
X-ray Sun 
ASTR 8030/3600 Stellar Astrophysics 



SDO 4500 Angstroms: photosphere 

T~5000K 



SDO 1600 Angstroms: upper photosphere 

T~5x104K 



SDO 304 Angstroms: chromosphere 

T~105K 



SDO 171 Angstroms: quiet corona 

T~6x105K 



SDO 211 Angstroms: active corona 

T~2x106K 



SDO 94 Angstroms: flaring regions 

T~6x106K 



SDO: dark plasma (3/27/2012) 



SDO: solar flare (4/16/2012) 



SDO: coronal mass ejection (7/2/2012) 



Aims of the course 
•  Introduce the equations needed to model the internal structure of   
  stars. 

•  Overview of how basic stellar properties are observationally  
  measured. 
 
•  Study the microphysics relevant for stars: the equation of state, the  
  opacity, nuclear reactions. 

•  Examine the properties of simple models for stars and consider 
  how real models are computed. 

•  Survey (mostly qualitatively) how stars evolve, and the endpoints of  
  stellar evolution. 



Stars are relatively simple physical systems 

Sound speed in the sun 



Problem of Stellar Structure 
We want to determine the structure (density, temperature,  
energy output, pressure as a function of radius) of an isolated  
mass M of gas with a given composition (e.g., H, He, etc.) 

r Known: 
 
Mass 
+ 
Composition 

Unknown: 
 
Density 
Temperature 
Energy 
Pressure 



Simplifying assumptions 
1.  No rotation à spherical symmetry    ✔ 

For sun: rotation period at surface ~ 1 month 
        orbital period at surface ~ few hours 

2.  No magnetic fields      ✔ 
For sun: magnetic field ~ 5G,  ~ 1KG in sunspots 
         equipartition field ~ 100 MG 
Some neutron stars have a large fraction of their energy in B fields 

3.  Static        ✔ 
For sun: convection, but no large scale variability 
Not valid for forming stars, pulsating stars and dying stars. 
 

4.  Newtonian gravity      ✔ 
For sun: escape velocity ~ 600 km/s << c 
Not true for neutron stars  



The Variables of Stellar Structure 

radius 
 
enclosed mass 
 
mass density 
 
Pressure 
 
gravity 
 
Temperature 
 
Luminosity flow 
 
Composition 

ρ r( )
m r( )
r

P r( )
g r( )
T r( )
Lr r( )
Xi r( )



Eulerian vs. Lagrangian 

Eulerian 
Characterize quantities 
as a function of radius. 

Lagrangian 
Characterize quantities 
as a function of enclosed 
mass. 

time A time B 

r r

mm



The Variables of Stellar Structure 

enclosed mass 
 
radius 
 
mass density 
 
Pressure 
 
gravity 
 
Temperature 
 
Luminosity flow 
 
Composition 

ρ m( )
r m( )
m

P m( )
g m( )
T m( )
Lr m( )
Xi m( )



Values for the Sun 

 Mass ≡  1M  ≈  2 ×1033g

 Radius ≡  1R  ≈  7 ×1010 cm

 Luminosity ≡  1L  ≈  4 ×1033erg/s

Surface Temperature ≈  5,800 K

Composition ≈  70% H   28% He   2% metals



The Equations of Stellar Structure 

mass in shell = density ×  volume of shell

dm = ρ × 4πr2dr



The Equations of Stellar Structure 

1. Mass Conservation 

dm
dr

= 4πr2ρ
dr
dm

=
1

4πr2ρ
eulerian lagrangian 



The Equations of Stellar Structure 
F = ma

−P r + dr( )4πr2 − Gm
r2

dm

rr + dr
P(r)

P(r + dr)
g(r)

P r( )4πr2
Force pushing outwards: 

Force pushing inwards: 

