Global Energetics

Total stellar energy

 $W =$ gravitational potential energy Ω + kinetic energy due to bulk motions (turbulence, pulsation) + internal energy from microscopic processes *U*

Gravitational Potential Energy

Gravitational potential energy

 Ω : energy required to assemble the star by collecting material from the outside universe.

= negative of energy required to disperse the star.

$$
d\Omega = -\int_{r}^{\infty} \frac{Gmdm}{r'^2} dr' = -\frac{Gm}{r} dm
$$

$$
\Omega = -\int_{0}^{M} \frac{Gm}{r} dm
$$

which depends on the density profile $\rho(r)$

Gravitational Potential Energy

e.g., for
$$
\rho(r) = \rho_0
$$
 $\begin{array}{c} m = \rho_0 \frac{4}{3} \pi r^3 \\ M = \rho_0 \frac{4}{3} \pi R^3 \end{array}$ $\rightarrow \frac{m}{M} = \left(\frac{r}{R}\right)^3 \rightarrow r = R \left(\frac{m}{M}\right)^{\frac{1}{3}}$

$$
\Omega = -\int_{0}^{M} \frac{Gm}{r} dm = -\frac{GM^{1/3}}{R} \int_{0}^{M} m^{2/3} dm = -\frac{3}{5} \frac{GM^{2}}{R}
$$

In general,
$$
\Omega = -q \frac{GM^2}{R}
$$
 and $q > \frac{3}{5}$ since $\rho \downarrow$ with r

$$
\rho \sim r^{-1} \to q = \frac{2}{3} \qquad \rho \sim r^{-2} \to q = 1
$$

Internal and Kinetic Energy

Internal energy

U : Kinetic energy due to motions of particles (thermal, not bulk) + energy in atomic and molecular bonds.

$$
U = -\int_{M} E_{m} dm
$$
 Where E_{m} : local specific internal energy (erg/g)

Kinetic energy

 $K:$ Total kinetic energy (thermal + bulk)

Consider all particles in a star at positions \vec{r}_i with momenta $\overrightarrow{1}$ *ri* \Rightarrow \vec{p}_i

$$
Q = \sum_{i} \vec{p}_i \cdot \vec{r}_i
$$

evaluate $\frac{dQ}{dt}$
what are the units of $\frac{dQ}{dt}$? (energy units: $\frac{m \cdot v \cdot r}{t} = m \cdot v^2$)

t

 $Q = \sum \vec{p}_i$. \rightarrow $\sum \vec{p}^{}_{i} \cdot \vec{r}^{}_{i}$ *i*

$$
\frac{dQ}{dt} = \frac{d}{dt} \sum_{i} m \cdot \dot{\vec{r}}_{i} \cdot \vec{r}_{i}
$$
\n
$$
= \frac{d}{dt} \sum_{i} \frac{d}{dt} \left(\frac{1}{2} m \cdot \vec{r}_{i}^{2} \right)
$$
\n
$$
= \frac{1}{2} \sum_{i} \frac{d^{2}}{dt^{2}} \left(m \cdot \vec{r}_{i}^{2} \right)
$$

m ⋅ \Rightarrow $\sum m \cdot \vec{r}_i^2$ *i*

is just the total moment of inertia of the system.

dQ dt = 1 2 d^2I dt^2

 $Q = \sum \vec{p}_i$. \rightarrow *ri i* ∑

$$
\frac{dQ}{dt} = \sum_{i} \frac{d\vec{p}_i}{dt} \cdot \vec{r}_i + \sum_{i} \vec{p}_i \cdot \frac{d\vec{r}_i}{dt}
$$

x total kinetic energy)

