Determining stellar properties

```
Measurements:
- position on sky
- flux in different bands
- spectrum
- time dependence of above
```


Standard candle

$$
d=\left(\frac{L}{4 \pi f}\right)^{\frac{1}{2}}
$$

Standard ruler

$$
d=\frac{R}{\theta}
$$

Determining distance: Parallax

$$
\begin{gathered}
\tan \pi=\frac{R}{d} \approx \pi \\
R=1 A U=1.5 \times 10^{13} \mathrm{~cm}
\end{gathered}
$$

Define new distance unit: parsec (parallax-second)

$$
1 p c=\frac{1 A U}{\tan \left(1^{\prime \prime}\right)}=206,265 A U=3.26 l y \quad\left(\frac{d}{1 p c}\right)=\frac{1}{\pi^{\prime \prime}}
$$

Determining distance: Parallax

Point spread function (PSF)

Determining distance: Parallax

Need high angular precision to probe far away stars.

$$
d=\frac{1}{\pi}
$$

Error propagation:

$$
\begin{aligned}
& \sigma_{d}=\sqrt{\left(\frac{\partial d}{\partial \pi}\right)^{2} \sigma_{\pi}^{2}}=\sqrt{\left(-\frac{1}{\pi^{2}}\right)^{2} \sigma_{\pi}^{2}}=\frac{\sigma_{\pi}}{\pi^{2}}=\frac{\sigma_{\pi}}{\pi} d \\
& \frac{\sigma_{d}}{d}=\frac{\sigma_{\pi}}{\pi}
\end{aligned}
$$

At what distance do we get a given fractional distance error?
$d=\left(\frac{\sigma_{d}}{d}\right) \frac{1}{\sigma_{\pi}}$

Determining distance: Parallax

e.g., to get 10% distance errors $\quad d_{\max }=\frac{0.1}{\sigma_{\pi}}$

Mission	Dates	σ_{π}	$d_{\max }$
Earth telescope		$\sim 0.1 a s$	$1 p c$
HST		$\sim 0.01 a s$	10 pc
Hipparcos	$1989-1993$	$\sim 1 \mathrm{mas}$	100 pc
Gaia	$2013-2018$	$\sim 20 \mu a s$	5 kpc
SIM	cancelled	$\sim 4 \mu a s$	25 kpc

Determining distance: moving cluster method

Determining distance: moving cluster method

Right Ascension

1. Measure proper motions of stars in a cluster
2. Obtain convergent point
3. Measure angle between cluster and convergent point θ
4. Measure radial velocity of cluster v_{r}
5. Compute tangential velocity v_{t}
6. Use proper motion of cluster to get distance d

$$
d=\frac{v_{r} \tan \theta}{4.74 \mu}
$$

Determining distance: secular parallax

- Parallax method is limited by 2AU baseline of earth's orbit
- Sun moves $\sim 4 \mathrm{AU} / \mathrm{yr}$ toward Vega relative to local rotation of Galactic disk
- Over a few years, this can build up to a large baseline
- Unfortunately, other stars are not at rest, rather have unknown motions
- However, if we average over many stars, their mean motion should be zero (relative to local rotation)
- Can therefore get the mean distance to a set of stars
为

Determining distance: Baade-Wesselink (moving stellar atmosphere)

CANDLE

For pulsating stars, SN, novae, measure flux and effective temperature at two epochs, as well as the radial velocity and time between the epochs.

$$
f_{1}, f_{2}, T_{1}, T_{2}, v_{r}(t), \Delta t
$$

$$
\frac{f_{1}}{f_{2}}=\frac{L_{1}}{L_{2}}=\left(\frac{R_{1}}{R_{2}}\right)^{2}\left(\frac{T_{1}}{T_{2}}\right)^{4} \rightarrow \frac{R_{1}}{R_{2}}=\left(\frac{f_{1}}{f_{2}}\right)^{\frac{1}{2}}\left(\frac{T_{2}}{T_{1}}\right)^{2}
$$

$$
R_{2}-R_{1}=\bar{v}_{r} \times \Delta t
$$

Solve for R_{1} and $R_{2} . R$ and $T \longrightarrow L \longrightarrow d$

Determining distance: spectroscopic parallax

- Stellar spectra alone can give us the luminosity class + spectral class \rightarrow position on HR diagram
- This gives the absolute magnitude, which gives the distance modulus.
- Basically, compare a star's spectrum to an identical spectrum of another star with known luminosity.
- This method is poor in accuracy (+/- 1 magnitude error in absolute magnitude $\rightarrow 50 \%$ error in distance)
- But it can be applied to all stars

