Observations of stars

Hyades open cluster

PRC99-26 • Space Telescope Science Institute • Hubble Heritage Team (AURA/STScl/NASA)

Astronomers count photons!

We can measure three things about a photon:

- What direction did it come from?
- When did it arrive?
- What was its energy (wavelength/color)?

1. Count photons in a fixed region of the sky (aperture), a fixed window of time (exposure time), and a fixed wavelength range (filter or band).

what we call "*photometry*"

2. Count photons as a function of direction in a fixed window of time (exposure time), and a fixed wavelength range (filter or band).

what we call "*imaging*"

3. Count photons as a function of wavelength in a fixed region of the sky (aperture), and a fixed window of time (exposure time).

what we call "*spectroscopy*"

4. Count photons as a function of time in a fixed region of the sky (aperture), and a fixed wavelength range (filter or band).

what we call "*time series photometry*"

5. Count photons as a function of direction AND time in a fixed wavelength range (filter or band).

what we call "*time series imaging*"

6. Count photons as a function of wavelength AND time in a fixed region of the sky (aperture).

what we call "*time series spectroscopy*"

7. Count photons as a function of direction AND wavelength in a fixed window of time (exposure time).

what we call "*integral field spectroscopy*"

8. Count photons as a function of direction AND time AND wavelength.

the holy grail of observational astronomy…

Luminosity and flux

Luminosity L : energy/time (erg/s) Flux f : luminosity/area (erg/s/cm²)

The Electromagnetic Spectrum

SDSS filters

Photometric Filters

Astronomical fluxes are usually measured using filters

The flux in the SDSS *g* filter is:

$$
f_g = \int_0^\infty F(\lambda) S_g(\lambda) d\lambda
$$

The flux in the SDSS *r* filter is:

$$
f_r = \int\limits_0^\infty F(\lambda) S_r(\lambda) d\lambda
$$

Apparent magnitude

$$
m = -2.5 \log f + const
$$

A star that is 5 magnitudes brighter (smaller m) has 100x the flux.

$$
m_1 - m_2 = -2.5 \log(f_1/f_2)
$$

$$
\frac{f_1}{f_2} = 10^{(m_2 - m_1)/2.5}
$$

Absolute magnitude

M = apparent magnitude the star would have if it were 10pc away.

$$
f = \frac{L}{4\pi d^2} \qquad f_{10} = \frac{L}{4\pi (10 \, pc)^2}
$$

$$
m - M = -2.5 \log \left[\frac{L/4 \pi d^2}{L/4 \pi (10 pc)^2} \right] = -2.5 \log \left[\left(\frac{d}{10 pc} \right)^{-2} \right]
$$

$$
m - M = 5 \log \left(\frac{d}{10 \, pc}\right)
$$

distance modulus

Hipparcos Data

Table 3.6.4. The 150 most luminous stars in the Hipparcos Catalogue.

Bolometric magnitudes

M is measured in a band. To get the light from all wavelengths, we must add a correction.

Bolometric correction:

$$
M_{bol} = M_V + BC
$$

$$
m_{bol} = m_V + BC
$$

BC depends on band and star spectrum. By definition, BC=0 for V-band and T=6600K

Color

Color = crude, low resolution, estimate of spectral shape

$$
B - V = m_B - m_V = M_B - M_V = -2.5 \log \left(\frac{f_B}{f_V} \right)
$$

- distance independent
- indicator of surface temperature
- by definition, *(B-V)*=0 for Vega (T~9500K)

Color

• Measure a star's brightness through two different filters

• Take the ratio of brightness: (redder filter)/(bluer filter) if ratio is large \rightarrow red star if ratio is small \rightarrow blue star e.g., V/B

Color

wavelength (nm)

The color of a star measured like this tells us its temperature!

Stellar spectra

The solar spectrum can be approximated as

• a blackbody

 $+$

• absorption lines (looking at hotter layers through cooler outer layers)

Blackbody radiation

$$
B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}
$$

erg s^{-1} cm $^{-2}$ Hz $^{-1}$ st $^{-1}$

 h ν $_{\rm max} \sim 2.8$ *kT*

 \cdot Effective temperature of a star = T of a blackbody that gives the same Luminosity per unit surface area of the star.

$$
L = 4\pi R^2 \sigma T_e^4
$$
 Stefan-Boltzmann law

For sun: T_e = 5,778 K

Blackbody Spectrum or thermal spectrum

Stellar spectra are not perfect blackbodies

Atomic energy levels

- electrons orbit the nucleus in specific energy levels
- electrons can jump between energy levels given the right energy

Emission of light

Absorption of light

Energy levels for Hydrogen

Visible spectrum shows signature of hydrogen atoms

$$
E = hv = \frac{hc}{\lambda}
$$

Emission line spectrum

Absorption line spectrum

Spectrum of Sun

Spectral lines

Strength of lines depends on temperature.

e.g., Balmer lines: transitions from n=2 to higher states

Stellar spectra

Spectral lines

Lines depend on temperature in stellar atmosphere $+$ ionization potentials for relevant species e.g., H HeI HeII CaI CaII FeI 13.6eV 24.6eV 54.5eV 6.1eV 11.9eV 7.9eV Ionization occurs when $kT \sim$ ionization potential/10

Spectral classification

Spectral classification

Spectral classification

Oh Be A Fine Girl/Guy Kiss Me

Omnivorous Butchers Always Find Good Kangaroo Meat

Only Bored Astronomers Find Gratification Knowing Mnemonics

Luminosity class

Stars of same type have different line widths

Same *T*, different $R \longrightarrow$ different surface gravity $g \longrightarrow$ **→ different surface pressure P**

Pressure broadening: orbitals of atoms are perturbed due to collisions \longrightarrow broadening of spectral lines.

 \mathbf{S} ince $L = 4\pi R^2 \sigma_{_T} T^4$, changes in R at fixed T are changes in L

Spectral line widths \longrightarrow luminosity classification

Spectra of AO stars $3,5$ AO V $-$ AO III 3 $AO I$ $2,5$ $\overline{2}$ $1,5$ $\,1\,$ 0.5 \triangle 4000 5000 6000 7000 8000 9000 10000 Wavelength (Angstroms)

Special stars

- C: carbon stars same T_{eff} as K, M stars, but higher abundance of C than $O \rightarrow$ all O goes to form CO. Remaining C forms C2, CN.
- S: same T_{eff} as K, M stars, but have extra heavy elements
- W: Wolf-Rayet He in atmosphere instead of H, strong winds
- L: cooler than M stars. Some do not have fusion.
- T: cool brown dwarfs (700-1,000K). Methane lines are prominent.

The Sun is a G2V star

The first Hertzsprung-Russell (H-R) diagram

Figure 8.10 Henry Norris Russell's first diagram, with spectral types listed along the top and absolute magnitudes on the left-hand side. (Figure from Russell, Nature, 93, 252, 1914.)

Hipparcos Color-Magnitude Diagram

Plot luminosity vs. temperature

 $L = 4\pi R^2 \sigma T^4$

Hipparcos H-R diagram

Theoretical H-R diagram

Chemical composition

Primordial (Big Bang) nucleosynthesis: protons fuse to form He and heavier elements 3 minutes after the Big Bang. Ends 20 minutes later. Alpher, Bethe & Gammow, Physical Review L, 1948

75% H 25% He 0.01% D

Subsequent fusion inside massive stars and enrichment of the inter-stellar medium via supernovae, leads to future generations of stars with more heavy elements.

Stellar populations in the Milky Way

Stellar populations in the Milky Way

