
Global Energetics 

Total stellar energy  

W = gravitational potential energy Ω
+ kinetic energy due to bulk motions (turbulence, pulsation)
+ internal energy from microscopic processes U



Gravitational Potential Energy 
Gravitational potential energy  

Ω : energy required to assemble the star by collecting material from 
the outside universe. 
= negative of energy required to disperse the star. 
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Gravitational Potential Energy 
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Internal and Kinetic Energy 
Internal energy  

U : Kinetic energy due to motions of particles (thermal, not bulk) 
+ energy in atomic and molecular bonds. 

U = − Em dm
M
∫ Where        : local specific internal energy (erg/g) Em

K : Total kinetic energy (thermal + bulk) 

Kinetic energy  



The Virial Theorem 

Consider all particles in a star at positions       with momenta 
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The Virial Theorem 
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The Virial Theorem 
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The Virial Theorem 
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The Virial Theorem 

In a globally static system:  
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For a collisionless system:  W = K +Ω W =
1
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What about a collisional system?  How does the 2K term relate to the 
internal energy of a gas?  

bound!  



The Virial Theorem 
Kinetic theory:  pressure in a gas is caused by the sum of collisions 
                         of particles and momentum transfer 

Particle i colliding with wall in x-direction   
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The Virial Theorem 
Kinetic theory:  pressure in a gas is caused by the sum of collisions 
                         of particles and momentum transfer 
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The Virial Theorem 
In reality, pressure is changing over volume 
(can think of our box as a volume element dV)   
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In a star’s spherical shells   
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The Virial Theorem 

W = Ω +U
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Virial theorem: 

Total energy must be < 0 for star to  
be stable.  Otherwise, it has enough  
energy to disperse itself. 
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•  Ideal gas                  : safely bound 
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As radiation pressure becomes more 
important, star becomes less bound.   



The Virial Theorem 
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As a star radiates, it loses energy (without other energy sources). 
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The Virial Theorem: Applications 
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The Virial Theorem: Applications 

•  Internal T >> surface T  è  strong T gradient 

Internal temperature 

•  Most of the sun is highly ionized 
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(actual central temperature of sun is 15 million K) 

•  T is sufficiently high for nuclear fusion (~1 million K) 

•  Fusion happens due to gravitational energy 



Timescales 

•  Virial theorem: 
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Timescales 

•  Star contracts slowly maintaining hydrostatic equilibrium 

ΔR < 0

Kelvin-Helmholtz timescale 

Ω = −qGM
2

R

•  Virial theorem: 

•  Energy is lost from the system: radiation 

Timescale for star to radiate away its  
thermal/gravitational energy. 
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Timescales 

•  Suppose contraction is solely responsible for maintaining luminosity 

Kelvin-Helmholtz timescale Timescale for star to radiate away its  
thermal/gravitational energy. 
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Timescales 
Nuclear timescale Timescale for star to burn its H fuel and leave the  

Main Sequence. 

tnuc =
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           efficiency of nuclear burning (41H è 4He) ~ 0.007  
 
            mass fraction of core (star leaves main sequence after core burns) ~ 0.1 
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For sun, tnuc~ 10 billion years 

For stars of solar mass or greater: 

ε =

fcore =



Timescales 

 tdyn    tKH    tnuc

tdyn  ~ 1 hour
tKH  ~ 20 million years
tnuc  ~ 10 billion years

It is valid to assume that stars on the main sequence are in  
dynamical and thermal equilibrium. 