Determining distance: main sequence fitting

CANDLE

- Measure the colors and magnitudes of stars in a cluster (e.g., r and $g-r$)
- Plot the HR diagram: r vs. $g-r$
- Compare the the HR diagram of another cluster of known distance: M_{r} vs. $g-r$
- Find the vertical offset in HR diagram between the main sequences of the two clusters \rightarrow distance modulus

$$
m-M=5 \log d-5
$$

Determining distance: main sequence fitting

Determining distance: variable stars

Cepheid variables:
Pop I giants, $\quad \mathrm{M} \sim 5-20 \mathrm{M}_{\text {sun }}$
Pulsation due to feedback loop:
An increase in T
\rightarrow Helll (doubly ionized He)
\rightarrow high opacity
\rightarrow radiation can't escape
\rightarrow even higher T and P
\rightarrow atmosphere expands
\rightarrow low T
\rightarrow Hell (singly ionized He)
\rightarrow low opacity
\rightarrow atmosphere contracts
\rightarrow rinse and repeat...

Data from a Well-Measured Cepheid

Determining distance: variable stars

RR-Lyrae variables:
 Pop II dwarfs, $\quad \mathrm{M} \sim 0.5 \mathrm{M}_{\text {sun }}$

Apparent V magnitude of variable star RR Lyr

Determining distance: variable stars

Variable stars have a tight period-luminosity relation

- Measure lightcurves: flux(t)
- Get period P
- From P-L relation, get L
- Use L to get distance

Very powerful method.
Cepheids can be seen very far away. Used to measure H_{0}

PERIOD - LUMINOSITY RELATIONSHIP

P-L relation is calibrated on local variables with parallax measurements

Determining distance: dynamical parallax

For binary star systems on main sequence

- Measure: period of orbit P, angular separation θ, fluxes f_{1} and f_{2}
- Kepler's 3rd law: $\quad P^{2}=\frac{4 \pi^{2}}{G\left(M_{1}+M_{2}\right)} a^{3}$
- Assume $\quad M_{1}=M_{2}=M_{\odot}$
- Use Kepler to get a

- Use θ and a to get preliminary distance
- Use distance and fluxes to get luminosities L_{1}, L_{2}
- Use mass-luminosity relation for main sequence to get better masses
- Iterate until convergence

Determining Luminosity

1. Measure flux or magnitude

Measure distance

2. Measure spectrum
line ratios and widths (i.e., compare the star to a star of identical spectrum that has a known L)

$$
\begin{aligned}
& L=4 \pi d^{2} f \\
& M=m-5 \log d-5
\end{aligned}
$$

$$
\longrightarrow \quad T, L
$$

Determining Temperature

1. Spectral lines \rightarrow spectral type
2. Colors (cheap and accurate)
3. Blackbody fitting or Wien's law: $h v \sim 2.8 k T$ (not good for very hot or cool stars)
4. Stellar atmosphere modeling (uncertain)
5. Measure angular size and flux (need very high resolution imaging)
$R=\theta_{R} d \quad L=4 \pi d^{2} f$

$$
L=4 \pi R^{2} \sigma T^{4} \rightarrow T=\left(\frac{L}{4 \pi R^{2} \sigma}\right)^{\frac{1}{4}} \rightarrow T=\left(\frac{4 \pi d^{2} f}{4 \pi\left(\theta_{R} d\right)^{2} \sigma}\right)^{\frac{1}{4}} \quad T=\left(\frac{f}{\sigma \theta_{R}^{2}}\right)^{\frac{1}{4}}
$$

Determining Radius

- Very difficult because angular sizes are tiny.

