First two structure equations:

$$\frac{dm}{dr} = 4\pi r^2 \rho$$

$$\frac{dP}{dr} = -\rho \frac{Gm}{r^2}$$

Temperature *T* does not appear in these equations explicitly, but is involved implicitly because pressure *P* usually depends on temperature via the equation of state.

In some cases, however, P only depends on density and, not, T. in these cases, the above two equations are sufficient to define a solution.

A degenerate gas is such a case.

Assume a "polytropic relation" holds throughout the star:

$$P = K\rho^{1+\frac{1}{n}}$$

- *K* : constant
- *n* : polytropic index

Polytropes are useful in two situations:

- The equation of state is really polytropic
 <u>Completely degenerate gas</u>
 - Non-relativistic $P \sim \rho^{5/3} \longrightarrow n = 3/2$
 - Ultra-relativistic $P \sim \rho^{4/3} \longrightarrow n = 3$
- The equation of state + an additional constraint yields a polytropic relation.
 - Isothermal ideal gas $T = T_0, P \sim \rho T \sim \rho \rightarrow n = \infty$
 - Fully convective star: convection maintains a fixed T gradient

$$T \sim P^{2/5}, \quad P \sim \rho T \sim \rho P^{2/5} \rightarrow P \sim \rho^{5/3} \qquad \rightarrow n = 3/2$$

Hydrostatic equilibrium

Make this equation dimensionless. First density,

$$\rho(r) = \rho_c \theta^n(r) \qquad \rho_c = \rho(r=0)$$

$$P = K \rho_c^{1+\frac{1}{n}} \rightarrow P = K \rho_c^{1+\frac{1}{n}} \theta^{n+1} \qquad = P_c \theta^{n+1} \qquad \left(P_c = K \rho_c^{1+\frac{1}{n}}\right)$$

$$\frac{1}{r^2} \frac{d}{dr} \left[\frac{r^2}{\rho} \frac{dP}{dr} \right] = -4\pi G \rho \qquad \rho = \rho_c \theta^n \qquad P = P_c \theta^{n+1}$$

$$\frac{1}{r^2} \frac{d}{dr} \left[\frac{r^2}{\rho_c \theta^n} \frac{d}{dr} \left(P_c \theta^{n+1} \right) \right] = -4\pi G \rho_c \theta^n$$
$$\rightarrow \frac{P_c}{\rho_c} \frac{1}{r^2} \frac{d}{dr} \left[\frac{r^2}{\theta^n} (n+1) \theta^n \frac{d\theta}{dr} \right] = -4\pi G \rho_c \theta^n$$
$$\rightarrow \frac{(n+1)P_c}{4\pi G \rho_c^2} \frac{1}{r^2} \frac{d}{dr} \left[r^2 \frac{d\theta}{dr} \right] = -\theta^n$$

Next, make radius dimensionless:

$$\xi = \frac{r}{r_n}$$

$$r_n^2 \frac{1}{\left(\xi r_n\right)^2} \frac{d}{d\left(\xi r_n\right)} \left[\left(\xi r_n\right)^2 \frac{d\theta}{d\left(\xi r_n\right)} \right] = -\theta^n$$

$$\rightarrow \frac{1}{\xi^2} \frac{d}{d\xi} \left[\xi^2 \frac{d\theta}{d\xi} \right] = -\theta^n$$

$$\rightarrow \frac{1}{\xi^2} \left(2\xi \frac{d\theta}{d\xi} + \xi^2 \frac{d^2\theta}{d\xi^2} \right) = -\theta^n$$

$$\rightarrow \frac{d^2\theta}{d\xi^2} + \frac{2}{\xi}\frac{d\theta}{d\xi} + \theta^n = 0$$

$$\theta'' = -\frac{2}{\xi}\theta' - \theta^n$$

$$\theta'' = -\frac{2}{\xi}\theta' - \theta^n$$

$$\xi = \frac{r}{r_n}$$

$$\rho(r) = \rho_c \theta^n(r)$$

10

Boundary conditions

Center

$$r = 0 \rightarrow \xi = 0$$
 $\rho = \rho_c \rightarrow \theta = 1$ $\frac{a\rho}{dr} = 0 \rightarrow \theta' = 0$

• Surface is at first zero crossing of $\, heta(\xi)\,$

$$\rho = 0 \rightarrow \theta = 0 \qquad \xi = \xi_1$$

Solving Lane-Emden

The Lane-Emden equation can be integrated numerically outward until $\theta = 0$.