$$
\begin{aligned} \boxed{\mathsf{B:}} \quad \sum_{i} \vec{p}_{i} \cdot \frac{d\vec{r}_{i}}{dt} \; &= \; \sum_{i} m \cdot \vec{v}_{i} \cdot \vec{v}_{i} \\ \; &= \; 2 \sum_{i} \frac{1}{2} m \cdot \vec{v}_{i}^{2} \; \underbrace{\; = \; 2K \; \; \; \; (2.2) \; \; \mathsf{A} \cdot \mathsf{B} \cdot \mathsf{B} \cdot \mathsf{B} \cdot \mathsf{C} \cdot \mathsf{B}} \end{aligned}
$$

$$
\begin{aligned}\n\boxed{\mathbf{A:}} \quad & \sum_{i} \frac{d\vec{p}_{i}}{dt} \cdot \vec{r}_{i} \ = \ \sum_{i} \frac{d}{dt} \Big(m \cdot \dot{\vec{r}}_{i} \Big) \cdot \vec{r} \quad = \ \sum_{i} m \cdot \ddot{\vec{r}}_{i} \cdot \vec{r}_{i} \quad = \ \sum_{i} \vec{F}_{i} \cdot \vec{r}_{i} \\
\vec{F}_{i} \quad \text{is the sum of all gravitational forces on particle } i \quad = \ \sum_{j \neq i} \vec{F}_{ij} \\
\boxed{\vec{r}_{i} \\
\boxed{\vec{r}_{j} - \vec{r}_{i} \\
\boxed{\vec{r}_{j} - \vec{r}_{i}}} \quad \vec{F}_{ij} = G \frac{m_{i} m_{j}}{r_{ij}^{2}} \frac{\Big(\vec{r}_{j} - \vec{r}_{i} \Big)}{r_{ij}} \ = \ -G \frac{m_{i} m_{j}}{r_{ij}^{3}} \Big(\vec{r}_{i} - \vec{r}_{j} \Big) \\
\boxed{\vec{r}_{j} \\
\boxed{\vec{r}_{j} \\
\boxed{\vec{r}_{j} - \vec{r}_{i}}} \quad \sum_{i} \vec{F}_{i} \cdot \vec{r}_{i} = \sum_{i} \sum_{j \neq i} \vec{F}_{ij} \cdot \vec{r}_{i} \ = \ \cdots \ + \ \vec{F}_{ij} \cdot \vec{r}_{i} + \vec{F}_{ji} \cdot \vec{r}_{j} + \cdots \\
\boxed{\vec{F}_{ij} = -\vec{F}_{ji}} \quad = \ \cdots \ + \ \vec{F}_{ij} \cdot \Big(\vec{r}_{i} - \vec{r}_{j} \Big) + \cdots \ = \ \sum_{i} \sum_{j > i} \vec{F}_{ij} \cdot \Big(\vec{r}_{i} - \vec{r}_{j} \Big) \\
\boxed{\text{equival to the velocity of the system of the system.}} \\
\text{Equation:} \quad \text{Equation:} \quad
$$

energy r_{ij}^3 r_{ij} $i \quad j > i$

j>*i i*

$$
\frac{1}{2}\frac{d^2I}{dt^2} = 2K + \Omega
$$

In a globally static system:

$$
\frac{d^2I}{dt^2} = 0 \quad \longrightarrow \quad \boxed{2K = -\Omega}
$$

For a collisionless system:
$$
W = K + \Omega
$$
 \longrightarrow $W = \frac{1}{2}\Omega = -K$

bound!

What about a collisional system? How does the 2*K* term relate to the internal energy of a gas?

Kinetic theory: pressure in a gas is caused by the sum of collisions of particles and momentum transfer

Particle *i* colliding with wall in x-direction

$$
\Delta p_i = 2 p_{x,i} = 2 m_i v_{x,i}
$$

Time between collisions of same particle with wall

$$
\Delta t = \frac{2l}{v_{x,i}}
$$

Force due to particle i

$$
F_i = \frac{\Delta p_i}{\Delta t} = \frac{m_i v_{x,i}^2}{l}
$$

Total force on wall

$$
F = \sum_{i} \frac{m_{i}v_{x,i}^{2}}{l} = \frac{1}{l} \sum_{i} m_{i}v_{x,i}^{2}
$$