The sun at 1 pc distance has an angular radius of $\sim 0.5 \mathrm{mas}$

- Important because of:
- surface gravity $\quad g \sim \frac{G M}{R^{2}}$
- density

$$
\rho \sim \frac{M}{R^{3}}
$$

- Temperature

$$
T \sim\left(L / R^{2}\right)^{1 / 4}
$$

- testing models

Determining Radius: Interferometry

Interferometry yields high resolution images

1. Speckle interferometry
~ 0.02 as

Diffraction limited:

$$
\theta=\frac{1.22 \lambda}{D_{T}}
$$

e.g., for HST $\left(D_{T}=2.4 m\right), \theta=0.05$ as

Determining Radius: Interferometry

2. Phase interferometry
~ 0.01 as

Fringes disappear when

$$
d \times \theta=\lambda / 2
$$

3. Intensity Interferometry

~ 0.5 mas

The sun's radius could be measured out to $\sim 1-10 \mathrm{pc}$

Determining Radius

- Luminosity + Temperature \rightarrow Radius
- Baade-Wesselink (moving atmosphere)
- Lunar Occultation

As a star disappears behind the moon, a Fresnel diffraction pattern is created that depends slightly on θ_{R}
~ 2 mas, only good for stars in ecliptic.

Determining radius: eclipsing binaries

Determining radius: eclipsing binaries

Folded Light Curve for Auro Star Number 306, Frequency: 1.14100, Period: 0.87642

Determining Mass

Only possible to measure accurately for binaries.

Kepler's 3rd law: $\quad G\left(M_{1}+M_{2}\right) P^{2}=4 \pi^{2} a^{3}$

$$
M_{1}+M_{2} \approx M_{\odot}
$$

For Sun-Earth system: $P=1 \mathrm{yr} \quad \longrightarrow \quad G M_{\odot}(1 \mathrm{yr})^{2}=4 \pi^{2}(1 \mathrm{AU})^{3}$ $\mathrm{a}=1 \mathrm{AU}$

$$
\left(\frac{M_{1}+M_{2}}{M_{\odot}}\right)\left(\frac{P}{1 \mathrm{yr}}\right)^{2}=\left(\frac{a}{1 \mathrm{AU}}\right)^{3}
$$

Determining Mass: visual binaries

Visual binaries are binaries where the angular separation is detectable and the orbit can be traced out.

- Find the center of mass of the system (c.o.m. must move with constant velocity)

$$
M_{1} a_{1}=M_{2} a_{2} \rightarrow \frac{M_{1}}{M_{2}}=\frac{a_{2}}{a_{1}}=\frac{\alpha_{2}}{\alpha_{1}}
$$

- Measure the period, semi-major angular separation and distance.

$$
\begin{array}{ll}
\alpha=\alpha_{1}+\alpha_{2} & M_{1}+M_{2}=\frac{(d \alpha)^{3}}{P^{2}} \\
a=d \alpha &
\end{array}
$$

- Solve for individual masses. Very sensitive to distance errors: $M \sim d^{3}$
- If distance is not known, radial velocity data is sufficient to get a e.g., for a circular orbit: $v=2 \pi a / P$

Determining Mass: visual binaries

Determining Mass: visual binaries

If the orbit is inclined, then we must know the inclination angle i

$$
\begin{array}{ll}
\frac{M_{1}}{M_{2}}=\frac{a_{2}}{a_{1}}=\frac{\alpha_{2} \cos i}{\alpha_{1} \cos i}=\frac{\alpha_{2}}{\alpha_{1}} & \text { Don't need } i \\
M_{1}+M_{2}=\left(\frac{\alpha}{\cos i}\right)^{3} \frac{d^{3}}{P^{2}} & \text { Need } i
\end{array}
$$

In an inclined orbit, the center of mass does not lie at the ellipse focus. Find the projection that fixes this \rightarrow cos i

Determining Mass: spectroscopic binaries

Spectroscopic binaries are unresolved binaries that are only detected via doppler shifts in their spectrum.

- Single line binaries: single set of shifting spectral lines
- Double line binaries: two sets of spectral lines (one from each star)
- Two sets of lines, but for different spectral types

Determining mass: spectroscopic binaries

Determining Mass: spectroscopic binaries

- Measure velocities and period

$$
\begin{aligned}
& a_{1}=\frac{v_{1} P}{2 \pi} \\
& a_{2}=\frac{v_{2} P}{2 \pi}
\end{aligned} \rightarrow \frac{a_{1}}{a_{2}}=\frac{v_{1}}{v_{2}} \rightarrow \frac{M_{1}}{M_{2}}=\frac{v_{2}}{v_{1}}
$$

- Can get a lower limit on $M_{1}+M_{2}$ since $\sin i<1$

Determining Mass: spectroscopic binaries

Need to measure both radial velocities - only possible with double line binaries.

