
Equation of State 

To derive the E.O.S., we need to consider: 

•  Quantum statistics (bosons vs. fermions) 

•  Non-relativistic vs. relativistic particles 

•  Degenerate vs. non-degenerate matter 

P = f ρ,T ,Xi( )
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Equation of State 

Radiation pressure and degenerate relativistic electrons 

This sets limits on  
the masses of stars 

For most normal stars, ideal gas + radiation pressure 
are the important contributions 

P = Pgas + Prad

γ =
4
3

  (star is not bound)

= nkT +
1
3
aT 4

n is the number density of all atoms and free electrons 



Mean Molecular Weight 

To calculate the number density n, we need to know: 
•  constituents of plasma 
•  state of ionization 

Available particles:  ions  +  free electrons 

n = nI + ne = nI ,i + ne,i( )
i
∑

Each species i : 

Ai :  nuclear mass number
Zi :  nuclear charge
Xi :  fraction by mass

e.g.,  A1H
= 1,   A4He

= 4,   A12C
= 12

usually  Zi =
Ai
2

  for metals



Mean Molecular Weight 

1 mole = amount that has as many atoms of substance as  
there are atoms of 12C in 12g of 12C. 

Ai
NA

=
mass of mole

# of atoms per mole

e.g.,  1 mole  of  12C    weighs 
 1 mole  of   1H    weighs 
 1 mole  of   4He  weighs  

12g 
  1g 
  4g 

⎫
⎬
⎪

⎭⎪
≈ Ai

Avogadro's number: NA = 6 ×1023

=  mass per atom    (in grams)



Mean Molecular Weight 
Ions 

nI ,i =
mass unit volume( )  of i

mass of 1 ion( )  of i
=

ρXi

Ai
NA

=
ρNAXi

Ai

nI = nI ,i =  
i
∑ ρNA

Xi

Aii
∑

µI

NA

=
mass of mole for a mixture of ions

# of atoms per mole
=  mean mass per atom

nI =
ρNA

µI

µI
−1 =

Xi

Aii
∑



Mean Molecular Weight 
electrons 

ne,i = nI ,i ⋅Zi ⋅ yi = ρNA
Xi

Ai
Ziyi

ne = ne,i =  
i
∑ ρNA

XiZiyi
Aii

∑

ne =
ρNA

µe

µe
−1 =

XiZiyi
Aii

∑

also need to know ionization fraction yi 

yi =
0 :  completely neutral
1 :  completely ionized

⎧
⎨
⎪

⎩⎪

Mixture of ions + electrons 

n = ρNA

µ
µ−1 = µI

−1 + µe
−1

     is the mean weight of 
     particles in units of 1H 
µ



Mean Molecular Weight 

 
1H    0.71

 
4He   0.27
 
16O   0.01
 
12C    0.004

 
20Ne   0.0006

 
56Fe   0.0015

 
14N    0.001

Composition of Sun 

 
28Si   0.001

 
24Mg   0.0008

 
32S    0.0004

 
1H    0.34

 
4He   0.64

In the core 

1H , 4He,  metals( ) ≡ X,Y ,Z( )

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

These were fused inside stars 



Mean Molecular Weight 

•  Fully ionized gas with zero metals  (Z=0, yi=1) 

µI
−1 =

X
AH

+
Y
AHe

µe
−1 =

XiZiyi
Aii

∑ µ−1 = µI
−1 + µe

−1µI
−1 =

Xi

Aii
∑

=
X
1
+
Y
4

µe
−1 =

X ⋅ZH ⋅ yH
AH

+
Y ⋅ZHe ⋅ yHe

AHe

=
X ⋅1 ⋅1
1

+
Y ⋅2 ⋅1
4

µ−1 =
1+ 3X
4

+
1+ X
2

=
3+ 5X
4

= X +
1− X
4

X = 0.7→ µ = 0.62

=
1+ X
2

=
1+ 3X
4

= X +
1− X
2



Mean Molecular Weight 

•  In the core, all H is converted to He (X=0) 

µe
−1 =

XiZiyi
Aii

∑ µ−1 = µI
−1 + µe

−1µI
−1 =

Xi

Aii
∑

X = 0→ µ = 1.3

•  Adding metals (fully ionized) 

µI
−1 =

X
AH

+
Y
AHe

+
Z
AZ

= X +
Y
4
+
Z
AZ

µe
−1 =

X ⋅ZH ⋅ yH
AH

+
Y ⋅ZHe ⋅ yHe

AHe

+
Z ⋅ AZ

2
⋅ yZ

AZ
= X +

Y
2
+
Z
2

µ−1 = 2X +
3
4
Y +

Z
AZ

+
Z
2

= 2X +
3
4
Y +

1
2
Z

X = 1→ µ = 0.5
Z = 1→ µ = 2

0 



Equation of State 
Equations of state may be derived assuming  
Local Thermodynamic Equilibrium (LTE) 
At any position in the star, thermodynamic equilibrium 
holds locally even though it does not hold globally. 

