 3 3
« Also, the energy density is: E = EnkT — U = EnkTV
r n . number density of particles \
. . _ PNy
3 U ' mean molecular weight rn =
: H
(N, Avogadro’s number
3 pN 3N
U=2PYayry = 2y o, po2 * U
u 2 U 3N, kM
Q GM*

e Virial theorem: U =—— = %

2 R



The Virial Theorem: Applications

Internal temperature

1
3Nk R 35 \ M, \ R

O

(actual central temperature of sun is 15 million K)

* Internal T >> surface T =» strong T gradient

* Most of the sun is highly ionized

* T is sufficiently high for nuclear fusion (~1 million K)

 Fusion happens due to gravitational energy



Timescales

Dynamical timescale 1 d°I
——2 — 2K + Q
d*l GM?> 2 dt
* Virial theorem: T =
dt R
I GM’ R-1\" 3 \V2
5 —> tdyn = GM2 L - - R - (Gp)—l/Z
tdyn R dyn GM
I = MR’ J
_ . GM
* Escape velocity: v, ~——
R
R R ~1/2
» Timescale for collapse: fgyy =~ —— —~ Lagn ~ (GP)

dyn Vesc ( GM )1/2
R

For sun, tdyn~ 1 hour




Timescales

Kelvin-Helmholtz timescale Timescale for star to radiate away its
thermal/gravitational energy.

 Star contracts slowly maintaining hydrostatic equilibrium

2
AR <0 Q:_QGZI\j I ,
GM
1 ) s — AQ=+qg o2 AR
AQ <0 @:QGM
dR R’ ’

e Virial theorem: 7/:% — W=% — AW <0

» Energy is lost from the system: radiation

AL
AW = ——  half goes to increasing U and half goes to luminosity



Timescales

Kelvin-Helmholtz timescale Timescale for star to radiate away its
thermal/gravitational energy.

» Suppose contraction is solely responsible for maintaining luminosity

- W __1(9) __1dQdR _qGM” dR
dt dr\ 2 2 dR dt 2 R* dt

aR__R | _aGM

dt  ty, 2 LR

2 -1 -1
M L R
M L, R,

 Too short a timescale to have happened.




Timescales

Nuclear timescale Timescale for star to burn its H fuel and leave the
Main Sequence.

. _ total available energy . _E f.. Mc’

. . nuc
o luminosity L

€ = efficiency of nuclear burning (4'H =» 4He) ~ 0.007

f.... = mass fraction of core (star leaves main sequence after core burns) ~ 0.1

For sun, t .~ 10 billion years

nuc

L M
For stars of solar mass or greater: —=| —




Timescales

5

an ~ 1 hour

tey ~ 20 million years

t... ~ 10 billion years

l

Lty Xt

dyn nuc

It is valid to assume that stars on the main sequence are in
dynamical and thermal equilibrium.



Equation of State

P = f(P,T,Xl-)

To derive the E.O.S., we need to consider:
* Quantum statistics (bosons vs. fermions)
* Non-relativistic vs. relativistic particles

* Degenerate vs. non-degenerate matter



A
10 -

Equation of State

radiation /// /
pressure -
degenerate
relativistic
electrons
degenerate
non-relativistic |
electrons
>
—2 0 2 4 6 8 10

logp



Equation of State

Radiation pressure and degenerate relativistic electrons

4 . . -
¥ =— (star is not bound) This sets limits on
3 the masses of stars

For most normal stars, ideal gas + radiation pressure
are the important contributions

1
P:})gas +I)rad :nkT+§aT4

n is the number density of all atoms and free electrons



Mean Molecular Weight

To calculate the number density n, we need to know:
» constituents of plasma
» state of ionization

Available particles: ions + free electrons

n=n,+n,=Y (n, +n,)

I

Each species i :

A, : nuclear mass number| ¢.8., A,, =1, A, =4, A, =12

12C
Z, : nuclear charge

X, : fraction by mass usually Z; = 3’ for metals




Mean Molecular Weight

1 mole = amount that has as many atoms of substance as
there are atoms of 2C in 12g of 72C.

Avogadro's number: N, = 6 x10*

3\

e.g., T1mole of ?C weighs 12g
1mole of TH weighs 19 }t~A4
1 mole of “He weighs 4g

J

A. mass of mole

1

= = mass per atom
N, #of atoms per mole



Mean Molecular Weight

(mass/unit volume) ofi _ pX,  pN,X,

. l
nl'_

* (mass of 1ion) of i fy A
NA

X.
n, :an,i = ’ONAZAT

l

U, mass of mole for a mixture of 10ns
= = mean mass per atom

N, # of atoms per mole
PN, -1 X;
n, — =
= W Z A




Mean Molecular Weight
also need to know ionization fraction y;

X
n,,=n,,- 2y, = PN, —Z.y, {
Vi =

A

l

0 : completely neutral

1: completely 1onized

XZv.
n’e — Zne,i — pNAz lAllyl
__ PN, N XL,
o mi=2y

U is the mean weight of
particles in units of H

T A




Mean Molecular Weight

('"H,*He, metals)=(X.Y,Z)

In the core

Composition of Sun

'H ~0.71 '‘H ~0.34
‘He ~0.27 ‘He ~0.64
0 ~0.01
“C ~0.004
*Fe ~0.0015
“Si ~0.001 > These were fused inside stars
“N ~0.001
24Mg ~ 0.0008
*“*Ne ~0.0006

2§ ~0.0004 .



Mean Molecular Weight

X2y,

X.
o u' =2 ul=

* Fully ionized gas with zero metals (Z=0, y.=1)

. X Y XY 1-x | 1+3X
A, A, 1 4 4 4

o X Zu v Y Ty XL Y20 1-X

A, A, 1 4 2

L _ 143X 14X | 3+5X

4 2 4 X=0.7—->u=0.62

U




Mean Molecular Weight

- X; ~ X.Z,Y; - - -
b= TREDY Ay ul= gt

I i i I

* In the core, all H is converted to He (X=0) | X=0—>u=1.3

» Adding metals (fully ionized)

., X Y Z Y 7
U'l=—+—+— =X+—+
Ay Ay A 4 A,
A
Z-—Z-y

X-Z, - Y-Z, - Z Y Z
gt = o YH e Vite 2 _y4 L, Z
A, A, A, 2 2

4 2 4 2 Z=1->u=2

3 Z 3.1 X=1->u=05
,u1:2X+Y+%~+ =2X+-Y+—-Z i

0



Equation of State

Equations of state may be derived assuming
Local Thermodynamic Equilibrium (LTE)

At any position in the star, thermodynamic equilibrium
holds locally even though it does not hold globally.

Particle-particle and photon-particle mean free paths are short
relative to other length/time scales.

For example, the pressure scale height (height over which the
pressure changed by a factor of e) is much longer than the mean
free path.

-1 -1
),P — _(dlnPj — _(ld_Pj — i ~ R in most of star
dr P dr gp

Compare that to the mean free path ly ~lcm



Distribution Functions

Statistical mechanics gives us the phase-space density of a particle species.

1 8
n(p)= h3 D f AxAyAzAp Ap Ap, = I’
j exp[(ej +e(p)-— )/kT} *1
- p=|p| : momentum
* g, : degeneracy of state j (# of states having same energy)
* € . energy of state j relative to some reference level

» &(p) :kineticenergy g(p)= (p c _,_mzczt)l/2 e

1/2 2 9 )
1
NR: | pc < mc” (1+ pe ] mc” — mc’ z(1+—p < ]mcz—mc2 i

4 2 4
m’c 2 m-c

UR: | pc > mc’ =(p202+m\g4)1/2—rkg2 ~ pc

* U= ( BE) chemical potential 2.“ dN, =0 e.g., H +¢ —»> H + Y
aN l‘LLH+ +1‘u,e_ —LLLHO =O
* + . + for fermions (Fermi-Dirac), - for bosons (Bose-Einstein)




Distribution Functions

We can get equation of state quantities from n(p)
Integrate over all phase space assuming spherical symmetry

« Space density -
n= J’n(p)477:p2 dp
0

* Internal energy s
(per unit volume) E= j&‘(p)n(p)47tp2 dp
0
* Pressure e
Kinetic theory P = gj(p ' v)n(p)47rp2 dp
0

1 1
P-V=§Z‘mivl.2 %Pzwzi‘pivi



Blackbody Radiation

1 g
h < exp[(8j+8(p)—‘u)/kT]i1

g =2 (2 polarization states)

n(p)=

For photons:
* £, =0 (no excited states)
+ £(p)= pc (fully relativistic)
° ‘uy — O

 bosons, so “-

1 2
h’ exp(pc/kT)—1

n(p)=




Blackbody Radiation

)= e
h’ exp(pc/kT)—1 e
r 87T 7 °d i
_ 4 zd _ p ap _k_T
My (J)-n(p) o h’ -(’;exp(pc/kT)—l =

3
_ 5457 ( ij — 20287 cm™



Blackbody Radiation

1 2

n(p)=
h’ exp(pc/kT)—1 e
2 g = 8me ¢ pdp kaT
o= h’ -(’;exp(pc/kT)—l dp:de
o)
n’ ‘
B 15

N 87tc(kT j“ _ ( 87k )T4 Sy
- 3 15h° -
5 A e ‘ a=75%x10"ergcm K™



Blackbody Radiation

1 2

n(p)= h’ exp(pc/kT)—1




Blackbody Radiation

1 2

n(p)= h’ exp(pc/kT)—1

The energy density of photons with momentum between p and p+dp is
_ 81 (pc)pzdp
h’ exp(pc/kT)—1

e(p)n(p)dnp’dp

The energy density of photons with frequency between v and v+dv is

pc=hv 87 hv(hv/c)2 (h/c)dv
dp = (h/c)dv h*  exp(hv/kT)-1
3
B ,dv = 87[1:‘/ : dv| Planck function
¢’ exp(hv/kT)-1

(Bv cerg cm™ Hz‘l)



ldeal Monoatomic Gas

_1 8
n(p)= h’ ;exp[(sj +e(p)—u)/kT]i1

For atoms: * £, =g, (single energy state)
2

° e(p) = —— (non-relativistic)
2m

e U/kT << —1 (+/-1 term can be neglected)

h’ exp[(e‘o +p*/2m— ,u)/kT}

2
n(p) _ ie,u/kTe—eo/kTe—p [2mkT
h3




|ldeal Monoatomic Gas
. n(p) _ ieu/kTe—eo/kTe—pz/kaT
5

F A o
1 = Jn(p)47l'p2 dp = h3g e,u/kTe—so/ije—p /2kap2 dp
0 0
A p°[2mkT = x
— A dx kT
(kaTx)l/2 dp = dex
= Z(2mkT ) _n p=(2mkT)" x*
2
r'/? 3/2 8 32 u/k k
= AT(kaT) / = ﬁ(27rka) e gme /M




|deal Monoatomic Gas
1(p)=

1
P=—
3

= AL j e (2kax)2
3m

= kT

S —38

8
—e

=

kT
u/ ¢

—eo/kTe—pz/kaT

oo

/N

(2ka )3/2 Jxl/ze_x dx

0

3 h

o

(p)n(p)amp*dp =

3

mkT

A

dx

(2mkTx)

2ka)5/2 Jx3/2e_x dx

w 35
+ —jxl/ze_x dx
0 2 g

1/2

= nkT

© 2
g e,u/kTe—eo/kTJp_e—p2/2kap2 dp
0 m

p°[2mkT = x

dp = ——dx

p= (kaT)l/2 7

u=x"" du=(3/2)x"dx




ldeal Monoatomic Gas

n(p) — %eﬂ/kTe_EO/kTe—pz/kaT
0 2 2
2 5
(v-1) 2p y=3



Degenerate Fermions

_ &
h jexp[(8j+8(p)—‘u)/kT]i1

For fermions: « o =2 (2 spin states)

e & = mc’ (no excited states)
1/2
. S(p) = (p262 + m204) — mc”

\/1 + (p/mc)2 — 1)
e fermions, so “+”

2 1

K exp[(e(p)—(,u— mcz))/kT}+1

2
= mc

n(p)=




Degenerate Fermions

W exp[(s(p)—(u— mcz))/kTJ-l—l

n(p)=

A completely degenerate gas behaves asif 7 — 0

The probability that an energy state is occupied is

1 ( I if £<(,u—mcz)
= <

exp[(g(p)—(,u—mCQ))/kT}+l | 0 if 8>(u—mc2)

f(e)=

Critical energy: Fermienergy &, =u—mc’

Particles cannot have greater energy than this.



