Observations of stars

Hyades open cluster

Astronomers count photons!

We can measure three things about a photon:

- What direction did it come from?
- When did it arrive?
- What was its energy (wavelength/color)?

 Count photons in a fixed region of the sky (aperture), a fixed window of time (exposure time), and a fixed wavelength range (filter or band).

what we call "photometry"

2. Count photons <u>as a function of direction</u> in a fixed window of time (exposure time), and a fixed wavelength range (filter or band).

what we call "imaging"

3. Count photons <u>as a function of wavelength</u> in a fixed region of the sky (aperture), and a fixed window of time (exposure time).

what we call "spectroscopy"

4. Count photons <u>as a function of time</u> in a fixed region of the sky (aperture), and a fixed wavelength range (filter or band).

what we call "time series photometry"

5. Count photons <u>as a function of direction AND time</u> in a fixed wavelength range (filter or band).

what we call "time series imaging"

6. Count photons <u>as a function of wavelength AND</u> <u>time</u> in a fixed region of the sky (aperture).

what we call "time series spectroscopy"

7. Count photons <u>as a function of direction AND</u> <u>wavelength</u> in a fixed window of time (exposure time).

what we call "integral field spectroscopy"

8. Count photons <u>as a function of direction AND time</u> <u>AND wavelength.</u>

the holy grail of observational astronomy...

Luminosity and flux

LuminosityL : energy/time (erg/s)Fluxf : luminosity/area (erg/s/cm²)

The Electromagnetic Spectrum

SDSS filters

Photometric Filters

Astronomical fluxes are usually measured using filters

The flux in the SDSS *g* filter is:

$$f_g = \int_0^\infty F(\lambda) S_g(\lambda) d\lambda$$

The flux in the SDSS *r* filter is:

$$f_r = \int_0^\infty F(\lambda) S_r(\lambda) d\lambda$$

Apparent magnitude

$$m = -2.5 \log f + const$$

A star that is 5 magnitudes brighter (smaller m) has 100x the flux.

$$m_1 - m_2 = -2.5 \log(f_1/f_2)$$
$$\frac{f_1}{f_2} = 10^{(m_2 - m_1)/2.5}$$

Absolute magnitude

M = apparent magnitude the star would have if it were 10pc away.

$$f = \frac{L}{4\pi d^2} \qquad f_{10} = \frac{L}{4\pi (10\,pc)^2}$$

$$m - M = -2.5 \log \left[\frac{L/4\pi d^2}{L/4\pi (10\,pc)^2} \right] = -2.5 \log \left[\left(\frac{d}{10\,pc} \right)^{-2} \right]$$

$$m - M = 5 \log\left(\frac{d}{10\,pc}\right)$$

distance modulus

Hipparcos Data

Table 3.6.4. The 150 most luminous stars in the Hipparcos Catalogue.