Particle-particle and photon-particle mean free paths are short 
relative to other length/time scales. 

For example, the pressure scale height (height over which the 
pressure changed by a factor of e) is much longer than the mean 
free path. 

λP = −
d lnP
dr

⎛
⎝⎜

⎞
⎠⎟
−1

= −
1
P
dP
dr

⎛
⎝⎜

⎞
⎠⎟
−1

=
P
gρ   R in most of star 

Compare that to the mean free path  λγ  1cm



Distribution Functions 
Statistical mechanics gives us the phase-space density of a particle species. 

n p( ) = 1
h3

gj
exp ε j + ε p( ) − µ( ) kT⎡⎣ ⎤⎦ ±1j

∑ ΔxΔyΔzΔpxΔpyΔpz = h
3

 p =
p

gj
ε j

ε p( ) ε p( ) = p2c2 + m2c4( )1 2 − mc2

•               : momentum 

•               : degeneracy of state j  (# of states having same energy) 

•               : energy of state j relative to some reference level 

•               : kinetic energy 

= 1+ p2c2

m2c4
⎛
⎝⎜

⎞
⎠⎟

1 2

mc2 − mc2 ≈ 1+ 1
2
p2c2

m2c4
⎛
⎝⎜

⎞
⎠⎟
mc2 − mc2 =

p2

2m

= p2c2 + m2c4( )1 2 − mc2 ≈ pc

 pc mc2

 pc mc2UR: 

NR: 

•                    : chemical potential 

•               : + for fermions (Fermi-Dirac), - for bosons (Bose-Einstein) ±

µ =
∂E
∂N

⎛
⎝⎜

⎞
⎠⎟

µi
i
∑ dNi = 0 e.g.,  H + + e− → H 0 + γ

1µ
H + +1µe−

−1µ
H 0 = 0



Distribution Functions 

•  Space density 
n = n p( )4π p2 dp

0

∞

∫

We can get equation of state quantities from n(p) 
Integrate over all phase space assuming spherical symmetry 

P =
1
3

p ⋅ v( )n p( )4π p2 dp
0

∞

∫

E = ε p( )n p( )4π p2 dp
0

∞

∫
•  Internal energy  
   (per unit volume) 

•  Pressure 

P ⋅V =
1
3

mivi
2

i
∑ → P =

1
3V

pivi
i
∑

Kinetic theory 



Blackbody Radiation 

For photons:  •             (2 polarization states) 

•               (no excited states) 

•                    (fully relativistic) 

•              

•   bosons, so “-” 