Degenerate Fermions

\ Raising T slightly

f(e) /

0 S~
0 1
&/ €,

Fermi momentum p,

xziﬁszﬁ 8F=mcz(\/1+x§—l)

mc mc

Chemical potential is thus . = mc” + €,

This is the maximum total energy of particles



Degenerate Fermions

For electrons: n, =

SE(mec
3\ h

3
) x;=59%x10"x. cm™



Degenerate Fermions

Pressure




Degenerate Fermions

Pressure

i =
~ 87T Pr p4dp e X
i 3 J 2 dp = mcdx
Smh™ 5 1+ (p/mc)
P p* = (mc) »*

]’( c) x‘dx _87tm4CSXJ>F x*dx
3k’ -

1+ x° 37 9 1+ %2




Degenerate Fermions

W exp[(s(p)—(u— mcz))/kTJ-l—l

E = JS(p)n(p)477:p2 dp = i—fﬁ mc’ (\/1+(p/mc)2 — 1)192 dp

0 0
ST K 3 P
:?mczj(\/l+x2 —1)(mc) x* dx %—x
0 dp = mcdx
3 Xp 2 2 2
:8%(%) mczj.(\/1+)c2 —l)xzdx =)

0

3
_ %(%) me| 83 (VU xf —1) =2 (202 = 3)(1422) " = 3sinh ", |




Degenerate Fermions

= 3Amc” J- (\/1 +x° — l)x2 dx

0




Degenerate Fermions

_ 3
n=Ax;

P = Amczj
0

x 4
¢ x'dx

V1+ x?

Look at limiting
cases: NR, UR

NR: x, <1

XF

E = 3Amc’ J.

0

Xp 5
P = Amc* J. xdx = Amer2E
7 5
mc’
_ A2/3,,5/3
1 3
(1+—x2—1)x2dx == Amc?
2 2
2
P=(y-1)E=-E —y==

3

XF

0

E = 3Amc’ J(V1+x2 — 1))62 dx

| 21(’1)5/3
= Amc —| —

XF

Jx“ dx

0

5

3

S\A




Degenerate Fermions

n=Ax’ o x*d K
F P:Amczj + E=3Amczj‘(\/1+x2 —1)x2dx
0

\/1+x2 0

Look at limiting

cases: NR, UR
*E x4 1({ n 4/3
UR: x,>1 PzAmCZJ.x dx =Amc* =L = Amcz—(—)
0 4 4\ A
_ mc” A3, 43
4

Xp AF

E = 3Amc* J. (x— l)x2 dx =3Amc’ J. x’dx [=3P

0 0

1 4
P=(y-1)E==E —



20
1.8

1.2
1.0}

Degenerate Fermions

0.01

0.1

100

« Completely degenerate
gas has same gamma
as ideal gas.

* In the relativistic limit, it
behaves like radiation.



Degenerate Fermions

3
n= Sﬂ(mcj 2| Convert to mass density: n= Nop

30h ) " H
3
e.g., electrons: n, = Nup _ Sn(mec) X
h, 3\ h
p _38x (mc oy 5 3 -3
:3N ; Xp |=9.7x10"x; gcm
lLLe A

e.d., heutrons: n_ = =

3T :
P _ (mc) x; =6.1x10"x) gem™




Degenerate Fermions

Useful approximations

 Partly degenerate gas

P~(P, +pP,)"

e,nd

 Partly relativistic gas

_(p-2 =2 Y Y2 | This formula picks out
Foa= (Pe’d’NR T P‘f’d’UR) the smallest pressure

These interpolation formulae are good to ~2%



Equation of State Summary

e Start with p, T, X, at some point in star
* Assume Local Thermodynamic Equilibrium

* Total gas pressure is the sum of components

P=P +P_+P

rad ion

* The radiation pressure is

1
P, = gaT4 (a =75%x10 "erg cm_3K_4)

* The ion ideal gas pressure is

N ,k
P._=—"—pT (NA = 6.022 X 1023mole"1)

M




Equation of State Summary

* The electron pressure can be a mixture of
non-degenerate and degenerate pressure

P=~(P,+P2)"

e,nd

* Where the electron non-degenerate pressure is

Nk
})e,nd: - IOT

H,

* And the electron degenerate pressure can be
non-relativistic or relativistic

p ~(p2 +p2 "
e.d e,d,NR+ e,d, UR




Equation of State Summary

* Where the non-relativistic, degenerate pressure is

P _(i)% # (N
e,d,NR 871' Sme ‘ue p

* And the ultra-relativistic, degenerate pressure is

1/3 4/3
P = (ij he[ Ny p*:
e, d,UR 877: 4 ‘ue

« Compute the mean molecular weights from X;

X XZy.
=R =y X

i i

» Get the ionization fractions from the Saha equation.



The Boltzmann Equation

ldeal gas: |n= %(271’ka)3/2 GHIKT e [KT
h

Consider two species of particles: atoms in different energy
levels that can be excited or de-excited via photons.

eg., H,+y—H, lu, +0=1u,

n (gl/h3)(2>6qqkT)3/2></kTe—el/kT ) gle_gl/kT

M _ 81 (a-a)wr

n, &




The Boltzmann Equation

Total number of atoms: n,, = Zni
i

ntot — nl 4+ n2 4. :&e—gl/kTeei/kT +&e_gz/kTeSi/kT SIS
nl- ni ni gi gi
| —e, JkT &, JkT 1 —¢&; [kT
= — T (g T 4 g 4 ) = —— Y g
8i 8i€ J
M _ 8i eur Partition function: G = g e /"
n, G j

Like an effective statistical weight for all states




The Saha Equation

Consider an atomic gas that is partly ionized €, =X

eg., |H +e & H +y| 1y +1u =14 . =0
=

+

3/2 +
» charged ions in ground state p* = g_3(2n-mka) / ol KT = X/KT
h

- free electrons n- = %(2ﬂmekT)3/2 ol /KT

0
8 32 o
 neutral ions in ground state n’ = F(znmka) ot JkT

_ _ 302
Combine to eliminate n'n _ g'g (27l'mekT)
chemical potentials 0o 0 PE €

—x/kT




The Saha Equation

nn. g'g (277:mekT)3/2
n() = gO h3 €

_y/kr| This is only for atoms in the ground state.

In general, we have neutral and ionized atoms in multiple states
Use Boltzmann to generalize to all states of a given atom




The Saha Equation

+ - + - e
n -
nn _§ <0g (27tm613<T) e XKL Boltzmann: |— = &e I
I’lo‘ g\ h I’ltot\ G
L L 0 0 \ +
nyn 2,8 ny 8o ny _ 8o
g g n' G n G
LHS + g(J)r - 3 RHS
b _ + T /2
n,n " G* & nn GO 8o 808 (2ﬂ:mekT) e—%/kT
ny o8&  n G'g & N
GO
_ ;s Can generalize
g = 2 n+ne _ 2G+ (ZﬂmekT) e_x/kT to: nj+1n
n = ne nO GO h2 nj




The Saha Equation

+ + 3/2
nn, 2G (ZﬂmekT) ST
h2

0 0
n G

Example: pure H

n’ n =y | 5
== n'n n,-yn
Y n, n0=(1—y)n,> Oe:)il Yn, Y n,
g0 n (—y)n, -y
Wy = 1t n,=yn, )
n,=n"
o) 3/2
1 ( 2nm kT
-y n
G =1

9 3
y _ 4x107g cm T3/2e—1.578><105/T 50% ionized at T=10%K
-y o for low densities




The Saha Equation

Example: Balmer line strength 13.6eV N = oo
Strength of Balmer lines depend on
fraction of H gas that is in the n=2 j—T— n=73
excited state. 10.2eV n=72
nO
We want —= 0 n=1
nl
. nO gO
Boltzmann gives us -2 = =2 ¢~/
n G
n(z) _ ng n’ go _ g
n, n’n nY 0 2
I I _ 0 _ —& [kT _
L E=(lmy) et Gl =gt =2
n° n, G i
—=1-y g, =102 eV




The Saha Equation

ﬁ _ (1 - y) 83 o e /KT y2 _ l 2wm kT ” o~ XIKT
n’ G’ -y n h
T A
;
|
n !
n, :
|
|
|
I

S5k 10k 15k 20k




The Saha Equation

A different way to write the Saha equation

nO ; GO h2

n'n, 2G" (277:mekT Y/z —

’ (2G*) 3. (27wmkT
log(n ng):log G +Elog( tm, j+log(€_X/kT)

n’ \ G" y h*
+ [ + )
n 2G 3 2rmk |\ 3 X
log| — |+1logn =1lo +—1lo “ |+—logT —In10=-
g(n()) S g\ G’ ) 2 g( h* ) 2 5 kT

P =nkl —logn, =logP, —logk—logT

e e

; 267 5 5040
1og(”—0j=10g( O )+ElogT—logPe - £_048
n




The Saha Equation

The Saha equation works best at moderate densities

* At very low densities (e.g., corona), we must worry about
whether LTE applies.

* At very high densities, atoms are not isolated.

|solated atom Neighboring atoms

Overlap of potentials of neighboring atoms lowers the effective ionization
energy, which leads to greater ionization than Saha predicts.

4 -1
For density n and separationa: n= (g 7z:a3)

set a = radius of first Bohr orbit of H =0.5x10"cm |—» p~3gcm™

Above this density, even the ground state is affected and all H is ionized.



The Saha Equation

 For ions of charge Z, the ratio of electrostatic energy to
thermal energy is a measure of whether Coulomb effects
affect the ideal-ness of an ideal gas.

B Zzez/a

r
¢ kT

T 3
' =1 p=8 ¢gcm™

Important in very low mass stars



Equation of State

For pure H

* ideal gas vs. radiation
p=15x107T"

» degenerate vs. not
p=6x107T"

logp

e neutral vs. ionized
p= X% 10—9T3/Ze—1.58><105/T

* pressure ionized
p=1

» Coulomb effects
p=85x10""T" —8 =

» crystalline structure
p=42x107°T"



Adiabatic Exponents

O : heat (erg g‘l)

1
V,: specific volume (cm3g‘1) — ;
E : specific internal energy (erg g—l)

First law of thermodynamics

P
dQ =dE+ PdV, :dE+pd(l] =dE——dp
P P

( A
r - dlnP :_(alnP] NnT Jn p
\alnp)ad aanP ad Vad:
ad ad

dlnp dlnP
r, (JmP) 1
r,-1 \ol7), V,_ _ =l
1—‘1
r_1= o7} | dInT r -1
dlnp | . dlnV, ; =T
a 2




Adiabatic Exponents

* I, describes how pressure responds to compression
(relevant for dynamical processes like pulsations)

« I, describes how temperature responds to changes in pressure
(relevant for determining whether convection takes place)

 I', describes how temperature responds to compression

: 5
Ideal Gas: T, =T,=T,= E I", is equivalent to the ¥ in
the y-law equation of state
Radiation: r1:r2:r3:% P=(y—-1)pE

For mixtures of gas and radiation, as well as for cases where
chemical reaction happen, the adiabatic exponents can differ
from each other.