 
P r( )4πr2 − P r + dr( )4πr2 − Gm

r2
dm = rdm

 
→ −dP4πr2 − Gm

r2
dm = rdm

 
→ −

dP
dm

4πr2 − Gm
r2

= r = 0



The Equations of Stellar Structure 

2. Hydrostatic Equilibrium 

dP
dr

= −ρGm
r2

dP
dm

= −
Gm
4πr4

eulerian lagrangian 

Need equation of state: P = f ρ,T ,Xi( )

e.g., for an ideal gas: P =
R
µ
ρT



The Equations of Stellar Structure 

ε  = energy generation rate per unit mass (erg/s/g)

change in Lm = ε × dm Lm

Lm+dm



The Equations of Stellar Structure 

3. Energy Generation 

dLr
dr

= 4πr2ρε
dLm
dm

= ε

eulerian lagrangian 

Need nuclear physics: ε = f ρ,T ,Xi( )

e.g., for the proton-proton chain: ε ≈ ε0ρT
4



The Equations of Stellar Structure 

κEnergy flow:   
 
•  radiation 

•  convection 

•  conduction 

Depends on opacity       (area/mass) 

low opacity 

high opacity 

unimportant 

For radiation:  
 
radiation pressure decreases outward è 
photons have net movement outward in their random walk. 



Random walk of photon through the sun. 

Straight path:   2.3 seconds 
Random walk:  30,000 years 



The Equations of Stellar Structure 

4. Energy Flow (radiation) 

dT
dr

= −
3κρLr

16πacr2T 3
dT
dm

= −
3κLm

64π 2acr4T 3

eulerian lagrangian 

Need opacity: κ = f ρ,T ,Xi( )

e.g., for electron Thomson scattering: κ ≈κ 0



The Equations of Stellar Structure 

4. Energy Flow (convection) 

dT
dr

= − 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
GmρT
r2P

eulerian lagrangian 

Need adiabatic index: Γ2 = f ρ,T ,Xi( )

e.g., for a simple ideal gas: Γ2 = 5 3

dT
dm

= − 1− 1
Γ2

⎛
⎝⎜

⎞
⎠⎟
GmT
4πr4P



Solving the Equations 

Solve in 1 dimension from center to surface 

dr
dm

=
1

4πr2ρ
dP
dm

= −
Gm
4πr4

dLm
dm

= ε
dT
dm

= −
3κLm

64π 2acr4T 3

Need microphysics:  P ρ,T ,Xi( ),  ε ρ,T ,Xi( ),  κ ρ,T ,Xi( )



Boundary Conditions 

Boundary conditions are incomplete at each end 

 

Center r = 0( ) :    m = 0,    Lr = 0,    P = Pc ,    T = Tc

Surface r = R( ) :    m = M ,    Lr = L,    P  0,    T  0

 

Center m = 0( ) :    r = 0,    Lr = 0,    P = ?,    T = ?

Surface m = M( ) :    r = ?,    Lr = ?,    P  0,    T  0

Lagrangian 



Complications 
1.  Stars are luminous 

 radiate away energy à must change in time 
 chemical composition is changing.  Must account for dXi/dt 

2.  Convection is very complicated and important   

3.  Convection can change chemical composition 

4.  Opacities are hard to calculate.   And they matter! 



Homology Relations 
To calculate the luminosity or radius of a star of mass M, we must solve  
these differential equations.   However, we can get approximate scaling  
relations by using Homology. 
 
Assume that each differential or local quantity simply scales with the  
global value of that quantity. 

 

dr
dm

R
M

For example, 

dr
dm

=
1

4πr2ρ  

R
M

1
R2ρ

So, becomes 



Homology Relations 
If we also know how pressure, opacity, and nuclear generation rate scale  
with density and temperature, we can solve all these equations to get  
scaling relations. Then we can turn these scaling relations into actual  
equations by normalizing to the Sun. 

 L  M αFor example, suppose we find that 

This means that L = const × M α

For the Sun, this is  L = const × M
α

Dividing the two equations we get 

 

L
L

=
M
M

⎛
⎝⎜

⎞
⎠⎟

α


