Gravitational collapse of gas

Assume a gas cloud of mass M and diameter D

• Sound speed for ideal gas is
$$c_s = \sqrt{\gamma \frac{P}{\rho}} = \sqrt{\gamma \frac{nkT}{\rho}} = \sqrt{\gamma \frac{kT}{m}}$$

• Time for sound wave to cross the cloud $t_{sound} = \frac{D}{c_s} = D \left(\frac{m}{\gamma kT}\right)^{1/2}$

• Time for free-fall collapse is
$$t_{ff} = \frac{1}{\sqrt{G\rho}}$$

• Gravity beats pressure support when $t_{ff} < t_{sound}$

Gravitational collapse of gas

• Critical cloud size is then
$$t_{ff} = t_{sound} \rightarrow \frac{1}{\sqrt{G\rho}} = D\left(\frac{m}{\gamma kT}\right)^{1/2}$$

This is the Jeans length

$$\lambda_{J} = \left(\frac{\gamma kT}{mG\rho}\right)^{1/2}$$

• Associated Jeans mass is

$$M_J = \frac{4}{3}\pi \left(\frac{\lambda_J}{2}\right)^3 \rho \rightarrow$$

$$M_J = \frac{\pi}{6} \left(\frac{\gamma kT}{mG}\right)^{3/2} \rho^{-1/2}$$

Gravitational collapse of gas

• For a typical H₂ molecular cloud:

$$T = 10 - 100 \text{ K}$$

 $n = 10^2 - 10^6 \text{ cm}^{-3}$
 $m = 3.34 \times 10^{-24} \text{ g}$
 $\gamma \sim 1$

• Associated Jeans mass is

$$M_J = 70 M_{\odot} \left(\frac{n}{10^3 \text{ cm}^{-3}}\right)^{-1/2} \left(\frac{T}{10 \text{ K}}\right)^{3/2}$$

The Orion Nebula

Stars are born in giant gas clouds.

 If the cloud is too hot and not dense enough, it will never collapse.
 Pressure wins!

 If the cloud is cool and dense enough, it will collapse.
 Gravity wins!

The Stellar Womb

Stars are born deep in dark molecular clouds:

- cold (10 30 K), dense nebulae
- so cold that molecules (H₂ instead of atomic H) can exist
- dark because visible light cannot penetrate

Stellar Gestation

- something happens to perturb part of a molecular cloud and make it begin to fragment
- as a core of gas <u>collapses</u>, it wants to heat up
- radiates away the excess heat and thus remains cool

Eagle Nebula Pillars

Giant Molecular Gas Cloud

Gravity grows stronger

Gas starts to heat up

Denser → Gravity grows stronger

Stellar Gestation

- gets smaller, denser, but not much hotter
- eventually, gas becomes opaque and light escapes less quickly → heats up and collapse slows down
- As it heats up, the emitted light moves toward the visible

HST · WFPC2

Star-Birth Clouds • M16 PRC95-44b • ST Scl OPO • November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

Stellar Gestation

- bursts into view as a visible protostar
- hotter, denser, higher pressure
- but still contracting because gravity is stronger too

McNeil's nebula

Denser → Gravity grows stronger

Hotter → Pressure grows stronger

Denser → Gravity grows stronger

Hotter → Pressure grows stronger

Stellar Gestation

- The protostar keeps on shrinking until internal pressure can resist gravity
- The protostar collapses until its core reaches 10⁷ K in temperature and fusion starts.
- Fusion restores hydrostatic equilibrium.