- Start at $\xi = 0$. In steps of $d\xi$ compute θ'' , θ' , θ . Stop when $\theta = 0$.
- Get value of ξ_1 , as well as full $heta(\xi)$ profile.

• Analytic solutions exist for three cases: *n*=0, 1, and 5

$$n = 0: \quad \theta(\xi) = 1 - \frac{\xi^2}{6} \qquad \qquad \xi_1 = \sqrt{6}$$
$$n = 1: \quad \theta(\xi) = \frac{\sin \xi}{\xi} \qquad \qquad \xi_1 = \pi$$
$$n = 5: \quad \theta(\xi) = \left(1 + \frac{\xi^2}{3}\right)^{-1/2} \qquad \qquad \xi_1 = \infty$$

- Polytropes with *n*>5 have infinite (divergent) mass.
- Only models with n=3/2 and n=3 are physically relevant.

$$n = \frac{3}{2}$$
: $P = K\rho^{5/3}$ $n = 3$: $P = K\rho^{4/3}$

Solving a differential equation numerically

Simplest case: $\frac{dy}{dx} = f(x, y)$ Boundary condition: $y(0) = y_0$ $y'(0) = y'_0$

- Choose step Δx
- Start with boundary condition and evaluate y at next step $y(\Delta x) = y(0) + y'(0) \cdot \Delta x$
- Repeat for all subsequent steps

$$y(x) = y(x - \Delta x) + \frac{dy}{dx}(x - \Delta x) \cdot \Delta x$$

Solving a differential equation numerically

• Loop over steps:

$$y[i] = y[i-1] + \frac{dy}{dx}[i-1] \cdot \Delta x$$

$$\frac{dy}{dx}[i] = \frac{dy}{dx}[i-1] + \frac{d^2y}{dx^2}[i-1] \cdot \Delta x$$

$$\frac{d^2y}{dx^2}[i] = f(x, y, y')$$

• As *n* increases, solutions become less centrally concentrated

• Total mass enclosed by r $M(< r) = \int_{0}^{r} \rho(r) 4\pi r^{2} dr$

$$M(<\xi) = \int_{0}^{r} \rho_{c} \theta^{n} 4\pi (\xi r_{n})^{2} d(\xi r_{n}) = 4\pi r_{n}^{3} \rho_{c} \int_{0}^{r} \theta^{n} \xi^{2} d\xi$$
$$= 4\pi r_{n}^{3} \rho_{c} \int_{0}^{r} \xi^{2} \left[-\frac{1}{\xi^{2}} \frac{d}{d\xi} (\xi^{2} \frac{d\theta}{d\xi}) \right] d\xi = 4\pi r_{n}^{3} \rho_{c} \left[-\xi^{2} \frac{d\theta}{d\xi} \right]$$

Total mass in star

$$M = 4\pi r_n^3 \rho_c \left[-\xi_1^2 \theta'(\xi_1) \right]$$

• Total radius of star

$$R = r_n \xi_1 = \left[\frac{(n+1)P_c}{4\pi G \rho_c^2} \right]^{1/2} \xi_1$$

• Pressure - density

$$P_c = K \rho_c^{1 + \frac{1}{n}}$$

We have four equations \rightarrow we can get 4 unknowns.