Kinetic theory: pressure in a gas is caused by the sum of collisions of particles and momentum transfer

i

$$
P \text{ressure}
$$
\n
$$
P = \frac{F}{A} = \frac{2K}{3l \cdot A} = \frac{2K}{3V} \longrightarrow \boxed{2K = 3P \cdot V}
$$

 $m_i v_i^2$

i

In reality, pressure is changing over volume (can think of our box as a volume element *dV*)

$$
2K = 3\int\limits_V P dV
$$

In a star's spherical shells

$$
dm = \rho dV \qquad 2K = \int_{M} \frac{3P}{\rho} dm
$$

Depends on the equation of state

For a relation btw *P* and E_m of $\ P=(\gamma-1)\rho E_m-\gamma$ -law equation of state)

$$
2K = \int_{M} 3(\gamma - 1) E_m \, dm = 3(\gamma - 1) \int_{M} E_m \, dm = 3(\gamma - 1) U
$$

K is only equal to U if $\gamma = \frac{3}{2}$ — i.e., for an ideal monoatomic gas 5 3

Virial theorem:

$$
3(\gamma - 1)U + \Omega = 0
$$

Total energy

 W

$$
= \Omega + U
$$

=
$$
\Omega - \frac{\Omega}{3(\gamma - 1)}
$$

=
$$
\Omega \left(1 - \frac{1}{3(\gamma - 1)}\right)
$$

$$
=\Omega \frac{3\gamma-4}{3(\gamma-1)}
$$

Total energy must be ≤ 0 for star to be stable. Otherwise, it has enough energy to disperse itself.

$$
\Rightarrow \gamma > \frac{4}{3}
$$

• Ideal gas $\left(\gamma = \frac{5}{3}\right)$: safely bound
• Radiation $\left(\gamma = \frac{4}{3}\right)$: unstable

As radiation pressure becomes more important, star becomes less bound.

As a star radiates, it loses energy (*without other energy sources*).

$$
\dot{W} < 0 \rightarrow \begin{cases} \dot{\Omega} < 0 \\ \dot{U} > 0 \end{cases} \rightarrow \text{star contracts}
$$

and heats up

The Virial Theorem: Applications

5

Internal temperature

- For an ideal monoatomic gas:
- Also, the energy density is:

$$
\gamma = \frac{5}{3} \rightarrow U = -\frac{\Omega}{2}
$$

$$
E = \frac{3}{2}nkT \rightarrow U = \frac{3}{2}nkTV
$$

 $3(\gamma - 1)U + \Omega = 0$

n μ $N_{\overline{A}}$: : : \vert ⎨ \int $\overline{\mathsf{L}}$ ⎪ number density of particles mean molecular weight Avogadro's number $\begin{array}{c} \hline \end{array}$ $\left\{ \right.$ $\overline{\mathcal{L}}$ \int ⎪ $n =$

$$
n=\frac{\rho N_A}{\mu}
$$

$$
U = \frac{3}{2} \frac{\rho N_A}{\mu} kTV = \frac{3}{2} \frac{N_A}{\mu} kMT \rightarrow T = \frac{2}{3} \frac{\mu}{N_A k} \frac{U}{M}
$$

• Virial theorem: $U = -\frac{\Omega}{2} = \frac{q}{2} \frac{GM^2}{R}$

The Virial Theorem: Applications

Internal temperature

$$
T = \frac{q}{3} \frac{\mu G}{N_A k} \frac{M}{R}
$$

$$
T = 5 \times 10^6 K \left(\frac{q}{3/5}\right) \left(\frac{M}{M_{\odot}}\right) \left(\frac{R}{R_{\odot}}\right)^{-1}
$$

(actual central temperature of sun is 15 million K)

- Internal $T \gg$ surface $T \rightarrow$ strong T gradient
- Most of the sun is highly ionized
- T is sufficiently high for nuclear fusion (~1 million K)
- Fusion happens due to gravitational energy