Adiabatic Exponents: |deal gas + Radiation

Pressure
N k 1 N,kT 1
P=P, +P, =—"—pl+—al" =—4—+—aT"*
u 3 nv, 3
Specific Internal Energy
3N,k T*
E=EgaS+Erad=_ 4 T +a— ZENAkT+aT4V
2 p 2 u ’




Adiabatic Exponents: |deal gas + Radiation

Adiabatic change
d0=0

(3N ,k Nk T
nv,

NkT

+4aT3Vp]dT +[

(3N &k T
\ 21V,

%
—LdT +

+ 4aT4]

] de +Pde =0
T

+ 4aT3Vp)dT +(aT4)de +[

4

+—aT*

NkT

+—aT*

%P +12P P +4P

Vo o

Vv

)

1

+—aT4]dV =0
3 p
]dvp:o

]dvp:o




Adiabatic Exponents: |deal gas + Radiation

Equation
of state




Adiabatic Exponents:

|deal gas + Radiation

1st Law of
Thermodynamics

av,
5

p

3 dT
(zi)&gas_l_lz})radj?_'_(})gas_l_él'})rad =0

Equation dT de )
of State Pgas +4P,, - . (Pgas +})rad)] T I’ga87—0
s p
P._+4P 2 (P +P
Ax+By=0 }%A_B = nd 2—1( gas rad): P..
Cx+Dy=0 C D éi)gas+12I)rad Pgas+4Prad
P, =fP BP+4(1- ) L
gas 1_‘2_1 ) ﬁp
Pra = l_ﬂ P 3 — _
d ( ) 5[)’P+12(1—ﬁ)P ﬁP+4(1 ﬂ)P



Adiabatic Exponents: |deal gas + Radiation

FZ

2

5 (-38- -39 12-2p)

I, _ 2 2
(4-3p)=-125+-p

T,-1_ 4-3
I 16—12ﬂ—§[32

—>16—12/3—12/3’+9[32—F

2

(4—3ﬁ):16—12ﬁ—§ﬁ2

3 3
- 4-3B _16—12[3—5ﬁ2—4+3ﬁ 12—9/3’—5/32

_ — - _
I 16-126—" 16—12[3—§ﬂ2 16—12[3—%[32



Adiabatic Exponents: |deal gas + Radiation

0 12—9ﬁ—§ﬁ2 16—12/3—3/32
= 23 > 1, = 32
I 16-12—"f’ 12-95-p’

Similarly, we get:

_32-24B-3p°

- 24-188-3p

32 -2483-35°
o B-3p

: 24 -218
2—24B -3
r .2 p-3p

> 24-188-3p
32— 27
r - p

P 24-218

1'2 1 1 1 | 1 1 1

0.4 0.2 0



Adiabatic Exponents: lonization Zones

Thermodynamics of partially ionized gas is different because
* The number of free particles is not constant

* lonization energy is required to increase n

Assuming a pure H ideal gas

+
n =yn, )

0 _ 3/2
n —(1—)’)111> o 1(27rmeij/ T

n,=yn, l—y_n, h’
n,=N,p ) _ A T Y2 o 2/KT
N.p
y: _A




Adiabatic Exponents: lonization Zones

Pressure

P = (no +n +ne)kT =[(1=y)n, +yn, + yn, |kT

=(1+y)n,kT =(1+y)NAka% P:(1+y)NAk§
p

Specific Internal Enerqgy
EZE( O+n++ne)kT+n £ :(]_|_y)nlékT+ynl
2 p P 2p p

E= (1+y)§NAkT + YN, X




Adiabatic Exponents: lonization Zones

3 Adiabatic change
P:(l-l—y)NAk— E:(l-l-y)ENAkT‘FyNA% dQ:O J

dQ:(a—Ej dT+£a—E] av, +(8—Ej dy+ PdV,=0
ooy T T,V

- (1+Y)§NAk:|dT+|:§NAkT+NAZ:|dy+|:(l+y)NAk§

P

:lde =0

3 dT 3

:_(1+y) NkT}—+[(1+y)5NAkT+(1+y) A%} dy

2 I I+y

d
+[(1+y)NAkT]% =0

p

T 24V, 2
= Ligea ‘ +__+(1+_X) ay =
T 3V 3KT J1+y




Adiabatic Exponents: lonization Zones

Equation
of State

P=(1+y)N k— E=(1+y)§NAkT+yNA)(

:{(1+y)NAkVL dT — (1+y)NAk%}de+ NAké:ldy

p | P i P
T lar | T |av, | T | ay
= (1+y)N.k— |——=|(1+Vv)N .k P+l (1+v)N .,k
{( y)N, Vp:lT _( y)N, vV, _( y)N, VJHY




Adiabatic Exponents: lonization Zones

f(y) y2 A V T3/2 /KT Saha Equation
-y N
D=2 (af) ar+| L av
ar™ ar|\or ), "oy, ) T

2
_ (I_Y) v §T1/2e—x/kT 4 T2 X/ X AT + A 792, —x/deV
—~ ? 2 kT’ |

2
U=y) A VT % %/kTK3l+ A deJr%}




Adiabatic Exponents: lonization Zones




Adiabatic Exponents: lonization Zones

s dl 2dV 2 d
1tLawof. E_d1_+__p+1+_% Y |_
Thermodynamics “«tlr T 3 v, 3kT )1+
- T dV
Equation gpopldl_ &
of State T V, 1+y

Saha i:D(y)[(% X deervp}




Adiabatic Exponents: lonization Zones

Thermodynamics

1st Law of dV
Eideal|:dT 2 a (1"'2 %) dy :|:O

r 3V, 3KT J1+y
T 2dV 2 T dV
el d—+——"+(1+—l)D(y) (§+ A jd +—L =
T 3V, 3 kT 2 kT)T




Adiabatic Exponents: lonization Zones

Equation of State

T vV 2 kT

P

dP =P {ua@)(}éﬂdf +[D(y>—1]d7ﬂ

dpz(a—P) dep(alnP) ar=L_1: 4r
ad ad

dPZP_dT_de +D(y){(3+ X )dTerVpH

T\ oInT TT,-1

()| 24 %ﬂdT+[D(y)—1 Yy

2 kT )| T Vv
[1_ L, +D(y)(3+%HdTﬂ:D(y)—l]%:O

p
T Vv

p



Adiabatic Exponents: lonization Zones

1st Law |:1+D(y)—(—+lj2}—+—{l+D(y)(—+ A ﬂdv" =0

3\ 2 kT r 3 2 kT v,
Equation I, 3 )() ar av,
1- +D —+ +| D(y)—-1|—=0
R { e (y)(2 o }T [D(y) ]Vp
I 3 X
-2 2L
1 (y)(z kT) D(y)-1




Adiabatic Exponents: lonization Zones

Similarly: 2+2D(y) §+;;)




Adiabatic Exponents: lonization Zones

LR I

r, |1 _(alnPj '
I,-1 V., \dInT )/,

1.4
r‘2

Gas heats up

—> rapid increase of ionization L2y
- increase in number of free particles ] -
- pressure goes up faster than ~T 0 0z o4 o8 o8 i

T 7 77

Pressure increases faster than normal
In response to temperature increase




Adiabatic Exponents: lonization Zones

. N -
1_,3_1: alnT 1.6-_ _3
dlnp | | .

Gas is compressed

- increase in temperature

- rapid increase in ionization

—> energy goes into ionizing gas
instead of thermal energy

- temperature does not rise as fast

1.4
l-‘3

1.2

Temperature increases slower than y
normal in response to compression



Adiabatic Exponents: lonization Zones

Adiabatic exponents can be less than 4/3 - unstable!

lonization zones are responsible for stellar pulsations

 second ionization of He provides the most significant driving

* ionization zone must be in the radiative region

Cool, luminous stars (T +<6300K) will
pulsate in an “instability strip” a few
hundred K wide on HR diagram

L

A

Cepheids




Polytropes

First two structure equations: d_m = 47z:r2p d—P =—Pp G’zn
r

dr dr

Temperature T does not appear in these equations explicitly,
but is involved implicitly because pressure P usually depends
on temperature via the equation of state.

In some cases, however, P only depends on density and, not, T.
in these cases, the above two equations are sufficient to define
a solution.

A degenerate gas is such a case.



Polytropes

Assume a “polytropic relation” holds throughout the star:

Ll K : constant

P=Kp " p: polytropic index

Polytropes are useful in two situations:

« The equation of state is really polytropic
Completely degenerate gas

- Non-relativistic pP~p’ —n=3/2

Ultra-relativistic P~ p4/ 3 —>n=23

« The equation of state + an additional constraint yields
a polytropic relation.
« |sothermal ideal gas T=T,, P~pT ~p —>n=e

«  Fully convective star: convection maintains a fixed T gradient

T ~PP, P~pl~pPP >P~p” —n=3/2



Polytropes: Lane-Emden Equation

Hydrostatic equilibrium

- — 7 — _Gm >
dr r p dr dr

a’P_ Gm \rz dP a’{r2 dP} dm

d|r’dP 1 d|r°dP
S =-G4rr’p > — ! =-4nGp
dr| p dr r-dr| p dr

Make this equation dimensionless. First density,

p(r)=p8"(r) p.=p(r=0)

1
1+— 1+_

14t 1
P=Kp " —>P=Kp """ =Po" (Pc=Kpcnj



Polytropes: Lane-Emden Equation

1 d|r*dP
:—4][G — Cen f):POrH_1
r’ di’|: p dr} P PP C
1 d| r* d )
| = (po™) |=—4nGp0"
r-dr| p.0" dr |
P1d|r de
y e — 2N L (n+1)0" =2 |=—-4nGp 0"
p.r dr| 6" dr
(n+1)P. 1 d [rzd—e}——H”
' 4nGp> r*dr| dr - =y
o r (n+1)P,
Next, make radius dimensionless: |& = — r, = 5
r, . 47TG,OC |




Polytropes: Lane-Emden Equation

1 d |,. o do |

2 7 :_en

ey 4@ aen)
Sl Y

& dE| 7 dE

1 do _,d’0 )
)

0 2d0 . v_ 20 o
>d§2+gd_§+9 = 6 59 0




Polytropes: Lane-Emden Equation

9”:_%9/_911 Jg’:L p(l’)=p69n(r)

S r,
Boundary conditions
 Center dp ,
r=0 > =0 p=p. = 6=1 E:O% 0'=0

» Surface is at first zero crossing of 9(5)

p=0 — 6=0 §=¢,

Solving Lane-Emden

The Lane-Emden equation can be integrated numerically outward
until 6 = 0.

- Start at ¢ =0. In steps of ¢ compute 67, 6’, 6. Stop when 6 =0.
» Get value of & , as well as full (&) profile.




Polytropes: Lane-Emden Equation

 Analytic solutions exist for three cases: n=0, 1, and 5

n=0: 6(E)=1-5 & =6

nel: 9(5):512‘5 E=n
5 \-1/2

n=5: e(g):(u%j & = oo

* Polytropes with n>5 have infinite (divergent) mass.