g = 2

εγ = 0
ε p( ) = pc

µγ = 0

n p( ) = 1
h3

gj
exp ε j + ε p( ) − µ( ) kT⎡⎣ ⎤⎦ ±1j

∑

n p( ) = 1
h3

2
exp pc kT( ) −1



Blackbody Radiation 

nγ = n p( )4π p2 dp
0

∞

∫

n p( ) = 1
h3

2
exp pc kT( ) −1

=
8π
h3

p2dp
exp pc kT( ) −10

∞

∫

pc
kT

= x

dp =
kT
c
dx

p2 =
kT
c

⎛
⎝⎜

⎞
⎠⎟
2

x2

=
8π
h3

kT
c

⎛
⎝⎜

⎞
⎠⎟
3 x2dx
ex −10

∞

∫

= 2.4 8π
h3

kT
c

⎛
⎝⎜

⎞
⎠⎟
3

≈ 2.4

= 20.28T 3cm−3

Density 



Blackbody Radiation 

Eγ = pc( )n p( )4π p2 dp
0

∞

∫

n p( ) = 1
h3

2
exp pc kT( ) −1

=
8πc
h3

p3dp
exp pc kT( ) −10

∞

∫

=
8πc
h3

kT
c

⎛
⎝⎜

⎞
⎠⎟
4 x3dx

ex −10

∞

∫

pc
kT

= x

dp =
kT
c
dx

p3 =
kT
c

⎛
⎝⎜

⎞
⎠⎟
3

x3

=
π 4

15
8πc
h3

kT
c

⎛
⎝⎜

⎞
⎠⎟
4

Energy 

=
π 4

15

=
8π 5k 4

15h3c3
⎛
⎝⎜

⎞
⎠⎟
T 4 = aT 4

a = 7.5 ×10−15 erg cm−3K−4



Blackbody Radiation 

Pγ =
1
3

pc( )n p( )4π p2 dp
0

∞

∫

n p( ) = 1
h3

2
exp pc kT( ) −1Pressure 

=
1
3
aT 4=

1
3
Eγ

P = γ −1( )E =
1
3
E →γ =

4
3



Blackbody Radiation 
n p( ) = 1

h3
2

exp pc kT( ) −1Spectrum 

ε p( )n p( )4π p2dp
The energy density of photons with momentum between p and p+dp is 

=
8π
h3

pc( ) p2dp
exp pc kT( ) −1

The energy density of photons with frequency between v and v+dv is 

8π
h3

hν hν c( )2 h c( )dν
exp hν kT( ) −1

pc = hν
dp = h c( )dν

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Bνdν =
8πhν 3

c3
1

exp hν kT( ) −1dν Planck function 

Bν : erg cm−3  Hz−1( )



Ideal Monoatomic Gas 

For atoms:  •               (single energy state) 

•                      (non-relativistic) 

•                      (+/-1 term can be neglected) 

ε j = ε0

ε p( ) = p2

2m
 µ kT  −1

n p( ) = 1
h3

gj
exp ε j + ε p( ) − µ( ) kT⎡⎣ ⎤⎦ ±1j

∑

n p( ) = 1
h3

g
exp ε0 + p

2 2m − µ( ) kT⎡⎣ ⎤⎦

n p( ) = g
h3
eµ kT e−ε0 kT e− p

2 2mkT



Ideal Monoatomic Gas 

n = n p( )4π p2 dp
0

∞

∫ =
4πg
h3

eµ kT e−ε0 kT e− p
2 2mkT p2 dp

0

∞

∫
p2 2mkT = x

dp =
mkT
p

dx

p = 2mkT( )1 2 x1 2

Density n p( ) = g
h3
eµ kT e−ε0 kT e− p

2 2mkT

 A
  

= A e− x 2mkTx( ) mkT
2mkTx( )1 2

dx
0

∞

∫

=
A
2
2mkT( )3 2 x1 2e− x dx

0

∞

∫ =
π
2

= Aπ
1 2

4
2mkT( )3 2 =

g
h3

2πmkT( )3 2 eµ kT e−ε0 kT



Ideal Monoatomic Gas 

P =
1
3

pv( )n p( )4π p2 dp
0

∞

∫ =
1
3
4πg
h3

eµ kT e−ε0 kT p2

m
e− p

2 2mkT p2 dp
0

∞

∫
p2 2mkT = x

dp =
mkT
p

dx

p = 2mkT( )1 2 x1 2

Pressure n p( ) = g
h3
eµ kT e−ε0 kT e− p

2 2mkT

 A
  

= A
1
3m

e− x 2mkTx( )2 mkT
2mkTx( )1 2

dx
0

∞

∫

=
1
3m

A
2
2mkT( )5 2 x3 2e− x dx

0

∞

∫

=
1
3m

A
2
2mkT( )5 2 −x3 2e− x

0

∞
+
3
2

x1 2e− x dx
0

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥

= nkT

u = x3 2 du = 3 2( )x1 2dx
v = −e− x dv = e− x

0 

= kT
A
2
2mkT( )3 2 x1 2e− x dx

0

∞

∫



Ideal Monoatomic Gas 

E = p2 2m( )n p( )4π p2 dp
0

∞

∫

Energy n p( ) = g
h3
eµ kT e−ε0 kT e− p

2 2mkT

=
3
2
P =

3
2
nkT

P = γ −1( )E =
2
3
E →γ =

5
3



Degenerate Fermions 

•             (2 spin states) 

•                  (no excited states) 

•   

•   fermions, so “+” 

g = 2

ε0 = mc
2

ε p( ) = p2c2 + m2c4( )1 2 − mc2

n p( ) = 1
h3

gj
exp ε j + ε p( ) − µ( ) kT⎡⎣ ⎤⎦ ±1j

∑

n p( ) = 2
h3

1
exp ε p( ) − µ − mc2( )( ) kT⎡

⎣
⎤
⎦ +1

= mc2 1+ p mc( )2 −1( )