e.g., if we know the equation of state: *K*, *n*, and the mass *M*, we can

• solve Lane-Emden to get ξ_1 and $\theta'(\xi_1)$

$$\theta'' = -\frac{2}{\xi}\theta' - \theta^n$$

• use four equations to get r_n, R, ρ_c, P_c

$$P_c = K \rho_c^{1 + \frac{1}{n}}$$

$$R = r_{n}\xi_{1} = \left[\frac{(n+1)P_{c}}{4\pi G\rho_{c}^{2}}\right]^{1/2}\xi_{1}$$

$$M = 4\pi r_n^3 \rho_c \left[-\xi_1^2 \theta'(\xi_1) \right]$$

$$P_c = K \rho_c^{1 + \frac{1}{n}}$$

$$M = 4\pi r_n^3 \rho_c \left[-\xi_1^2 \theta'(\xi_1) \right]$$

$$R = r_n \xi_1 = \left[\frac{(n+1)P_c}{4\pi G\rho_c^2}\right]^{1/2} \xi_1$$

Consider a White Dwarf composed of a degenerate, non-relativistic electron gas.

E 12

$$n=\frac{3}{2}, P=K\rho^{5/3}$$

$$R^{2} \sim \frac{P_{c}}{\rho_{c}^{2}} \qquad \sim \frac{\rho_{c}^{3/3}}{\rho_{c}^{2}} \qquad = \rho_{c}^{-1/3} \quad \rightarrow \rho_{c} \sim R^{-6}$$
$$M \sim r_{n}^{3}\rho_{c} \qquad \sim R^{3}R^{-6} \quad \sim R^{-3} \quad \rightarrow \boxed{R \sim M^{-1/3}}$$

The radius of a White Dwarf shrinks as its mass increases!

$$R \sim M^{-1/3} \qquad \qquad \rho_c \sim R^{-6}$$

As the white dwarf mass increases, its radius shrinks and its central density increases.

Eventually, the core will become relativistic.

As the mass keeps growing, the relativistic core grows too.

$$P_c = K \rho_c^{1 + \frac{1}{n}}$$

$$M = 4\pi r_n^3 \rho_c \left[-\xi_1^2 \theta'(\xi_1) \right]$$

$$R = r_n \xi_1 = \left[\frac{(n+1)P_c}{4\pi G\rho_c^2}\right]^{1/2} \xi_1$$

Consider a White Dwarf composed of a degenerate, ultra-relativistic electron gas. n = 3, $P = K \rho^{4/3}$

$$R^{2} \sim \frac{P_{c}}{\rho_{c}^{2}} \qquad \sim \frac{\rho_{c}^{4/3}}{\rho_{c}^{2}} \qquad = \rho_{c}^{-2/3} \quad \rightarrow \rho_{c} \sim R^{-3}$$
$$M \sim r_{n}^{3} \rho_{c} \qquad \sim R^{3} R^{-3} \quad \rightarrow \qquad M = \text{const}$$

When the white dwarf is fully relativistic, its mass decouples from its radius and central density!

$$P_c = K \rho_c^{1 + \frac{1}{n}}$$

$$M = 4\pi r_n^3 \rho_c \left[-\xi_1^2 \theta'(\xi_1) \right]$$

$$R = r_n \xi_1 = \left[\frac{(n+1)P_c}{4\pi G \rho_c^2} \right]^{1/2} \xi_1$$

$$r_{n} = \left(\frac{4P_{c}}{4\pi G\rho_{c}^{2}}\right)^{1/2} = \left(\frac{K\rho_{c}^{4/3}}{\pi G\rho_{c}^{2}}\right)^{1/2} = \left(\frac{K}{\pi G}\rho_{c}^{-2/3}\right)^{1/2} = \left(\frac{K}{\pi G}\right)^{1/2}\rho_{c}^{-1/3}$$

$$M = 4\pi r_n^3 \rho_c \left[-\xi_1^2 \theta'(\xi_1) \right] = 4\pi \left(\frac{K}{\pi G} \right)^{3/2} \rho_c^{-1} \rho_c \left[-\xi_1^2 \theta'(\xi_1) \right]$$

$$M = 4\pi \left(\frac{K}{\pi G}\right)^{3/2} \left[-\xi_1^2 \theta'(\xi_1)\right]$$

Plugging in numbers: $M = 1.46M_{\odot}$

This is the Chandrasekhar limiting mass for white dwarfs. No white dwarfs are observed with mass greater than this.