* Only models with n=3/2 and n=3 are physically relevant.

n=-—: P:Kp5/3 n:3: P:Kp4/3
2



Polytropes: Lane-Emden Equation

Solving a differential equation numerically

Simplest case: ﬂ = f(x,y) Boundary condition: y(O) =Y,

dx

« Choose step Ax

« Start with boundary condition and evaluate y at next step

y(Ax)=y(0)+y"(0)- Ax

» Repeat for all subsequent steps

y(x)=y(x—Ax)+—(x - Ax)- Ax



Polytropes: Lane-Emden Equation

Solving a differential equation numerically

* Loop over steps:

y[l]=Y[i—1]+d—[i—1]'Ax
X

dy;., dy d’y.
—lil=—=|i-1|+—=|i—-1]|-Ax
dx l] dxl ]+dx2[l ]
d’y



Polytropes: Lane-Emden Equation

* As n increases, solutions become less centrally concentrated




Polytropes

r

Jp(r)47tr2 dr

0

M(<&)=[poran(en) d(e) =dmp, [0°8 dc

0

» Total mass enclosed by r M (< r)

s o 1 d| .,dO _ 30| 2d_9
:47ri’nPc£é: _—?d—g(f d_éﬂdg —47T”npc[ é dé}

* Total mass in star |M = 47T7”n3Pc [_5129,(‘51)]

(n+1)P v
» Total radius of star |[R=r¢, = ke =1 ¢
4rnGp;

1+l

* Pressure - density |P. =Kp_”

Cc




Polytropes

We have four equations - we can get 4 unknowns.

e.g., if we know the equation of state: K, n, and the mass M, we
can

. solve Lane-Emden to get &, and 6’(51)

9// — _%9/_971

S

 use four equationstoget r,R, p., P,

_ 1*% (n+1)P V2
E.=Kp, R=rg=|ele| &

M =4nr’p. I:_glze,(xél):l




Polytropes: Structure of a White Dwarf

P

C

1/2
1 n+ I)P
_n | (M =4rrip.| &0 R=ré = ( ‘
= Kpc npc|: ,él (51)] n&l 471_pr
Consider a White Dwarf composed of a " 2 P=Kp¥
degenerate, non-relativistic electron gas. 2’
p 5/3
R-2s =P —pw s p R
P. Pe

M~r’lp. ~RRS ~R° —|[R-M"

The radius of a White Dwarf shrinks as its mass increases!




Polytropes: Structure of a White Dwarf

R ~ M—1/3 pc " R—6

As the white dwarf mass increases, its radius shrinks and
its central density increases.

Eventually, the core will become relativistic.

As the mass keeps growing, the relativistic core grows too.

L ee

M




Polytropes: Structure of a White Dwarf

C

ok M=dmip[-80&)] [R=r {(

Consider a White Dwarf composed of a _ 43
L n=3, P=Kp
degenerate, ultra-relativistic electron gas.

P
R ~ P; - [;;2 - Pc_2/3 — P~ R”

M~r’p. ~RR? — |M=const

When the white dwarf is fully relativistic, its mass decouples
from its radius and central density!



Polytropes: Structure of a White Dwarf

1/2
p ko M=amp[E0(E)] R:rna{(”“)ﬂ 2

, 4nGp;
() () (K] (£
"\ 4nGp? nGp; G " nG)
x
M = 4727rn3pc [—5129'(51)] = 47?(%) pc_lpc [_5129,(‘51)]
Plugging in numbers:
M = 4%( ) =&6(&)] M =146M

This is the Chandrasekhar limiting mass for white dwarfs.
No white dwarfs are observed with mass greater than this.



Radiative Transfer

Consider energy in the form of light, passing through a medium.
The amount of energy passing through depends on location,
direction of flow, time, frequency of light, area through which
light is passing.

T



oy 0T

~ o~ o o~

<

Radiative Transfer

-1 -2 -1
ergs c¢cm "Hz

-1 |
erg s cm st

-1 -2 -1 -1
ergs cm ‘st Hz

Energy

Specific Energy
Luminosity
Specific Luminosity
Flux

Specific Flux
Intensity

Specific Intensity

dE=1,-dt-dA-dQ-dv




Radiative Transfer

I, is constant along a ray travelling on a path, whereas flux

decreases as r-.
Fewer rays from a given

source cross an area dA
that is farther away
because that area is a

dA dA smaller fraction of the
s whole sphere at that
I’l radius.
>
b

However, an equal
number of rays cross the
area dA per solid angle
because as dA is further
dA dA away, a fixed solid angle
corresponds to a larger
PE area of emitting region

~r2
n by ~r-.




Radiative Transfer: Emission

Electrons can recombine with atoms or drop to lower energy levels
and emit photons

Emission coefficient j ergs'ecm”st”'cm™

- o I s D S [ |
J, ergs cm ‘st Hz cm

dE =] -dt-dV-dQ-dv

dl, = j ds

J, is the change of /, per unit length along a path.

We are only considering spontaneous emission here.
Stimulated emission depends on /, and is more conveniently
treated as a “negative absorption”.



Radiative Transfer: Absorption

Absorption m
<O >
ds)

As light passes through a W

medium, it can be absorbed.

dl, =—ao I ds

o, ds : fractional loss of intensity over path ds

o, . cm positive o, — energy loss

The change in intensity depends on intensity itself because the
more photons try to move through a medium, the more photons
can become absorbed by it.



Radiative Transfer: Absorption

If absorption is due to particles with number density 7 and
cross-sectional area O,

Consider a volume element

ds - dA

Total area covered by particles:

n-dvV-o, =n-dA-ds-o,

Fraction of area that is covered by particles:

n-dA-ds-o,
=n-0,-ds =ads — |, =no,
dA
Define opacity as: |, = pK, K, : szg_l

Opacity is a property of the intervening material, like a
cross-sectional area per gram of material.



Radiative Transfer: Optical Depth

Define optical depth 7, dt, = o ds
dl
dIv = _avlvds > — = _OCVIV — IV — Iv (O)e_“vs
ds
dl L,
dl,=-1dr, >—~Y=—-[ 1, =1 (0)e™™
dt

Optical depth is the number of e-foldings change in intensity.
It is an alternative variable for path.

. Fixed ds = fixed distance

» Fixed d7 = fixed change of [



Radiative Transfer Equation

Change in intensity over a path length is the sum of
emission + absorption (source + sink terms).

dl, =—-o 1 ds+ jds — dl, =—o 1, + ],
ds
dart
d,=-1dt,+j— — al, _ -1, +S,
o, drt,

S ==Y | Source function

In stars, the source function is close to the blackbody Planck
function.



Radiative Transfer: Net Flux

* If area dA is perpendicular to light rays
dF, = I,dQ
* If normal vector to area dA is at an angle @ to light rays

dFv — ]v cosBdC) Flux is reduced because effective
area is smaller.

« “Net flux” in the direction of 7 is F, (fi) — JIV cosBd 2

For an isotropic radiation field A J‘ _
intensity is angle-independent. FV(n) [,)cos0df2=0



Radiative Transfer Equation

1 dl
dal, +1, =S, — e —L+e"l =e"S,
drt, drt,
d T T T f T, ’
> (IveV)zeVSv — le" = jeVSvdTv + const
drt, 7

When 7 =0 — [ = IV(O) — const = IV(O)

— [e" =1,(0)+ J‘eTLSvdT;
0

Ty

— I,=1,(0)e™ + fe‘(TV‘“)S dt!

1% 1200 %
0



Radiative Transfer Equation

[, = v+ J S drt,
Final intensity is initial intensity d|m|n|shed by absorption
+ integrated source function also diminished by absorption.

Ty

For S, =const: 1,(7,)=1,(0)e ™ +S, et

=1,(0)e™ +8, e_(TV_TQ)]ZV

I,=1,(0)e™ +S,(1-¢™) ast, >, I,>S,

1%




Radiative Transfer: Radiative Diffusion

Within a star there is a net radial flux (outward) causing a departure
from isotropy. We can relate this flux to the temperature gradient.

A

* plane-parallel approximation

- angular dependence through 6 only

* L =cosO ds=dz/u




Radiative Transfer: Radiative Diffusion

u ol v | pkK, 1s the fractional loss of /,, per unit length.

Iv — Sv o K a -1 .
PK, 0% ( PKV) 1s the mean-free-path.

Vv

1

This second term is the change in intensity over the mean-free-path.

Thisissmall -/, =S, =B

1%

{ 0B,
pK, 07

To first order: ]v ~ BV —

1
integrate to get > () = jlv cosfdQ = —27TJIV (u.z)udp
1

flux in z-direction:

dQ = 27sin0d0 = —2rdu



Radiative Transfer: Radiative Diffusion

u an +1
oK. 0z F,(z2)=2m[1,(uz)pndu

I, ~B, -

B, is isotropic so only the derivative term has a non-zero angle
dependence.

2nj( 1 88] du — 2T a(fv]luzdu

U px, oz pK, 0z °
_ 2m B[] _ 2m 9B, 2
pK, dz | 3 |, pK, 0z 3




Radiative Transfer: Radiative Diffusion

- 4rm 0B, dT
3px, oT 0z

Total flux (integrating over frequency):

K 4 dT ¢ 1 OB
Flz)=|F,(z)d = — ~d
(2) j o(2)dv 3 0z !prcv or "

Define the Rosseland mean opacity:

J‘ 1 0B, v

Can be computed for any material, . px, dT

at any density and any temperature PKR “ B

(albeit with difficulty). J v dv
ol

0




Radiative Transfer: Radiative Diffusion

~dv

_47t8T°j’ 1 OB

3 0z

0

px, oT

_47raT 1 T&B

3 0z pk,

0

471'8T 1

3 dz pk, dT

4w JOT OB

_3pK‘R dz oT

~dv

oT

jB dv

where B is the total intensity



Radiative Transfer: Radiative Diffusion

Sphere of uniform brightness.
At an exterior point,

( B, 6<80.
0, 6>6,

[ =+

2r 6,
Find fluc: F = [ 1 cosdQ =Bjd¢jcos9sin9d9

sin 9

sin” 0
—27rBjcos(931n9d6 =2nB J xdx =2rnB 5 .
| R RY
sin@, = — F=mB| — At surface: |F =r1B
r r r=R




Radiative Transfer: Radiative Diffusion

We found that the flux coming

from an enclosed sphere is: I'=rB B oT"
Also, for a blackbody: F=0oT" | T
F(2) 4 OT OB 0B 40T’
7)=— =
3pk, dz oT oT T
Equation of radiative diffusion
160T° oT
F(Z) - 30K O - Applies provided that quantities change
PKr 02 slowly on scale of mean free path.

» Material properties enter through K,




Radiative Transfer: Radiative Diffusion

Spherical symmetry: Z—r

L =F(r)dnr’ \ 6(“) .
16| — |T
T
ac ¥Lr = — 4 d Arr’
O=— 3pK, dr
4 J
3 16zacr’T* dT dI"  3pkK,L,

r

3pK, dr dr  16macr’T’




The Eddington Limit

Photons carry momentum - absorption of photons must
lead to a force.

Spherical symmetric source with luminosity L

» Energy flux at distance r : L (erg S‘lcm‘z)
Arr?
L -3
 Momentum flux : . (erg cm )
drcr
(E = pc)
* Multiply by opacity to get force per unit mass
d KL _
_ 4P F. = - (erg cm g 1)
dt drcr

Opacity is the fraction of momentum flux absorbed per unit mass.



The Eddington Limit

* Inward force per mass due to gravity: Eg = G]y
r
Radiation balances gravity when F 4 = F,,
KL GM 4wcGM
> T T 2 — L=
4rcer r K

At greater luminosities, F,4>F,,, and gas will be blown away.

« Assume opacity is due to Thompson scattering by free electrons

& _nmo o _o
P P m My
471cGM M
L, = 2meGMm, -y _3ax10t| 2|
o M




The Eddington Limit

L,=32X 10* (ﬂ)Lg This is the Eddington limit
M
©

Assumptions:
« Thompson scattering only

other opacity sources increase opacity = lower L
 spherical symmetry

« Mass-Luminosity relation for very massive stars

24
L — 342 % = Ledd — Mmax - IOOMO
L@ M@

Formation of more massive stars cannot be spherically symmetric



Opacity Sources: Electron Scattering

The opacity of a material depends on the composition (X,Y,Z)
the temperature 7" and the density p of gas.