For fermions:  



Degenerate Fermions 
n p( ) = 2

h3
1

exp ε p( ) − µ − mc2( )( ) kT⎡
⎣

⎤
⎦ +1

A completely degenerate gas behaves as if T → 0

The probability that an energy state is occupied is 

f ε( ) = 1
exp ε p( ) − µ − mc2( )( ) kT⎡

⎣
⎤
⎦ +1

=
1   if   ε < µ − mc2( )
0   if   ε > µ − mc2( )

⎧
⎨
⎪

⎩⎪

Critical energy:  Fermi energy εF = µ − mc2

Particles cannot have greater energy than this.  



Degenerate Fermions 

f ε( )

Fermi momentum pF

ε εF

1

0
10

Raising T slightly 

x =
p
mc

→ xF =
pF
mc

εF = mc2 1+ xF
22 −1( )

Chemical potential is thus µF = mc2 + εF
This is the maximum total energy of particles 



Degenerate Fermions 

n = n p( )4π p2 dp
0

∞

∫

Density 

=
8π
3

mc
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3

=
8π
h3

p2 dp
0

pF

∫ =
8π
h3

pF
3

3

n p( ) = 2
h3

1
exp ε p( ) − µ − mc2( )( ) kT⎡

⎣
⎤
⎦ +1

For electrons: ne =
8π
3

mec
h

⎛
⎝⎜

⎞
⎠⎟

3

xF
3 = 5.9 ×1029 xF

3  cm−3



Degenerate Fermions 

Pressure 

=
8π
3h3

v ⋅ p3 dp
0

pF

∫

n p( ) = 2
h3

1
exp ε p( ) − µ − mc2( )( ) kT⎡

⎣
⎤
⎦ +1

P =
1
3

pv( )n p( )4π p2 dp
0

∞

∫
v = dε

dp

ε p( ) = mc2 1+ p mc( )2 −1( )