HIP	HD	α	δ	V	M _V	π	σ_{π}	σ_{π}/π	μ	$\mu_{\alpha*}$	μ _δ	V_{T}	С	Name
24436	34085	78.634	-08.202	0.18	-6.69	4.22	0.81	0.192	1.95	1.87	-0.56	2.19		β Ori
100453	194093	305.557	+40.257	2.23	-6.12	2.14	0.51	0.238	2.60	2.43	-0.93	5.76		γ Cyg
39429	66811	120.896	-40.003	2.21	-5.95	2.33	0.51	0.219	35.09	-30.82	16.77	71.39		ζ Pup
48002	85123	146.776	-65.072	2.92	-5.56	2.01	0.40	0.199	12.57	-11.55	4.97	29.65		υ Car
30438	45348	95.988	-52.696	-0.62	-5.53	10.43	0.53	0.051	30.98	19.99	23.67	14.08		α Car
68702	122451	210.956	-60.373	0.61	-5.42	6.21	0.56	0.090	42.21	-33.96	-25.06	32.22		β Cen
25985	36673	83.183	-17.822	2.58	-5.40	2.54	0.72	0.283	3.61	3.27	1.54	6.75		α Lep
48774	86440	149.216	-54.568	3.52	-5.34	1.69	0.50	0.296	13.43	-13.13	2.83	37.68		φ Vel
39953	68273	122.383	-47.337	1.75	-5.31	3.88	0.53	0.137	11.54	-5.93	9.90	14.10		γ Vel
26727	37742	85.190	-01.943	1.74	-5.26	3.99	0.79	0.198	4.73	3.99	2.54	5.62		ζ Ori
27989	39801	88.793	+07.407	0.45	-5.14	7.63	1.64	0.215	29.41	27.33	10.86	18.27		α Ori
85927	158926	263.402	-37.104	1.62	-5.05	4.64	0.90	0.194	31.24	-8.90	-29.95	31.92		λ Sco
25930	36486	83.002	-00.299	2.25	-4.99	3.56	0.83	0.233	1.76	1.67	0.56	2.35		δ Ori
35264	56855	109.286	-37.097	2.71	-4.92	2.98	0.55	0.185	12.68	-10.57	7.00	20.17		π Pup
46974	83183	143.611	-59.230	4.08	-4.83	1.65	0.49	0.297	12.74	-11.23	6.02	36.61		h Car
27366	38771	86.939	-09.670	2.07	-4.65	4.52	0.77	0.170	1.96	1.55	-1.20	2.06		ĸ Ori
38518	64760	118.326	-48.103	4.22	-4.65	1.68	0.50	0.298	7.66	-4.90	5.89	21.62		J Pup
47854	84810	146.312	-62.508	3.69	-4.64	2.16	0.47	0.218	15.31	-12.88	8.28	33.60		l Car
41037	71129	125.629	-59.510	1.86	-4.58	5.16	0.49	0.095	34.03	-25.34	22.72	31.27		€Car
18246	24398	58.533	+31.884	2.84	-4.55	3.32	0.75	0.226	10.16	4.41	-9.15	14.50		ζ Per
37819	63032	116.314	-37.969	3.62	-4.52	2.35	0.55	0.234	12.31	-10.77	5.97	24.84		c Pup
43023	75063	131.507	-46.042	3.87	-4.52	2.10	0.53	0.252	13.15	-12.23	4.82	29.67		a Vel
15863	20902	51.081	+49.861	1.79	-4.50	5.51	0.66	0.120	35.47	24.11	-26.01	30.51		α Per
45556	80404	139.273	-59.275	2.21	-4.42	4.71	0.46	0.098	23.11	-19.03	13.11	23.26		ι Car
85267	157246	261.349	-56.378	3.31	-4.40	2.87	0.75	0.261	15.87	-0.77	-15.85	26.21		γ Ara

Bolometric magnitudes

M is measured in a band. To get the light from all wavelengths, we must add a correction.

Bolometric correction:

$$M_{bol} = M_V + BC$$
$$m_{bol} = m_V + BC$$

BC depends on band and star spectrum. By definition, BC=0 for V-band and T=6600K

Color

Color = crude, low resolution, estimate of spectral shape

$$B - V = m_B - m_V = M_B - M_V = -2.5 \log\left(\frac{f_B}{f_V}\right)$$

- distance independent
- indicator of surface temperature
- by definition, (B-V)=0 for Vega (T~9500K)

Color

• Measure a star's brightness through two different filters

 Take the ratio of brightness: (redder filter)/(bluer filter) if ratio is large → red star if ratio is small → blue star
 e.g., V/B

Color

wavelength (nm)

The color of a star measured like this tells us its temperature!

Stellar spectra

The solar spectrum can be approximated as

• a blackbody

+

• absorption lines (looking at hotter layers through cooler outer layers)

Blackbody radiation

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$

erg s⁻¹ cm⁻² Hz⁻¹ st⁻¹

 $hV_{\rm max} \sim 2.8 kT$

• Effective temperature of a star = T of a blackbody that gives the same Luminosity per unit surface area of the star.

$$L = 4\pi R^2 \sigma T_e^4$$
 Stefan–Boltzmann lav

For sun: $T_{e} = 5,778 \text{ K}$

Blackbody Spectrum or thermal spectrum

Stellar spectra are not perfect blackbodies

Atomic energy levels

- electrons orbit the nucleus in specific energy levels
- electrons can jump between energy levels given the right energy

Emission of light

Absorption of light

Energy levels for Hydrogen

Visible spectrum shows signature of hydrogen atoms

$$E = hv = \frac{hc}{\lambda}$$

Emission line spectrum

Absorption line spectrum

Spectrum of Sun

Spectral lines

Strength of lines depends on temperature.

e.g., Balmer lines: transitions from n=2 to higher states

n=1

T < 5,000K:	all Hydrogen is in ground (n=1) state \rightarrow no lines						
T > 20,000K:	all Hydrogen is ionized $ ightarrow$ no lines						
T ~ 10,000K:	some Hydrogen is in n=2 state → strong lines						
• Spectral lines are observational indicators of T_{e}							