K=xk,0'T"

1. Electron scattering

no n,o,
K =—— =
p p
. . PN , 2
In an ionized mixture of H and He: n,= U, =
U, I+X

~ pN,(1+X)o, o,N,(1+X)

K, =
2 p



Opacity Sources: Electron Scattering

If electrons are non-degenerate and non-relativistic, their
cross-section is equal to the Thompson cross-section.

) 2
O = 8”( - 2] =0.6652 %10 cm’
3 \m,
K, = GTNAS +X) k,=02(1+X)cm’g”™

Cannot use if

* heavy elements are abundant or gas is partially ionized
* density is high - degenerate

» temperature is high - relativistic

e- opacity has no frequency, density or temperature dependence

K=k,0"T", n=s=0




Opacity Sources: Free-Free Absorption

2. Free-Free Absorption A free electron cannot absorb a
photon because energy and momentum cannot both be
conserved. However, the presence of a charged ion near
the electron can make this possible.

Y+e +1on — e +10n inverse of Bremsstrahlung
pZ

Ky = 107 =——=T17" cng_l Z . : average nuclear charge
JLLe ul

Since free electrons are required, free-free opacity will be
negligible for T <10*K since H will not be ionized.

K, =4x107(X+Y)(1+X)pT > em’g| My ionized

* N0 metals

K = Kop”T_S, n=1,s =3.5| Kramers opacity




Opacity Sources: Bound Absorption

3. Bound-Free Absorption
A photon gets absorbed by a bound electron, ionizing it.

K, =4x10°Z(1+ X)pT *“em’g™| - T>10°K

K = KoPnT_Sa n=1,s =3.5| Kramers opacity

4. Bound-Bound Absorption

A photon gets absorbed and causes a transition between
bound energy levels in an atom.

» Very complex calculation: absorption line profiles, line
broadening.

 ~10 times smaller than f-f or b-f .
Kramers opacity



Opacity Sources: H- Absorption

5. H- Opacity
At low temperature, an extra electron can attach to the H atom.

H- has an ionization potential of 0.75 eV so it's very easy to
ionize if T > a few thousand K.

Z
0.02

3000 < T < 6000K
107 < p< 10_5g Relevant to Sun’s

atmosphere!
X~0.7, 0001<Z<0.03

=31
K, = 2.5%10 (

) p1/2T9cm2g—l

K=xk,0'T", n=05,5=-9




Opacity Sources: Tabulated Opacities

In practice, stellar models use opacities calculated using detailed
physics.

As a function of p, T,X,Y,Z + breakdown of metals

* Calculate all the relevant b-b, b-f, f-f, H-, e, scattering effects.
» Get a correct Rosseland mean opacity.

* LANL 1960s following defense calculations
* OPAL Rogers & Iglesias (1992), Iglesias & Rogers (1996)
» Opacity Project Seaton et al. (1994)

* Opacity tables do not cover whole p, T, X, Y, Z space.
Extrapolation is dangerous.

* Need to do smart interpolation.

* Differences of as much as 30% between projects occur.




Opacity Sources: Tabulated Opacities

X=0.7,Z2=0.02

5 —
4 —

high p

low p

-f, b-f, b-b

e scattering

logT




Opacity Sources: Tabulated Opacities

X=0.7,Z2=0.02

5 —
4 —

M 12107
M

T ~10°K

|

M 1107
M

T ~5x10*K

center

3

6

—log(1—m/M)

9

surface



Opacity Sources: Tabulated Opacities

A
0 —
g

e scattering
logT

7 conduction

| degenerate e
6 —




Heat Transfer by Conduction

When the density gets very high, degenerate electrons transfer
heat by conduction in addition to providing hydrostatic support.

Total energy flux is additive: F_=F +F

tot rad cond
dacT’ dT dacT’ dT
Ead:_3 d cond:_3 d
pKR r chond r
1 1 1 _ . . .
— + Like resistance in a parallel circuit
Ktot KR Kcond

* In normal stars, K___, is large - conduction is negligible

In center of sun: x,~02, k. ~2x10"!!!

cond
* In degenerate dense stars, it can be smaller than K,

In center of cool white dwarf: k, ~0.2, k. ~5x107

cond



Convection

* If luminosity is transported by radiation, then it must obey

16acr’T’ dT
3pK, dr

[ =

r

* In a steady state, the energy transported per time at radius r
must be equal to the energy generation rate in the stellar interior.

-

dT L 1s large
— — will be large if - . .
dr K, 1s large

.

* The temperature gradient cannot be arbitrarily large. If it gets
too steep - convection takes over as the main mode of
energy transport.



Convection: Stability Criteria

* Uniform composition, T(r), p(i’) profiles

p(r+dr), T(r+dr)
* Displace a mass element by dr without
exchanging heat with the environment

(adiabatically). r+dr

* Element expands to maintain pressure
balance with its environment.

* Its new densityp* and temperature T~
will not in general equal the ambient
values at r+dr.




Convection: Stability Criteria

 Since the change is adiabatic:

dlnP T >P(dpj T p(r+dr), T(r+dr)
d P dp ad

r+dr

P de
= + d
p(r) FIP(dr o '

 Since pressure AP AP
equilibrium applies: (—) - —
dr ), dr



Convection: Stability Criteria

«If p">p(r+dr) :displaced element
will be denser than its surroundings and
will settle back down > STABILITY p(r 4+ dr) . T (;» i dr)

«If p"<p(r+dr) : buoyancy will cause

element to rise further > INSTABILITY r+dr

« Stability criterion is:
p dP
I'\P dr

plr+d)-p(r) __p dp
' dr I'\P dr

dp< p dP
dr T©'\P dr

dr > p(r+dr)

p(r)+




Convection: Stability Criteria

 Since the change is adiabatic:

(dlnP) _ T \T(dP) _ 1 p(r+dr), T(r+dr)
. -1 " plar

ad 1_‘2_1




Convection: Stability Criteria

If T"<T(r+dr) : displaced element
will be cooler than its surroundings and
will settle back down > STABILITY p(r 4+ dr) . T (;» i dr)

«If T°>T(r+dr) : element will be

hotter and thus rise > INSTABILITY r+dr

« Stability criterion is:
1 \T dP
T(r)+ [1 — ]

dr <T(r+dr)
FZ
T(r+dr)-T(r) >(1_ 1 ]T dP

dr

\4

dr I', JP dr

dT ( I]TdP
—_> 1_

dr I, )P dr




Convection: Stability Criteria

« Stability criterion is:

~ ~ unstable

< Y ambient

N stable

>

¥

* Too rapid a change in temperature > CONVECTION

dT 1 \T dP
—>| 1=
dr ( szP dr




Convection: Stability Criteria

« Convert to maximum luminosity that can be carried by radiation

dT  3px,L, >(1_ 1 )T dP

dr  16macr’T? I, )P dr
3pK,L 1 \T dP
P(l ] ap __ Gm
lomacr°T I, JP dr dr 2

L <

r

_167wcG 1_1 T*m
I,) P

3K,

* If L exceeds this value > CONVECTION



Convection: Stability Criteria

* In an unstable region, displaced Adiabatic change
element is hotter than ambient gas 4 /
- continues to rise T (r)
T*
» Eventually, radiation will leak out T
of the rising gas element. / T (r+dr)
- extra energy flux from hotter to Actual gradient
cooler regions

r

» What causes convective instability in some regions of a star?

1 1 \T*m | |
L ~—|1- When L., is low = convection
K I,) P



Convection: Stability Criteria

T4 I L i i Remember
r,=5/3

-

Ky is large Occurs when there is a large

contribution from atomic processes.
Vulnerable to

R
convection if

Occurs in ionization zones where
F—1 I", dips below 4/3

.

So, atomic processes + ionization zones - convection will happen
In regions where T~10%-10°K and H is being ionized.

Not in high mass stars



Convection: Stability Criteria

1 1 \T*
L ~_(1_ j m

K, 1s low

I', 1s high L  ~m

Vulnerable to convection if there is a large luminosity at low mass.

This happens when nuclear energy generation is a very strong
function of T. CNO in massive stars.



Convection

Zero-age main sequence stars

1.6 -
1.2 -
M 4 S
log — 0.8 Massive star
M@

Sun

0O 02 04 0.6 0.8 1

/M



Convection

Very low mass

. Fully convective
Main sequence

Low mass Radiative core
Main sequence Convective surface
High mass Convective core
Main sequence Radiative surface

White dwarfs Conductive




Convection




Convection

Convection is incredibly difficult to model accurately because fluid
motions are very complicated. Itis a 3D problem.
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Convection

Convection is incredibly difficult to model accurately because fluid
motions are very complicated. Itis a 3D problem.

Sun {L71D09), T,=5770 K, logg=4.44
212 x 106 grid points, 11540 s {At=20 s)
Matthias Steffen, Bernd Freytag

Time: - AMsSeC Temperature, Tracers
v

11
i/
“:n'lni"]nu'

0




Convection: Energy Flux

* No reliable analytic way to compute

 Lab experiments with fluids are not relevant
e incompressible
* too viscous
* boundaries

» Hydrodynamic simulations are challenging

« Empirical simple model for spherically symmetric
stellar models: Mixing Length Theory



Convection: Mixing Length Theory

1 parameter: length of mixing

Each mass element
rises or falls a distance
| adiabatically

After one mixing length, l
The element thermalizes
with the local environment.




Convection: Mixing Length Theory

« [ should scale with the pressure scale height

-1
P
AP =P d— (length over which pressure changes by 100%)
dr
=0 A, o : free parameter (a=1.6%0.1)

« After rising adiabatically by a distance [, the mass element will
be hotter than its surrounding gas by A

AT
I ar

AT =12 |9 ) 2 AT a
dr| |dr|, ar

dr

>
r



Convection: Mixing Length Theory

* If the mass element thermalizes at constant pressure, the
amount of heat per unit mass released is

AQ = c, AT = c,IAVT

- If the average velocity of the mass element is Vv , the average
excess heat flux is

= pv AQ pV c IAVT heat , _Imass length heat

mass VOlllIIle time area - time

COHV

* The mass element is accelerated due to buoyancy (p < pambient)

o

dp

dr |,

dp|
dr

)z =/AVp — Ap= %mvp



Convection: Mixing Length Theory

* The average buoyant force per unit volume is

. — 1
F=g-Ap ZEglAVp where g:G—T
r
* The resulting acceleration is
F [ Gml
Jo, 2p 2pr

* If the mass element starts at rest and has a constant acceleration

1

v=a-t | —v=(2al)"” evzg(zaz)l/2
r=te =2 [(Gm )"
v 1w | AV:Eﬁ—ZAij
2 pr



Convection: Mixing Length Theory

1/2
F_ = pvc,IAVT V= é(G—mAij

1/2

pr’
_P
ad I

l G 1/2
F_ =— [ me AVT) pc, IAVT
pr’ T

dT
dr

dT
dr

dp
dr

dp|
dr

N,
If

AVp = ( P avr
T

1/2
Fz:onv — _CPP(_j (AVT)3/2




Convection: Mixing Length Theory

* How large an excess T gradient is needed to carry luminosity?

Lr
32 _ 4rr’ L,
(AVT) 12 Z; 1/2 = 5 1/2
m 27tl*c,pr(Gm/T)
ECPp T2

e.g.,at % =0.5,1=A, =5x%x10"cm, solar values for T,p,r,L_,c,

dT

dr

T
~—<~10"Kecm™

R

AVT ~10""Kem™

Requires an excess of only ~10- of the temperature gradient!



Convection: Mixing Length Theory

* When convection occurs in stellar interiors, the resulting
temperature gradient equals the adiabatic gradient.

L LA f e
dr dr )4 I N

radiativeé

stable T
(1_ 1 jT dpP gradient% ‘|

P dTl : >
r

* If composition changes with radius, this may be different.
e.g., if W drops with r = heavier material is displaced into
lighter material = greater stabillity.

