Global Energetics

Total stellar energy

W = gravitational potential energy €2
+ kinetic energy due to bulk motions (turbulence, pulsation)

+ internal energy from microscopic processes U



Gravitational Potential Energy

Gravitational potential energy

() : energy required to assemble the star by collecting material from
the outside universe.
= negative of energy required to disperse the star.
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Gravitational Potential Energy
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Internal and Kinetic Energy

Internal enerqgy

U : Kinetic energy due to motions of particles (thermal, not bulk)
+ energy in atomic and molecular bonds.

U = —J Em dm  Where Em: local specific internal energy (erg/g)
M

Kinetic energy

K : Total kinetic energy (thermal + bulk)



The Virial Theorem

Consider all particles in a star at positions 7, with momenta p,
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The Virial Theorem
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is just the total moment
of inertia of the system.



The Virial Theorem
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The Virial Theorem
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The Virial Theorem

1d*1
—— = 2K + Q
dt
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In a globally static system: F =0 — PK=-0
[
1
For a collisionless system: W=K+Q —> |W= EQ =—-K
bound!

What about a collisional system? How does the 2K term relate to the
internal energy of a gas?




The Virial Theorem

Kinetic theory: pressure in a gas is caused by the sum of collisions
of particles and momentum transfer

Particle / colliding with wall in x-direction
@ Ap; =2p, ., =2my,;

Time between collisions of same particle with wall
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The Virial Theorem

Kinetic theory: pressure in a gas is caused by the sum of collisions
of particles and momentum transfer

Total force on all 6 walls
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The Virial Theorem

In reality, pressure is changing over volume 2K = 3deV
(can think of our box as a volume element dV)

In a star’s spherical shells

3P
dm = pdV 2K = | —dm| Depends on the equation of state

um P

For a relation btw Pand E, of P = (’}/ — l)pEm (Y -law equation of state)
2K = j E, dn=3(y-1)[E,dn =3(y-1)U
M

5
K isonlyequalto U if ¥V = 3 — i.e., for an ideal monoatomic gas



The Virial Theorem

Virial theorem: |3(y —1)U + Q=0

Total Total energy must be < 0 for star to
energy W=Q+U be stable. Otherwise, it has enough
@) energy to disperse itself.
=5l = 4
3(y=1) Y >—
| 3
3(y —1) -
4 - Ideal gas \7’ 3 safely bound
_qoY—4 (4
. » Radiation = — | : unstable
3(y-1) \)/ 3
As radiation pressure becomes more
important, star becomes less bound.




The Virial Theorem

Virial theorem: |3(y —1)U + Q=0 W =

y=4/3

As a star radiates, it loses energy (without other energy sources).

W <0 — Q = —— star contracts and heats up
U>0



The Virial Theorem: Applications

Internal temperature

 For an ideal monoatomic gas:

* Also, the energy density is:
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The Virial Theorem: Applications

Internal temperature
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(actual central temperature of sun is 15 million K)

* Internal T >> surface T =» strong T gradient

* Most of the sun is highly ionized

* T is sufficiently high for nuclear fusion (~1 million K)

 Fusion happens due to gravitational energy



Timescales

Dynamical timescale 1 d°I
——2 — 2K + Q
d*’I GM? 2 dt
* Virial theorem: T =
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For sun, tdyn~ 1 hour




Timescales

Kelvin-Helmholtz timescale Timescale for star to radiate away its
thermal/gravitational energy.

 Star contracts slowly maintaining hydrostatic equilibrium
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* Virial theorem: y:% — W:% — AW <0

» Energy is lost from the system: radiation

AC
AW = ——  half goes to increasing U and half goes to luminosity



Timescales

Kelvin-Helmholtz timescale Timescale for star to radiate away its
thermal/gravitational energy.

» Suppose contraction is solely responsible for maintaining luminosity
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 Too short a timescale to have happened.




Timescales

Nuclear timescale Timescale for star to burn its H fuel and leave the
Main Sequence.

o total available energy . _E f.. Mc’

. . nuc
o luminosity L

€ = efficiency of nuclear burning (4'H =» 4He) ~ 0.007

f.... = mass fraction of core (star leaves main sequence after core burns) ~ 0.1

For sun, t .~ 10 billion years

nuc

L M
For stars of solar mass or greater: —=| —




Timescales

5

an ~ 1 hour

tey ~ 20 million years

t... ~ 10 billion years

l

Lty Xt

dyn nuc

It is valid to assume that stars on the main sequence are in
dynamical and thermal equilibrium.