Hubble's nebula

The Role of Mass

O stars are most massive (20-100 M_{sun})

- Enormous self-gravity, enormous compressive force need enormous pressure to resist gravity
- 10⁷K core temperature is not enough
 Continue to compress due to gravity, despite fusion
- Compression \rightarrow higher temperature
- Higher temperature → faster rate of fusion (larger number of protons have enough energy to fuse)
- Higher fusion rate \rightarrow more pressure
- Equilibrium is reached at very high fusion rate

The Role of Mass

M stars are least massive (0.08-0.5 M_{sun})

- Weakest self-gravity, weakest compressive force need less pressure to resist gravity
- Pressure can balance gravity at lower temperature
- Lower temperature \rightarrow lower rate of fusion
- Lower fusion rate \rightarrow lower luminosity

This is the origin of the Mass-Luminosity relation for Main Sequence stars.

$$L = M^{3.5}$$
 (in solar units)

Stages of Star Formation on the H-R Diagram

Arrival on the Main Sequence

• The mass of the protostar determines:

- how long the protostellar phase will last
- where the new-born star will land on the MS
- i.e., what spectral type the star will have while on the main sequence

Missing the Main Sequence: Brown Dwarfs

- If the protostar has a mass < 0.08 M_{\odot} :
 - It does not contain enough gravitational strength to reach a core temperature of 10⁷ K
 - No proton-proton chain fusion reactions occur
 - The object never becomes a star
 - at 10⁶ K, deuterium fusion begins (but there is not much deuterium) – hydrostatic equilibrium reached
 - this phase is short-lived

The First Brown Dwarf Discovery

Brown Dwarf Gliese 229B

Palomar Observatory Discovery Image October 27, 1994 Hubble Space Telescope Wide Field Planetary Camera 2 November 17, 1995

PRC95-48 • ST Scl OPO • November 29, 1995 T. Nakajima and S. Kulkarni (CalTech), S. Durrance and D. Golimowski (JHU), NASA

Star Formation

Starting Inputs: Mass: 50 Msun Diameter: 0.375 pc Temperature: 10 K Mean mol. Weight: 2.46 (Jeans mass = 1 Msun) Time evolved = 266K years

Initial density and turbulence spectra.

Computing: SPH code, 3.5 M particles 100K CPU-hours on 64 CPUs (65 days) Resolution: 1-5 AU

Bate, M. R., et al. (2002)

Denser cloud

Original cloud

Simulation: Matthew Bate, Exeter Visualisation: Richard West, UKAFF

Star Formation

These simulations show:

- Star formation is a very chaotic and dynamic process
- Stars form so close together that they often interact before growing to full size
- Young stars compete for remaining gas with more massive stars
- About half the objects are kicked out of the cluster before they can grow enough to start fusion : brown dwarfs
- Many of the encounters btw. young stars and brown dwarfs strip the dusty disks off the stars suggesting planetary systems could be rare

Matthew Bate University of Exeter Z=3 Z_{\odot}

134606 yr

Matthew Bate University of Exeter

Evolution of the Sun

Sun's Post-Main Sequence Evolutionary Track

<u>Stages in Evolution:</u> Hayashi track

Deuterium burning

Main Sequence $H \rightarrow He$ in core

Red Giant Branch

He core, H \rightarrow He in shell

Tip of the Red Giant Branch Degenerate He core → He flash

Horizontal Branch He \rightarrow C,O in core, H \rightarrow He in shell

Asymptotic Giant Branch C,O core, He \rightarrow C,O and H \rightarrow He in shells

Planetary Nebula Not massive enough to burn C,O Sheds outer layers.

White Dwarf Degenerate C,O

Planetary Nebulae

Post - Main Sequence Evolution

Main Sequence Turn-off

MASS	FUSION	REMNANT
$M < 0.08 M_{\odot}$	No fusion	Brown Dwarf
$0.08 M_{\odot} < M < 0.5 M_{\odot}$	Central H burning Formation of degenerate core No He burning	He White Dwarf
$0.5 M_{\odot} < M < 2 M_{\odot}$	Central H burning Helium flash	CO White Dwarf
$2M_{\odot} < M < 8M_{\odot}$	Central H burning He ignites in non-degenerate core	CO White Dwarf
$8M_{\odot} < M < 20M_{\odot}$	Numerous burning phases Type II supernova	Neutron Star
$20M_{\odot} < M < 50M_{\odot}$	Numerous burning phases Type II supernova	Black Hole
$M > 50 M_{\odot}$	Numerous burning phases Hypernova/Collapsar	Black Hole