Nuclear burning = stabilizing



Convection: Mixing Length Theory

* When convection is efficient, the exact value of the mixing
length / does not matter.

Near surface, Apis small - larger AVT is needed.

 Stellar radius R, surface T, etc. depend on &

X2 change in &/ - few hundred K difference in T .



Convection: Mixing Length Theory

Convective Overshooting convective zone
Do convective elements overshoot
into stable regions due to inertia?

Naively: No because acceleration is small

and braking is large in stable zone.
radiative zone

v

Simulations: Overshooting extends to
significant fraction of A,

Alternative to Mixing Length model
“Full spectrum of turbulence”

Turbulent processes involve a range of length scales.

It is unclear if this works better than the one-parameter model.




Energy Generation: Gravitational Sources

In a static star, the energy source is thermonuclear

dL
=€
dm

In a contracting/expanding star, if the process is not adiabatic,
there is an extra source/sink of energy so that

dL dL
m£E Instead: m -+ € ray

dm dm

In real stars, contraction/expansion is a local process. e.g., core
contracts while envelope expands > €, is a function of radius.

. dQ d (Gm) Gm .
et - dm dr\ 7 B




Energy Generation: Neutrino Losses

L excludes energy flux in neutrinos.

Matter at normal densities and temperatures is completely
transparent to neutrinos - energy loss

neutrino cross-section: ¢, ~10™" &’ ¢cm (ev . energy in MeV)
1 o -
A=—0 A~10"ep 'cm
no

Vv

It is only possible to get a short mean-free-path if the density
IS very high. This is only true in the cores of SN where neutrino
pressure is important.

dL
. =&+ Sgrav — &,




Nuclear Energy Generation

» Lighter nuclei with mass M; fuse to form a heavier nucleus
of mass M, . The energy liberated is

E=AMc® =| Y M -M |’
J

4% 'H (mass 1.0079 amu) — *He (mass 4.0026 amu)
AM ~ 0.7% or original masses, or 26.5MeV

* The mass of a nucleus is not simply equal to the sum of
its constituents (i.e., protons and neutrons). There is also
binding energy that holds the constituents together.



Nuclear Energy Generation

* The binding energy of a nucleus is defined to be

: 2
E, = (mass of constituent nucleons — mass of bound nucleus)c

Ey = I:(A — Z)mn + Zmp _ Mnuc]CZ m, . neutron mass

m , . proton mass

* The binding energy per nucleon is

E

vy

* Binding energy = energy required to separate the nucleus to
infinity against binding forces.



Nuclear Energy Generation

* To get energy from fusing lighter nuclei into heavier nuclei,
the total binding energy of the light nuclei must be lower than

that of the heavier nucleus. (M for light > M for heavy)

3
e.g., 3x *He— "C 3x'He: C—zEB’He:3><(2n+2p—MHe)

2C %EB,C =(6n+6p—M,)
c

E E
3M,,>M.— 3E, ., <E,. — Z’He < 132’C
E

A nuclear reaction can release energy if & for light element
is less than that for heavy element.



Nuclear Energy Generation

« The most tightly bound nucleus is °°Fe. Fusion of pure 'H
to %°Fe yields ~8.5MeV per nucleon, the largest part of which
(6.6MeV) is already obtained in fusion to “He.

» Fusion of elements with ()
A<50 yields energy. o
I8t T
* Fission of elements with 56
A>56 yields energy. (MeV)7 L ©
« Elements near °Fe are 6 >
the most tightly bound L 2 A b 158
and are thus not much

use for energy production.

« If a star ends up with °°Fe, energy production is over.



Nuclear Energy Generation: Coulomb Barrier

* To fuse, nuclei must surmount
a Coulomb barrier.

* Nuclear forces dominate
within a radius

r,=144x10"Acm

* For nuclei of charge Z, and Z,
height of Coulomb barrier is

ZZe

A

E, ~Z.Z, MeV

« At T=107 K, the thermal energy kT is ~10%eV
—> classically there are ZERO particles in a thermal
distribution with sufficient energy to fuse at this T.




Nuclear Energy Generation: Tunneling

« Quantum tunneling is required for fusion to take place.
Tunneling probability is

P = P E2p2m n= m v 212262 P, : depends on nuclei
" 2 hEY? m : reduced mass

P increases rapidly with energy
P decreases with Z,, Z, - lightest elements can fuse
at lowest temperatures.

« Higher energies and temperatures are needed to fuse
heavier nuclei - well separated phases in which different
elements burn during stellar evolution.

H — He
Tl HescC,0
C,0O — Na,Ne,Si,P




Nuclear Energy Generation: Resonances

* Most thermonuclear reactions in stars proceed through an
intermediate state called the “compound nucleus”

o : projectile (proton or ¢ particle)
o+ X —>7" —>Y+p X : target nucleus

Z" : compound nucleus in excited state

« Reactions happen in several steps:

* Tunneling through the Coulomb barrier

« Formation of a compound excited nucleus Z°, whose
energy depends on the reaction and kinetic energy of
reacting particles.

« Decay of the Z" via emission of photons, neutrons,
protons, alpha particles, electrons, etc.



Nuclear Energy Generation: Resonances

e.q., D+ g _y12c% _y 12C**+’}/
11B+p
— '"C+n
— “N+e +V,
— *Be+ ‘He

» The probability of a given output depends on the decay lifetime
over the sum of all possible lifetimes.

If T.is the lifetime of a particular output, then the probability
of that output is:

/t, 7 B
[T _ where 7 = (21/ Tl.) : total mean life of *C”

21/1' T,




Nuclear Energy Generation: Resonances

- Through the uncertainty principle, the energy widthis 1'.7, =7

I I : 12 v
P = = where I :total energy width of “C
ST
J

* The compound nucleus has
Stationary energy levels
corresponding to excited atomic
states that can decay via photon
emission. E

A

-
Quasi-stationary levels, which /
can decay via particles tunneling

back through the Coulomb barrier.

N\




Nuclear Energy Generation: Resonances

resonant energy

quasi-
. <
stationary \
levels

A
stationary
levels

non-resonant
energy

 The lifetimes of quasi-stationary states are shorter and they

have broader energy ranges.

* At high energy, the width of states increases so that energy

levels overlap = continuum of excited levels.



Nuclear Energy Generation: Resonances

* The cross-section for some astrophysically interesting
reactions depends critically upon the energy level
structure of the compound nucleus. At resonant energies,
O can be boosted by orders of magnitude.

A
* The maximum cross-section
Is the geometric cross-section

A* o< E™

* Also, add dominant exponential >
tunneling factor E

o(E)=S(E)E e

§S :astrophysical cross-section: varies very slowly with E




Nuclear Energy Generation: Reaction Rates

* The energy generation rate depends on the energy released
per reaction times the reaction rate.

« Which energies of a particle contribute most to the total
reaction rate?
High E gives higher probability for fusion per reaction, but fewer
potential reactions

* Why do nuclear reactions have a high T dependence?



Nuclear Energy Generation: Reaction Rates

 Consider particles of type j moving with velocity v relative to
particles of type k. The number densities are n; and n,.
O
*—> O
® *— 06—
o——> o—> . o—>
O '? O

* The number of reactions per unit time per volume is:

Fy =N, N -0V

1
=
To1+6,

* To avoid double counting: n,nGov




Nuclear Energy Generation: Reaction Rates

» Assume that both species have Maxwell-Boltzmann velocity
distributions = the relative velocity is also Maxwellian.

1 5 . m;m,
E=—mv", where m 1s the reduced mass: m =
2 m; +m,
 The fraction of all pairs with A

energy between E and E+dE:

1/2
2 E e_E/deE

Jr (k)" .

E/kT

f(E)dE =




Nuclear Energy Generation: Reaction Rates

 The total reaction rate (per volume, per time) is the mono-
energetic rate integrated over all energies and weighted by f(E)

1
Vo =
" 1+9,

where o0

(ov)=[o(E)-v- f(E)dE

0

njnk <(7V>

» Replace number densities with mass fractions: X.p = n.m,

* If each reaction releases an amount of energy Q, then:

1
£, = 0 PX X, <Gv> ( _energy )
1+ 5jk m n, J time - mass




Nuclear Energy Generation: Reaction Rates

* All the temperature dependence is contained in <(7v>

o(E)=S(E)E ™™

<GV>=TG(E)'V~f(E)dE ":(%Ejv

-}
(\®)
S

\

(\®)




Nuclear Energy Generation: Reaction Rates

23/2

(am)"” (kT)

(ov)=

- J‘ S o2 BT

_ 7 7 e
n=2mE"” = 7r(2m)1/2 1h26 n=(%)

2 27,€
hEl/Z

23/2

(m)" (kT)

/)2
3/2 J‘S (~E/kT-7/E )dE

(ov)=

 Ignore S(E). As E goes up, the energy/distribution term
(Maxwellian) drops, and the tunneling term increases.




Nuclear Energy Generation: Reaction Rates

_ _p/EY?
Integrand = S(E)e( EKT =TI/ E ) Maxwellian Tunneling
4 Gamow peak

* Integrand peaks at E,, where
d(Integrand)/dE = 0

Integrand

 Since only a narrow range of E
contributes to the integral, it is
ok to assume S(E)= S, = const E, =
(for non-resonant reactions)

(—E/kT—n/El/z)(_ 1 +ﬁl _sz

d(Integrand)
dE

— €

e This is zero when: — _—

nl ., 1 kT \?’
E 2 kT



Nuclear Energy Generation: Reaction Rates

o0

BT -7 BV .
» Evaluate the integral je( BT/ )dE = Jef E) dE
0 0

« Expand f(E) about the maximum at E=E, using a ~ 2E§/2
series expansion truncated at the quadratic term = kT
p | 2
f(E) = f(Eo)"'fW'l'Ef (Eo)(E_Eo) LR
E n E, 2F E
E — _ 0o — _ 0 0 — _3_0
/() kT E) kT kT kT
I 7
/ E = — + — O
/' (Ea) kT 2E)°
n 3 3n 3
f”(EO) _ 77 _E1/2 _ 77 .

C2E22 " T 4EY T 2EAT




Nuclear Energy Generation: Reaction Rates

F(E)= F(E)+ 5 S (E)(E-E) +..

:_35+1( & j(E—EO)z + .

kT 2\ 2ET
2
E E
b O pfE
kT 4AEKT °\ E,
2
E, 3E (E
R CY I DU )
kT 4kT\ E, T

r r 1 ( E
jef(E) dE = jexp —T — ZT(__ 1) dE
0




Nuclear Energy Generation: Reaction Rates




Nuclear Energy Generation: Reaction Rates

* Plug this into the expression for the cross-section

23/2 S o g __/ 2
<Gv> ( )1/2 (kTO)3/2 je( E/kT-7N/E )dE

32 1 ol

_ /2 -7
<GV> _ ( )1/2 (kT)3/2 3 SOkTT1 ze
271 . E (k1) §
QO S S

s -3
(Ov) o< S, 7% oM




Nuclear Energy Generation: Reaction Rates

>
- Peak energy: E = 2 £4Z2,€

L) e

E, (nkT\”’ 1 r(2m)? 22\
) W T)

m,;m, A A,
m= = m,
m,+m, A +A

24 1/3 1/3
EO [ﬂ e mp ) ( A]Ak } (ZZ )2/3(kT)—1/3
172

KT\ 2n ) | A +A,




Nuclear Energy Generation: Reaction Rates

E (nem Y[ aa )"
e :
» Peak energy: —- ( p] ( = ) (2122)2/3(/@)_1/3

KT

2
2h A + A,
-1/3
E T AA
L = 6.6W"| — W=227—
kT 10’K A+ A
A
The peak energy increases 20 -
with W - separated phases
of nuclear burning 154
W1/3 10
5 4
1 >

H He i Be B C
/



Nuclear Energy Generation: Reaction Rates

g, ~(ov)~T1le” T~T7"3
» Temperature dependence of energy generation rate
- dlneg, dlng, dint
Ep~T| »>v= =
olnT dlnt JInT
- d(2Int-7)d(~InT/3) _(2_ T )(_1)
~ 9lnt olnT dlnt 3
1 -1/3
=(2—T)(——j+ vl 2_eew| L) -2
3 3 3 10’K 3

v = 5 for lightest elements, rising to v = 20 for heavier nuclei.