= mc2 1
2
1+ p

mc
⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

−1 2

⋅2 p
mc

⋅
1
mc

=
p
m
1+ p

mc
⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1 2=
8π
3mh3

p4dp

1+ p mc( )20

pF

∫



Degenerate Fermions 

Pressure 

P =
8π
3mh3

p4dp

1+ p mc( )20

pF

∫
p
mc

= x

dp = mcdx

p4 = mc( )4 x4

=
8π
3mh3

mc( )5 x4dx
1+ x20

xF

∫ =
8πm4c5

3h3
x4dx
1+ x20

xF

∫

=
π
3

mc
h

⎛
⎝⎜

⎞
⎠⎟
3

mc2 xF 2xF
2 − 3( ) 1+ xF2( )1 2 + 3sinh−1 xF⎡

⎣
⎤
⎦



Degenerate Fermions 

Energy 

=
8π
h3

mc2 1+ p mc( )2 −1( ) p2 dp
0

pF

∫

n p( ) = 2
h3

1
exp ε p( ) − µ − mc2( )( ) kT⎡

⎣
⎤
⎦ +1

E = ε p( )n p( )4π p2 dp
0

∞

∫

=
8π
h3

mc2 1+ x2 −1( ) mc( )3 x2 dx
0

xF

∫

= 8π mc
h

⎛
⎝⎜

⎞
⎠⎟
3

mc2 1+ x2 −1( )x2 dx
0

xF

∫

=
π
3

mc
h

⎛
⎝⎜

⎞
⎠⎟
3

mc2 8xF
3 1+ xF

2 −1( ) − xF 2xF2 − 3( ) 1+ xF2( )1 2 − 3sinh−1 xF⎡
⎣⎢

⎤
⎦⎥

p
mc

= x

dp = mcdx

p2 = mc( )2 x2



Degenerate Fermions 

P =
8π
3

mc
h

⎛
⎝⎜

⎞
⎠⎟
3

mc2
x4dx
1+ x20

xF

∫

E = 8π mc
h

⎛
⎝⎜

⎞
⎠⎟
3

mc2 1+ x2 −1( )x2 dx
0

xF

∫

n =
8π
3

mc
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3 = AxF

3

= Amc2
x4dx
1+ x20

xF

∫

= 3Amc2 1+ x2 −1( )x2 dx
0

xF

∫

 A
  



Degenerate Fermions 

Look at limiting  
cases: NR, UR 

NR:  xF 1 P ≈ Amc2 x4 dx
0

xF

∫ = Amc2
xF
5

5
= Amc2 1

5
n
A

⎛
⎝⎜

⎞
⎠⎟
5 3

n = AxF
3

P = Amc2
x4dx
1+ x20

xF

∫ E = 3Amc2 1+ x2 −1( )x2 dx
0

xF

∫

=
mc2

5
A−2 3n5 3

E ≈ 3Amc2 1+ 1
2
x2 −1⎛

⎝⎜
⎞
⎠⎟
x2 dx

0

xF

∫ =
3
2
Amc2 x4 dx

0

xF

∫ =
3
2
P

P = γ −1( )E =
2
3
E →γ =

5
3



Degenerate Fermions 

Look at limiting  
cases: NR, UR 

UR:  xF  1 P ≈ Amc2 x3 dx
0

xF

∫ = Amc2
xF
4

4
= Amc2 1

4
n
A

⎛
⎝⎜

⎞
⎠⎟
4 3

n = AxF
3

P = Amc2
x4dx
1+ x20

xF

∫ E = 3Amc2 1+ x2 −1( )x2 dx
0

xF

∫

=
mc2

4
A−1 3n4 3

E ≈ 3Amc2 x −1( )x2 dx
0

xF

∫ = 3Amc2 x3 dx
0

xF

∫ = 3P

P = γ −1( )E =
1
3
E →γ =

4
3



Degenerate Fermions 

γ

xF
0.01 0.1 1 10 100

1.0 −
1.2 −
1.4 −
1.6 −
1.8 −
2.0 −

•  Completely degenerate  
   gas has same gamma  
   as ideal gas. 
 
•  In the relativistic limit, it  
   behaves like radiation. 



Degenerate Fermions 
Convert to mass density: n =

8π
3

mc
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3 n = NAρ

µ

e.g., electrons: ne =
NAρ
µe

=
8π
3

mec
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3

ρ
µe

=
8π
3NA

mec
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3 = 9.7 ×105 xF

3  g cm−3

e.g., neutrons: nn =
NAρ
µn

=
8π
3

mnc
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3

ρ
µn

=
8π
3NA

mnc
h

⎛
⎝⎜

⎞
⎠⎟
3

xF
3 = 6.1×1015 xF

3  g cm−3



Degenerate Fermions 

•  Partly degenerate gas 

Pe ≈ Pe,nd
2 + Pe,d

2( )1 2

•  Partly relativistic gas 

Pe,d ≈ Pe,d ,NR
−2 + Pe,d ,UR

−2( )−1 2

Useful approximations 

These interpolation formulae are good to ~2%  

This formula picks out  
the smallest pressure 



Equation of State Summary 
•  Start with                   at some point in star ρ,   T ,   Xi

•  Assume Local Thermodynamic Equilibrium 

•  Total gas pressure is the sum of components 

P = Prad + Pion + Pe
•  The radiation pressure is 

Prad =
1
3
aT 4 a = 7.5 ×10−15 erg cm−3K−4( )

•  The ion ideal gas pressure is 

Pion =
NAk
µI

ρT NA = 6.022 ×10
23mole−1( )



Equation of State Summary 
•  The electron pressure can be a mixture of 
   non-degenerate and degenerate pressure 

•  Where the electron non-degenerate pressure is 

•  And the electron degenerate pressure can be  
  non-relativistic or relativistic  

Pe,nd =
NAk
µe

ρT

Pe ≈ Pe,nd
2 + Pe,d

2( )1 2

Pe,d ≈ Pe,d ,NR
−2 + Pe,d ,UR

−2( )−1 2



Equation of State Summary 
•  Where the non-relativistic, degenerate pressure is 

•  And the ultra-relativistic, degenerate pressure is 

•  Compute the mean molecular weights from Xi 

Pe,d ,NR =
3
8π

⎛
⎝⎜

⎞
⎠⎟
2 3 h2

5me

NA

µe

⎛
⎝⎜

⎞
⎠⎟

5 3

ρ5 3

µI
−1 =

Xi

Aii
∑

Pe,d ,UR =
3
8π

⎛
⎝⎜

⎞
⎠⎟
1 3 hc
4

NA

µe

⎛
⎝⎜

⎞
⎠⎟

4 3

ρ4 3

µe
−1 =

XiZiyi
Aii

∑

•  Get the ionization fractions from the Saha equation. 