Stellar spectra

Spectral lines

Lines depend on temperature in stellar atmosphere + ionization potentials for relevant species e.g., H Hel Hell Cal Call Fel 13.6eV 24.6eV 54.5eV 6.1eV 11.9eV 7.9eV Ionization occurs when kT ~ ionization potential/10

Spectral classification

Spectral classification

Spectral classification

Class	Effective temperature ^{[1][2][3]}	Vega-relative "color label" ^{[4][nb 1]}	Chromaticity ^{[5][6][7][nb 2]}	Main-sequence mass ^{[1][8]} (solar masses)	Main-sequence radius ^{[1][8]} (solar radii)	Main-sequence luminosity ^{[1][8]} (bolometric)	Hydrogen lines	Fraction of all main- sequence stars ^[9]
0	≥ 30,000 K	blue	blue	≥ 16 <i>M</i> ⊙	≥6.6 <i>R</i> ⊙	≥ 30,000 L _☉	Weak	~0.00003%
В	10,000–30,000 K	blue white	deep blue white	2.1–16 <i>M</i> ⊙	1.8–6.6 R ⊙	25–30,000 L _☉	Medium	0.13%
Α	7,500–10,000 K	white	blue white	1.4–2.1 <i>M</i> ⊙	1.4–1.8 <i>R</i> ⊙	5–25 L _☉	Strong	0.6%
F	6,000–7,500 K	yellow white	white	1.04–1.4 <i>M</i> ⊙	1.15–1.4 <i>R</i> ⊙	1.5–5 <i>L</i> ⊙	Medium	3%
G	5,200–6,000 K	yellow	yellowish white	0.8–1.04 <i>M</i> ⊙	0.96–1.15 R ⊙	0.6−1.5 <i>L</i> ⊙	Weak	7.6%
К	3,700–5,200 K	orange	pale yellow orange	0.45–0.8 <i>M</i> ⊙	0.7–0.96 R ⊙	0.08–0.6 L _☉	Very weak	12.1%
м	2,400–3,700 K	red	light orange red	0.08–0.45 <i>M</i> ⊙	≤0.7 <i>R</i> ⊙	≤ 0.08 L _☉	Very weak	76.45%

Oh Be A Fine Girl/Guy Kiss Me

Omnivorous Butchers Always Find Good Kangaroo Meat

Only Bored Astronomers Find Gratification Knowing Mnemonics

Luminosity class

Stars of same type have different line widths

Same *T*, different $R \rightarrow$ different surface gravity $g \rightarrow$ different surface pressure *P*

Pressure broadening: orbitals of atoms are perturbed due to collisions — broadening of spectral lines.

Since $L = 4\pi R^2 \sigma_T T^4$, changes in *R* at fixed *T* are changes in *L*

Spectral line widths —-- Iuminosity classification

Luminosity class

Special stars

- C: carbon stars same T_{eff} as K, M stars, but higher abundance of C than O \rightarrow all O goes to form CO. Remaining C forms C2, CN.
- S: same T_{eff} as K, M stars, but have extra heavy elements
- W: Wolf-Rayet He in atmosphere instead of H, strong winds
- L: cooler than M stars. Some do not have fusion.
- T: cool brown dwarfs (700-1,000K). Methane lines are prominent.

The Sun is a G2V star

The first Hertzsprung-Russell (H-R) diagram

Figure 8.10 Henry Norris Russell's first diagram, with spectral types listed along the top and absolute magnitudes on the left-hand side. (Figure from Russell, *Nature*, 93, 252, 1914.)

Hipparcos Color-Magnitude Diagram

Plot luminosity vs. temperature

 $L = 4\pi R^2 \sigma T^4$

Hipparcos H-R diagram

Theoretical H-R diagram

Chemical composition

Primordial (Big Bang) nucleosynthesis: protons fuse to form He and heavier elements 3 minutes after the Big Bang. Ends 20 minutes later. Alpher, Bethe & Gammow, Physical Review L, 1948

75% H 25% He 0.01% D

Subsequent fusion inside massive stars and enrichment of the inter-stellar medium via supernovae, leads to future generations of stars with more heavy elements.

Stellar populations in the Milky Way

Stellar populations in the Milky Way

	Pop I	Pop II	Pop III
Spatial Distribution	Disk, z <200pc	Halo/spheroid	Have not been found
Kinematics (coherent)	Disk rotation (220 km/s)	No rotation	
Kinematics (dispersion)	~30 km/s	large	
Metallicity	Z~0.02	Z<0.01	Z~0
Age	Young	Old	Primordial