Strong T dependence - stars must be stable to T fluctuations.




Nuclear Energy Generation: Reaction Rates

* We can use reaction rates to compute the time derivatives
of mass fractions.

Number of reactions 1 ,02
r XX,

per volume, per time: = 1+ 5jk J m.m, <GV>

- Consider the reacton A+ B — C
The abundances of A, B, and C depend on r, 5

« Each reaction yields one C, so the rate of change of the number
density of C=r, 5

dn, dX. p dX m
—=r > = y —C=A L
da dt m, a5 dt ¢, s
dX m. 1 2
00 _p X, X, ——(ov)

dt

p 1+0,, m,m,



Nuclear Energy Generation: Reaction Rates

dX, . X,X
Cop s P50y =4
dt 1+0,, A,Aym,

iy
/
W:

d'°o

=16(*He"C 1] ,)

dt
iy *Be+ *He — °C
e 12(4H68Be 1y — "He’C- r4"12) Ry 4 s 150
d’°B ‘He"H.

dteZS( 62 e°réf’4—4HeSBe-r4f,8]

d*H ‘He'H
y 8:4(—2 62 e"’4,4—4HegBe‘r41’8_4HelZC'r41,12]
t | , :



Nuclear Energy Generation: Reaction Rates

“ qR . ” : 8 12
* In “equilibrium”, the mass fractions of "Be and “C are
conserved.

. " ‘He+ *He — °Be
4 Be — a’C =0 8 4 12

i i Be+ "He — °C
2C+*He — '°0

4 4 ’
He He 8 14 V44
-1’4’4:4H.98Be-r4'8 — "Be=—"He——
2 ’ ’ r
4.8
4 8 y: 4 12 y; 12 __ 8 r4,,8 _ 1 4 r4,,4
He'Be-r,,="He C-r;,, > C="Be—— =—"He

/ /
Fa10 2 Fa12



The proton-proton chain

* Nuclear reactions usually involve several steps.

* The rate is controlled by the rate of the slowest reaction in the chain.
* The total energy release is the sum of energies of the individual steps.

The first step in the p-p chainis: 'H +'H — *H +e* + Vv,

This reaction is non-resonant.

This reaction is slow because it involves a weak decay

While two protons are flashing past each other, one of them undergoes a weak
decay into a neutron at that exact instant.

To make “He, we need 4 protons, two of which must be converted
Into neutrons via either positron decays or e- capture.

ponte +v, pte —n+v,




The proton-proton chain

The reaction rate is:

r, =1.15x10°T, " X*p” exp(-3.38/T,* )em’s™

The temperature sensitivity is:
113 2
V. = — — Insun: 1., =15—>v =4
pp 1/3 6 pp
T 3

The lifetime of a proton against destruction is:
nP np 9
T,=— = ~ 06X 107 yr For center of Sun
dn,/dt 2r

pp




The proton-proton chain

pp1

'H+'H— H+e +v,
‘H+'H — *He+y
He+°He — “He+ 'H +'H

pp2

First two reactions of pp1
‘He+ *He — 'Be+7y
"Be+e — 'Li+v,
'Li+'H — “He + *He

B /1
Be /26)
Li 7‘22

He —’

H /

pp3

First three reactions of pp2
"Be+'H — °*B+y

B— °Be+e +Vv,+y
*Be — *He + “He




The proton-proton chain

1 1 2 +
H+H=Hte \‘ IR — This reaction happens twice
PP1 *H +'H — *He+y
"He+ *He — *He + 'H +
Slowest
First two reactions of pp1 Fastest

"He+ “He — "'Be+y

Beve - LiT)

"Li+'H — *He + *He

Solar neutrinos!

First three reactions of pp2 /

7 1 8
3 Bet'H—'B+y _—
PP B — 8Be+e+y

*Be — ‘He+ *He




The proton-proton chain

'H+'H > *H+e" + Vv, pp1 is the most direct route but it involves
the collision of two short lived 3He nuclei.
PPl *H +'H - *He+y

SHe+ *He — “He+ 'H + 'H| Relative importance of chains thus depends

on 3He abundance.

First two reactions of pp1 As T increases, equilibrium abundance of

‘He+ *He — 'Be+y 3He decreases.

pp2 | I

Be+e — 'Li+v, . .

S ) ) As T increases, importance of pp2 and pp3

Li+ H— "He+ "He relative to pp1 increases.

First three reactions of pp2

7 1 8

Be+ H— "B+
pp3 Y

B— °Be+e +Vv,+y
*Be —> “He+ *He




The proton-proton chain

pp1: "He+ "He — “He+ 'H +'H 33~ (3H€)2 <GV>3,3

pp2: *He+ *He — 'Be+y r,4 ~ He'He(ov),,
: : *He <GV>33
pp2 will dominate when: r;, >1r3; — S—> = >
’ ’ He <Gv)34
pp2: 'Be+e” — 'Li+V, r,_~ 'Bexe (ov), _
pp3: 7Be—|—1HegB+y 1*7’+~7Be><p+<Gv>7’+

pp3 will dominate when: r,, >r,_ — <0V>7,+ > <GV>7,_



The proton-proton chain

The energy generation rate is:

pX
T 2/3

9

£, =24X 10* exp(—B.38/T91/3)ergs_lg_1




The CNO cycle

“"C+'H—> P PN+y F | LA
PN - PC+e +v, O | v
13C+1H—>14N+’}/ N A f
CNO1 “N+'H—>"0+y C
15 15 +
D= e +0, 1211314 115]16] 17| 18
PN+'H— "“C+ *He
PN+'H—-"0+y "O+'H— "F+y
16 1 17 18 18 +
O+'H—"F+ F—"0+e +v,
CN02 y CNO3 18 1 19
"F > "0+e +v, O+ H— "F+y
"O+'H — “N + *He "F+'H— O+ *He




The CNO cycle

2C4+H — "N+y This is the slowest reaction and sets
" 13 N the overall rate.
N— C+e +v,

"C+'H—->"N+y / After long enough time, the most

CNOT wy, 1y 1509 4 ¥ abundant nucleus will be “N
14

150%15N+€++V6 Most CNO - 4N

"N+'H— "C+"He Timescale to reach equilibrium is long

PN+'H—-"0+y "O+'H— "F+y

16 1 17 18 18 +
CNO2 O+ H— F+vy GE F— "O+e +v,

"F5"0+e" +v 0+'H— "F+y

O+ 'H — “N + *He "F+'H— 'O+ "He




The CNO cycle

The approximate energy generation rate is:

X7
e ~44x10°P

CNO 2/3
T/

exp (—15 228/ T91/ ? ) ergs_'g”

The temperature sensitivity is:

508 2
Vevo = T61/3 — 5 T, =20—>v,, =18




pp chain vs. CNO cycle

CNO is favored over pp
when:

* T is high

Since heavier nuclei are involved

* Metallicity is high

Since CNO nuclei are needed

1000

100 E

0.01 E

0.001 E

| |

107

1.56x107 2x107 2.5x107 3x107

T (K)



He Burning (triple O )

4 H e-|-4 H 698 B é This is the inverse of the final reaction in the pp3 chain.

The reaction is endothermic, absorbing 92 keV of energy. Requires about
this much energy in Gamow peak

ﬂ ~ 6.6W1/3r117—1/3 W = ZjZlf AjAk
KT A +A,

E,=92keV - T=1.15x10°K
Lower limit for He burning

« When T>108K, 8Be is created roughly as fast as it is destroyed (via inverse reaction)

We can find equilibrium abundance via (GV> , but we can also use a Saha
equation for nuclei:

n’ om kT 2 n
o — A e Y 0 =92keV T=10K — -8 =7x%x10"°
N, h n

o




He Burning
"Be+*He—"C+y+Yy

The reaction is exothermic and resonant, proceeding via an excited state 12C”

Most 12C" decay straight back to 8Be + “He, but some emit a photon to form a stable 2C

O . e
/ I287keV

$Be + 7.65MeV Y

8
Be 4 44 MeV Y
P [ 92kev
o+ o 12
- C ground state




He Burning

The approximate energy generation rate is:

= 510" 2 cxp(—44/T;)ergs g™
g, =5X% = exp(—44/T,)ergs g
9

The temperature sensitivity is:

4.4
vV, =——3 17,=0.1>v,, =40

CT



He Burning

The effect of He burning on the structure of the star depends on the central
conditions at the moment of ignition.

* Low mass stars (M < 0.4M,,) develop a fully degenerate Helium core before the

temperature rises to the He ignition threshold. The core cannot contract or heat up
further - no He burning > He white dwarf

 High mass stars (M > 1.5M_,,) ignite He while the density is well below the
degeneracy threshold (P <<108g cm3) = No large structural changes

 Intermediate mass stars ignite He under conditions of partial degeneracy. This
allows a runaway reaction: He flash




He Flash

* Under degenerate conditions, pressure is a function of p only, not T.

« Upon He ignition, the energy release leads to a T rise. However, this does not lead
to a P rise and hence to expansion and consequent reductionin p and T, as in a
non-degenrate gas.

 Higher T increases the rate of nuclear reactions further - runaway

Non-degenerate core: He ignition > T A > P A 2 expand > T W stable

Degenerate core: He ignition 2> TA 2> EAN > T AN unstable

* This continues until T is high enough in the core to lift degeneracy. The core then
expands rapidly until a new stable He burning structure is attained.




Heavier elements

» Once enough '2C is formed by the triple- ¢ reaction, further captures of O particles occur
simultaneously with the Carbon forming reaction.

“C+'He—="0+7y

16 4 20
O+"He—"Ne + Y (Reactions beyond 2°Ne are rare.)

* He burning ---> C, O, Ne. If T>10°K, further reactions can occur. Since binding energies
of heavy nuclei are comparable, a wide range of reactions are possible.

“C+""C—"Ne+*He
Most important C burning
“C+"C—>%Na+p )

e Sj I - 9
160416031 p 4 D Most common O burning Si burning starts at T~3x10°K

1604+1°0—>28Si+*He « over long timescales - %Fe

16 16 31
O+°0-""S+n « over short timescales = 5N
(e.g., in SN)




Summary of Results

1. Mass Conservation

dm dr 1

A — 4 2 — =
a0 P dm 4rnr’p

eulerian lagrangian



Summary of Results

2. Hydrostatic Equilibrium

dP Gm dp  Gm
dr P r’ dm Ay
eulerian lagrangian

Need equation of state: P = f(p,T,Xl.)



Summary of Results

3. Energy Generation

dL dL
" = 47r’ pe n =g
dr dm
eulerian lagrangian

Need nuclear physics: € = f(p,T,Xl.)



Summary of Results

4. Energy Flow: Radiation

dar 3kpL, dr 3xL,
dr  16macr®T® dm 64 acr'T”’
eulerian lagrangian

Need opacity: K = f(p,T,Xl.)



Summary of Results

4. Energy Flow: Convection

GmT

L \GmpT dr _ [ 1
r,) r’P dm I,
eulerian lagrangian

Need adiabatic exponent: 1", = f(p,T,Xl.)