Need to know $\sin i$. This is possible when:

- also an eclipsing binary: $\sin i=1$
- also a visual binary: measure orbit
- compute $M_{1}+M_{2}$ for a statistical sample where <sin $3 i>$ is known
(For an isotropic distribution, $<\sin ^{3} i>=0.42$. However, no Doppler shift will be observed if $i=0$, so there is a selection effect that favors high inclinations)

Determining Mass: surface gravity

- Pressure broadening of spectral lines \rightarrow surface gravity $g=\frac{G M}{R^{2}}$
- Measure radius $\mathrm{R} \rightarrow M=\frac{g R^{2}}{G}$
- Sensitive to errors in R

Determining Mass: Gravitational lensing

Discovery of Widest-separation Quasar
Gravitational Lens
Suprime-Cam ($\left.\mathrm{g}^{\prime}, \mathrm{r}^{\prime}, \mathrm{i}^{\prime}\right)$
December 17, 2003

Determining Mass: Gravitational lensing

Determining Mass: gravitational microlensing

Case of lensing when multiple images are unresolved and we only detect an increase in the flux of one image.

General Relativity:

$$
\alpha=\frac{4 G M}{c^{2} b}
$$

Can compute the amplification of light due to multiple images

$$
A=f\left(M, D_{L}, D_{S L}, \theta\right)
$$

Determining mass: gravitational microlensing

Determining mass: gravitational microlensing

Determining mass: gravitational microlensing

Determining Chemical Composition

Theoretical: fractional abundances by mass
X: Hydrogen Y: Helium Z: metals Sun: $(0.7,0.28,0.02)$

Observational: number density relative to Hydrogen, normalized to sun.
e.g., iron abundance $[\mathrm{Fe} / \mathrm{H}] \equiv \log \left(\frac{n(\mathrm{Fe})}{n(\mathrm{H})}\right)_{*}-\log \left(\frac{n(\mathrm{Fe})}{n(\mathrm{H})}\right)_{\odot}$

So, for solar abundance: $[\mathrm{Fe} / \mathrm{H}]=0,10$ times more iron: $[\mathrm{Fe} / \mathrm{H}]=+1$ In our galaxy, $[\mathrm{Fe} / \mathrm{H}]$ ranges from -4.5 to +1 .

Need high resolution spectra + stellar atmosphere models to get abundances via fitting.

Determining age: Main Sequence turn-off

M6 cluster

The lack of blue dwarfs tells us that the age of M6 is sufficiently old that the massive blue stars have died.

Yellow and red stars are still present because they live longer lives.

Determining age: Main Sequence turn-off

- All stars arrived on the mainsequence (MS) at about the same time.
- The massive stars on the top left of MS are the first to go.
- The cluster is as old as the most luminous star that remains on the MS.
- The position of the hottest, brightest star on a cluster's MS is called the main-sequence turnoff point.

Determining age: Main Sequence turn-off

Which cluster is oldest?

Determining age: Isochrone Fitting

Determining age: Isochrone Fitting
Open clusters

Determining age: Isochrone Fitting

NGC 188: 7 billion years

6, 7, 8 billion years
$\mathrm{E}(\mathrm{B}-\mathrm{V})=0.09$
$(\mathrm{~m}-\mathrm{M}) \mathrm{V}=11.34$

$$
(\mathrm{m}-\mathrm{M})^{\prime} \mathrm{V}=11.34
$$

Determining age: Isochrone Fitting

47 Tuc: 12 billion years

Determining age: Isochrone Fitting

Determining age: Isochrone Fitting

Determining age: Isochrone Fitting

Measurement Errors

- errors in brightness/colors
- errors in distance/luminosity
- errors in cluster membership

Theoretical Errors

- uncertain chemical abundances
- uncertain amount of dust
- uncertain stellar physics

Typical error < 1 billion years

