
First two structure equations: 

Polytropes 
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= −ρGm
r2

Temperature T does not appear in these equations explicitly,  
but is involved implicitly because pressure P usually depends  
on temperature via the equation of state. 

In some cases, however, P only depends on density and, not, T. 
in these cases, the above two equations are sufficient to define 
a solution.   
 
A degenerate gas is such a case. 



Assume a “polytropic relation” holds throughout the star: 

Polytropes 

P = Kρ
1+ 1

n

Polytropes are useful in two situations: 

K :  constant
n :  polytropic index

•  The equation of state is really polytropic 
      Completely degenerate gas 

•  Non-relativistic 

•  Ultra-relativistic 

•  The equation of state + an additional constraint yields 
    a polytropic relation. 

•  Isothermal ideal gas 

•  Fully convective star: convection maintains a fixed T gradient 

 P  ρ
5 3

 P  ρ
4 3

 T = T0 ,    P  ρT  ρ

 T  P
2 5 ,     P  ρT  ρP2 5 → P  ρ5 3

→ n = 3 2

→ n = 3

→ n = ∞

→ n = 3 2



Hydrostatic equilibrium 

Polytropes:  Lane-Emden Equation 
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Make this equation dimensionless.  First density, 

ρ r( ) = ρcθ
n r( ) ρc = ρ r = 0( )

P = Kρ
1+ 1

n → P = Kρc
1+ 1

nθ n+1 = Pcθ
n+1 Pc = Kρc

1+ 1
n

⎛
⎝⎜

⎞
⎠⎟



Polytropes:  Lane-Emden Equation 
1
r2

d
dr

r2

ρ
dP
dr

⎡

⎣
⎢

⎤

⎦
⎥ = −4πGρ ρ = ρcθ

n P = Pcθ
n+1

1
r2

d
dr

r2

ρcθ
n

d
dr

Pcθ
n+1( )⎡

⎣
⎢

⎤

⎦
⎥ = −4πGρcθ

n

→
Pc
ρc

1
r2

d
dr

r2

θ n n +1( )θ n dθ
dr

⎡

⎣
⎢

⎤

⎦
⎥ = −4πGρcθ

n

→
n +1( )Pc
4πGρc

2

1
r2

d
dr

r2 dθ
dr

⎡
⎣⎢

⎤
⎦⎥
= −θ n

ξ =
r
rn

Next, make radius dimensionless: rn =
n +1( )Pc
4πGρc

2

⎡

⎣
⎢

⎤

⎦
⎥

1 2



Polytropes:  Lane-Emden Equation 
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Polytropes:  Lane-Emden Equation 
ξ =

r
rn

Boundary conditions 

′′θ = −
2
ξ

′θ −θ n ρ r( ) = ρcθ
n r( )

•  Center 

•  Surface is at first zero crossing of 

r = 0 → ρ = ρc  →
dρ
dr

= 0 →

ρ = 0 →
θ ξ( )

ξ = ξ1
Solving Lane-Emden 

ξ = 0 θ = 1  ′θ = 0

θ = 0

The Lane-Emden equation can be integrated numerically outward 
 until         . 
•  Start at         .  In steps of      compute                .  Stop when         . 
•  Get value of     , as well as full         profile. 

θ = 0
ξ = 0 dξ ′′θ ,  ′θ ,  θ θ = 0

θ ξ( )ξ1



Polytropes:  Lane-Emden Equation 
•  Analytic solutions exist for three cases: n=0, 1, and 5 

n = 0 :    θ ξ( ) = 1− ξ2

6

n = 1 :    θ ξ( ) = sinξ
ξ

n = 5 :    θ ξ( ) = 1+ ξ2

3
⎛
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ξ1 = 6

ξ1 = π

ξ1 = ∞

•  Polytropes with n>5 have infinite (divergent) mass. 

n = 3
2

:   P = Kρ5 3 n = 3 :   P = Kρ4 3

•  Only models with n=3/2 and n=3 are physically relevant. 



Polytropes:  Lane-Emden Equation 
Solving a differential equation numerically 

Simplest case: dy
dx

= f x, y( ) y 0( ) = y0Boundary condition: 

•  Choose step Δx

•  Start with boundary condition and evaluate y at next step  

y Δx( ) = y 0( ) + ′y 0( ) ⋅ Δx

•  Repeat for all subsequent steps 

y x( ) = y x − Δx( ) + dy
dx

x − Δx( ) ⋅ Δx

′y 0( ) = ′y0



Polytropes:  Lane-Emden Equation 
Solving a differential equation numerically 

•  Loop over steps: 

y i[ ] = y i −1[ ] + dy
dx

i −1[ ] ⋅ Δx

dy
dx

i[ ] = dy
dx

i −1[ ] + d
2y
dx2

i −1[ ] ⋅ Δx

d 2y
dx2

i[ ] = f x, y, ′y( )



Polytropes:  Lane-Emden Equation 
•  As n increases, solutions become less centrally concentrated 
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Polytropes 
•  Total mass enclosed by r M < r( ) = ρ r( )4πr2 dr
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•  Pressure - density Pc = Kρc
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Polytropes 
We have four equations à we can get 4 unknowns. 
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e.g., if we know the equation of state: K, n, and the mass M, we 
can 

•   solve Lane-Emden to get     and  ξ1 ′θ ξ1( )

•   use four equations to get  rn ,  R,  ρc ,  Pc

′′θ = −
2
ξ

′θ −θ n



Polytropes:  Structure of a White Dwarf 

Consider a White Dwarf composed of a  
degenerate, non-relativistic electron gas. 
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The radius of a White Dwarf shrinks as its mass increases! 

 
R2  Pc

ρc
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Polytropes:  Structure of a White Dwarf 

As the white dwarf mass increases, its radius shrinks and  
its central density increases. 

 ρc  R
−6

 R  M −1 3

Eventually, the core will become relativistic. 

As the mass keeps growing, the relativistic core grows too. 

M

n = 3

n = 3 2



Polytropes:  Structure of a White Dwarf 

Consider a White Dwarf composed of a  
degenerate, ultra-relativistic electron gas. 
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When the white dwarf is fully relativistic, its mass decouples 
from its radius and central density! 
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Polytropes:  Structure of a White Dwarf 
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This is the Chandrasekhar limiting mass for white dwarfs. 
No white dwarfs are observed with mass greater than this. 
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Plugging in numbers: 

 M = 1.46M