J

Amr® P



Summary of Results

Equation of State (non-degenerate matter)

1

p=Lars 4 Nak

pT

11 1 v X 52Xy

Mean molecular weight: = —+ =




Summary of Results

lonization fractions vy,

kT

Saha equation : 5

n'n, 2G° (277:mekT)3/2 X
n - GO h3 EXp

e.g., Hydrogen only :

2 3/2
y 1 (27mkT) exp( %Hj

1_y:NAp h’ _k_T



Summary of Results

Thermodynamics

I, (alnP)
Adiabatic index : =
rz _ 1 alnT ad

L _32-24B-3p° P,

> 241833 P=b-

tot

(assuming neutral or fully ionized gas)



Summary of Results

Opacity: approximations

1 | 1
K K K, +K,+K,

_ 2 1
Ke = 0'2(1 T X)Cm J (assuming fully ionized and no metals)
Ky =~4x10%(X+Y)(1+ X)pT cm’g™

K, =4%10°Z(1+ X)pT P em*g”™

K =25x107'(Z/0.02)p"* T cm’g™



Summary of Results

Opacity: tables

Interpolate in density,

temperature, and logR -6.0 -5.5
composition. logT
6.1 -0.429 -0.409
logT =6.192 == —-q====q-------=
6.2 10.429 0.397




Summary of Results

Convection
dl’ dT
Convection happens when: |— > |—
dr|. ., |dr

ad

>

m

16tacG (1 1 )T“m

3K, I,) P



Summary of Results
Energy generation

E=€, +En, tTE

3¢

_24x10* P exp(—3.38/ T, 3)611235‘15’_1

2/3
9

XZ
Eno = 4.4 %107 ?“2/3 exp(-15.228/T," )ergs™'g™
9
2Y3
g, =5x%x10° P exp(—44/T,)ergs g

Ty



Stellar Models

Given M and X,Y,Z, solve structure equations

dr dP dT dL

m

dm dm dm dm

togetr, P, T, L as a function of m

Need to know:
p(P.T.X.,Y,Z) e(p.T,X.Y,Z)

K.(p.T.X.Y.Z) T,(p.T.X,Y,Z)




Stellar Models

CENTER SURFACE
m =20 m=M
r=0 v r =R
PZPC P=(0 v
TZTC T =0 v
L =0 v L =L

m m



Stellar Models

« Some of these equations
/ are indeterminant at center.

It is better to start the
Integration at a very small
m>0.




Stellar Models

Central boundary conditions

At a very small m>0:

4 (3m )1/3
r#0 m=—mnrp — r=——
3 47p.,
L #0 L =¢&m



Stellar Models

Central boundary conditions

We can get boundary conditions for P and T by expanding and
demanding that their derivatives are zero at r=0

P(r):P(O)+l}‘(Q)(r—O)+%P”(O)(r—O)2

0

2

r
=P +P"(0)—

(r)=P.—=nGp;r’
3
P'(r)=- Gmp /

2
r




Stellar Models

Central boundary conditions

Similarly,
\7\0 (r—0)+~ T”(O)(r—O)
—T -I-T”(O) Radiative
2 K.0.€ >
IGIERSESE—
 BkpL, dacT,
16macr’T’ Convective

1 \27nGp’T. ,
T(r)=T —|1—- < r
I', )P dr ’



Stellar Models

Surface boundary conditions

We can do better than T=P=0 at surface.

guess R and L:

1/4
L=4nRcT'—> T, :( L2 )
4TR O

Guess p very small, i.e. 10° g cm:

1 Nk
P=—al®+—2

A 3 ‘LL

P



Stellar Models

Steps in constructing a stellar model
1. Compute p, K, &, 1, asafunctionof P, T,X,Y,Z

DENSITY |
« Beware of P dropping below —aT*
OPACITY 3

« Use approximations for crude results
« Interpolate using tables (use approximations
outside table bounds)
ENERGY GENERATION
« Use formulas for pp, CNO, and 3 &
THERMODYNAMICS
« I, = 5/3 forideal gas, 4/3 for radiation pressure
« I, departs from these values when
« Mixture of ideal gas and radiation
* lonization zones




Stellar Models

Steps in constructing a stellar model

2. Use four structure equations to compute r, P, T, L
vs. m given starting values for these (boundary
conditions).

« Givenvaluesof m,r,P, T,L ,p, K, €, 1,

at shell 1 o dr ap dL dT
compute 4 derivatives: —
dm dm dm dm

« Use these derivatives to compute r, P, T', L,
at shell [ +1 "

e.g., rli+1]1=rli]+ (—)[i] X dm

dm

+ Shell size dm < 10™* M near center and surface.



Stellar Models

Steps in constructing a stellar model

3. Deal with lack of complete boundary conditions at
center or surface.

At center, haver, L , butnotP, T

At surface, have P, T, but notr, L,

General approach: guess values for missing
conditions at one end, run model, and compare
boundary conditions at other end.

PROBLEM: small changes in conditions at center
can cause large differences at surface - difficult
to reach convergence.

SOLUTION: Shoot from both center and surface

and meet halfway through star.



Stellar Models



Stellar Models

Guess values for 7. and F. and integrate outwards
from m=0 to m=M/2

Guess values for R and L and integrate inwards
from m=M to m=M/2

Compute discrepancies Ar, AP, AT, AL at m= M/2

Work in log space: logP, logT', logr,logL



Stellar Models

ogT | AlogT

-

| AlogL
logr




Stellar Models

IIIYIIIYIIIYIIIYI "'I’"']’"'II"II

logP

0 02 04 06 08 1 0 02 04 06 08 1



Stellar Models

Boundary Conditions

Discrepancies

Alog P
AlogT
Alogr

AlogL




Stellar Models

 Repeat using new trial values:

(logTC —dloch) and (loch +d10gTC) with logP. , logR, logL
(logPC —dlogPC) and (loch +d10ch) with log7 , logR, logL
(logR—dlogR) and (logR+dlogR) with logP,, logT,, logL
(logL—dlogL) and (logL+dlogL) with logP., logT., logR

 Compute new discrepancies in each case.
Alogr, Alog P, AlogT, AlogL

« (et 16 derivatives. e.qg.,

a(AlogT) (AlogT)lo R+dlog R (AlogT)logR—dlogR
dlog R 2dlog R




Stellar Models

« Use these derivatives to calculate improved
boundary conditions.

logP'=1logP. +0logP.
log7T =logT.+0logT,
logR’=1logR+0logR
loglL’=logL+o0logL

e GGeneral idea:

d(Alogr)
dlog P,

1
—Alogr=0logP, B(Alogr)}

>Olog P. =—Alogr
P g{amgpc

 More complicated with 4 variables!



Stellar Models

d(AlogP) d(AlogP) J(AlogP) d(AlogP)
dlog P, dlogT, dlog R dlog L

d(AlogT) Od(AlogT) d(AlogT) J(AlogT)
dlog P, dlogT, dlogR dlog L

d(Alogr) d(Alogr) d(Alogr) d(Alogr)
dlog P, dlogT., dlogR dlog L

d(AlogL,) 9d(AlogL,) 9(AlogL,) 9d(AlogL,)

dlog P,

dlogT.

dlog R

dlog L

OlogP.
ologT.

O0logR

olog L

Alog P

AlogT

Alogr

AlogL,

* |Invert matrix to solve for ologP,, ologT., 0logR, ologL

(actually take smaller steps ~0.1x)

« |terate until convergence is reached: discrepancies
vanish (i.e., drop below a threshold value)




Gravitational collapse of gas

» Assume a gas cloud of mass M and diameter D

P nkT
« Sound speed forideal gasis €, =,V = )/7 =

o,

« Time for sound wave to cross the cloud f,,,=—=—2D

* Time for free-fall collapse is 7, = f
Gp

« Gravity beats pressure support when I, <[ .,



Gravitational collapse of gas

1/2
1 m
« Critical cloud size is then t, =t ., > —7—=D| —
Gp ykT

This is the Jeans length A, =
mGp

{ )/kT 1/2

4 (A, )
» Associated Jeans mass is M, = —ﬂ(—J) p—

3/2
w( ykT 5/
M, =—| —
! 6(mG) P
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Dimensions: 82500. AU

Starting Inputs:
Mass: 50 Msun

Diameter: 0.375 pc
Temperature: 10 K

Mean mol. Weight: 2.46
(Jeans mass = 1 Msun)
Time evolved = 266K years

Initial density and turbulence
spectra.

SPH code, 3.5 M particles

100K CPU-hours on 64 CPUs
(65 days)
Resolution: 1-5 AU

Bate, M. R., et al. (2002)

T

-1.4 -1.2 -1.0 -0.8 -0.6 =0.4 -0.2 0.0
Lag Column Density [g/em”] Matthew Bate




Dimensions: 82500. AU 0. yr Dimensions: 40000. AU

T T

-1.4 z -1.0 -0.8 -0.6 -0.4 -0.2 0.0 -1.0 0.5 0.0 0.5 1.0 | 2.0
Log Column Density [g/em®] Log Column Density [g/em®] Matthew Bate

Original cloud Denser cloud




UK Astrophysical
=Fluids Facility

Simulation: Marthew Bate, Exeter
Visualisation: Richard West, UKAFF




Star Formation

These simulations show:

 Star formation is a very chaotic and dynamic process

 Stars form so close together that they often interact before growing
to full size

* Young stars compete for remaining gas with more massive stars

» About half the objects are kicked out of the cluster before they can
grow enough to start fusion : brown dwarfs

» Many of the encounters btw. young stars and brown dwarfs strip the
dusty disks off the stars suggesting planetary systems could be rare



Evolution of the Sun

Sun’s Post-Main Sequence Evolutionary Track

MTWK

30,000 10,000

Absolute Magnitude, M,
N
L

7M
l

stage

SUPERGIANTS (1)

axposed core remnant
rapldly and

White Dwarf
stage

Stages in Evolution:
Hayashi track

Deuterium burning

Main Sequence
H - He in core

Red Giant Branch
He core, H 2 He in shell

Tip of the Red Giant Branch

Degenerate He core - He flash

Horizontal Branch
He = C,0 in core, H - He in shell

Asymptotic Giant Branch
C,0O core, He > C,0and H - He

in shells

Planetary Nebula
Not massive enough to burn C,0

Sheds outer layers.

White Dwarf
Degenerate C,0



Planetary Nebulae

Cat’s Eye
nebula




~9 billion yrs ~1 billionyrs ~ ~100 million yrs ~10,000 yrs
Time spent as | Main sequence?—)l Red giant I-—) Yellow giant  —>{Planetary nebula|—=|White dwarf |

Sun's age 4.5 billion yrs (now) 12.2 billion yrs  12.3 billion yrs ~ 12.3305 billion yrs  12.3306 billion yrs

Luminosity (solar units) —>

Star ejects outer
104 F Core star shrinks. Ejected gases layers.
/ thin and form [Flanetary nebula] | Red supergiant |
102 - 12.2 billion years
9 4144\, Helium in core ignites:
‘96‘00 Helium flash.
2| & o iant :
10 4’(‘6‘ 43;:‘::(5( Burning hydrogen in
Prsie L alion i shell around core.
10 F core. 12 billion years
Burning
1 Sun now = hydrogen in core.
No fue|\ 4.5 billion years
N "ovoiloble\\ [ equencei
for burning, - | YA sequenee]
star cools. Ny \lNh"e dwarf : . 1
y ] JL
0 100,000" 20,000 10,000 5,000 3,000

<— Temperature



Post - Main Sequence Evolution
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Pleiades Open Cluster

Copyright Anglo-Australian Observatory/Royal Observatory, Edinburgh.

e
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M55 Globular Cluster




M55 Globular Cluster
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FUSION REMNANT

Central H burning
Formation of degenerate core He White Dwarf
008M_ <M <05M J

No He burning

Central H burning
2 M@ <M <8 M@ He ignites in non-degenerate CO White Dwarf
core

Numerous burning phases Black Hole
20M, <M <50M Type Il supernova