Dynamical timescale

• Virial theorem:
$$
\frac{d^2I}{dt^2} \approx \frac{GM^2}{R}
$$

$$
\frac{1}{2}\frac{d^2I}{dt^2} = 2K + \Omega
$$

$$
\frac{I}{t_{\text{dyn}}^2} \approx \frac{GM^2}{R} \rightarrow t_{\text{dyn}} \approx \left(\frac{R \cdot I}{GM^2}\right)^{1/2} \rightarrow t_{\text{dyn}} \approx \left(\frac{R^3}{GM}\right)^{1/2} \approx (G\rho)^{-1/2}
$$

$$
I \approx MR^2
$$

*v*esc ² *GM R ^t*dyn *^R v*esc • Escape velocity: • Timescale for collapse: *^R GM R* ⎛ ⎝ [⎜] [⎞] ⎠ ⎟ ¹ ² *t*dyn (*G*ρ) −1 2 For sun, *t*dyn~ 1 hour

Kelvin-Helmholtz timescale

Timescale for star to radiate away its thermal/gravitational energy.

• Star contracts slowly maintaining hydrostatic equilibrium

$$
\Delta R < 0
$$
\n
$$
\Omega = -q \frac{GM^2}{R}
$$
\n
$$
\Delta \Omega < 0
$$
\n
$$
\frac{d\Omega}{dR} = q \frac{GM^2}{R^2}
$$
\n
$$
\Delta \Omega = +q \frac{GM^2}{R^2} \Delta R
$$

• Virial theorem:
$$
\gamma = \frac{5}{3} \rightarrow W = \frac{\Omega}{2} \rightarrow \Delta W < 0
$$

• Energy is lost from the system: radiation

 $\Delta W =$ $ΔΩ$ half goes to increasing *U* and half goes to luminosity

Kelvin-Helmholtz timescale Timescale for star to radiate away its thermal/gravitational energy.

• Suppose contraction is solely responsible for maintaining luminosity

$$
L = -\frac{dW}{dt} = -\frac{d}{dt} \left(\frac{\Omega}{2}\right) = -\frac{1}{2} \frac{d\Omega}{dR} \frac{dR}{dt} = -\frac{q}{2} \frac{GM^2}{R^2} \frac{dR}{dt}
$$

$$
t_{\text{KH}} = \frac{q \, GM^2}{2 \, LR}
$$

$$
t_{\rm KH} = 2 \times 10^7 \,\text{yr} \left(\frac{M}{M_{\odot}}\right)^2 \left(\frac{L}{L_{\odot}}\right)^{-1} \left(\frac{R}{R_{\odot}}\right)^{-1}
$$

• Too short a timescale to have happened.

Nuclear timescale Timescale for star to burn its H fuel and leave the Main Sequence.

 t_{nuc}

=

total available energy luminosity

$$
t_{\rm nuc} = \frac{\varepsilon f_{\rm core} Mc^2}{L}
$$

 \mathcal{E} = efficiency of nuclear burning (4¹H \rightarrow ⁴He) ~ 0.007

 f_{core} = mass fraction of core (star leaves main sequence after core burns) \sim 0.1

For sun, t_{nuc} 10 billion years

For stars of solar mass or greater:

$$
\frac{L}{L_{\odot}} \approx \left(\frac{M}{M_{\odot}}\right)^{3.5}
$$

$$
t_{\rm nuc} \approx 10^{10} \,\text{yr} \left(\frac{M}{M_{\odot}}\right)^{-2.5}
$$

$$
t_{\text{dyn}} \sim 1 \text{ hour}
$$

$$
t_{\text{KH}} \sim 20 \text{ million years}
$$

$$
t_{\text{nuc}} \sim 10 \text{ billion years}
$$

$$
t_{\rm dyn} \ll t_{\rm KH} \ll t_{\rm nuc}
$$

It is valid to assume that stars on the main sequence are in dynamical and thermal equilibrium.