Polytropes

First two structure equations: d_m — 47z:r2p d—P =—p G’zn
r

dr dr

Temperature T does not appear in these equations explicitly,
but is involved implicitly because pressure P usually depends
on temperature via the equation of state.

In some cases, however, P only depends on density and, not, T.
in these cases, the above two equations are sufficient to define
a solution.

A degenerate gas is such a case.



Polytropes

Assume a “polytropic relation” holds throughout the star:

L K : constant

P=Kp "| p: polytropic index

Polytropes are useful in two situations:

« The equation of state is really polytropic
Completely degenerate gas

Non-relativistic p~p’ —n=23/2

e Ultra-relativistic P~ p4/ 3 —Sn=373

« The equation of state + an additional constraint yields

a polytropic relation.
* Isothermal ideal gas T = TO, P~pT ~p —> N =o0

« Fully convective star: convection maintains a fixed T gradient

T ~PP, P~pl~pPP >P~p” —n=3/2



Polytropes: Lane-Emden Equation

Hydrostatic equilibrium
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dr r p dr dr

a’P_ Gm \rz dP a’{r2 dP} dm

d|r’dP 1 d|r°dP
S =-G4rr’p > — ! =-4nGp
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Make this equation dimensionless. First density,

p(r)=p8"(r) p.=p(r=0)
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Polytropes: Lane-Emden Equation
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Next, make radius dimensionless: [ = — 5
r, . 47TG,OC |




Polytropes: Lane-Emden Equation
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Polytropes: Lane-Emden Equation

9”:_%9/_911 Jg’:L p(l’)=p69n(r)

S r,
Boundary conditions
 Center dp ,
r=0 > =0 p=p., = 6=1 E:O% 0'=0

» Surface is at first zero crossing of 9(5)

p=0 — 6=0 §=¢,

Solving Lane-Emden

The Lane-Emden equation can be integrated numerically outward
until 6 =0.

- Start at ¢ =0. In steps of g& compute 67, 6’, 6. Stop when 6 =0.
» Get value of & , as well as full 6(&) profile.




Polytropes: Lane-Emden Equation

 Analytic solutions exist for three cases: n=0, 1, and 5

n=0: 6(E)=1-5 & =6

nel: 9(5):512‘5 E=n
5 \-1/2

n=5: 9(5):(”%) £ = oo

* Polytropes with n>5 have infinite (divergent) mass.

* Only models with n=3/2 and n=3 are physically relevant.

n=-—: P:Kp5/3 n:3: P:Kp4/3
2



Polytropes: Lane-Emden Equation

Solving a differential equation numerically

Simplest case: dy _ f(x,y) Boundary condition: y(0)=y

dx

0

« Choose step Ax

« Start with boundary condition and evaluate y at next step

y(Ax)=y(0)+y"(0)- Ax

» Repeat for all subsequent steps

y(x)=y(x—Ax)+—(x - Ax)- Ax



Polytropes: Lane-Emden Equation

Solving a differential equation numerically

* Loop over steps:

. . dy.
y[l]zy[z—1]+d—y[z—1]-Ax
X
dyr dy d’y,.
—li|=—|i-1|+—|i—1| Ax
dx l] dx l ]+dx2 [l ]
d’y



Polytropes: Lane-Emden Equation

* As n increases, solutions become less centrally concentrated




Polytropes

r

Jp(r)47tr2 dr

0

M(<&)= [ poran(&) d(&,) =amrp, [or& as

» Total mass enclosed by r M (< r)

. fel 1 df.,de8 s | 2dO
:47ri’nPc£é: _—?d—g(f d_éﬂdg —47T”npc[ 4 dé}

» Total mass in star |M = 47T7”n3Pc [_5129,(‘51)]

(n+1)P V2
- Total radius of star [R=r¢, = . =1 ¢
4rnGp;

1+l

* Pressure - density |P =Kp_”

Cc




Polytropes

We have four equations - we can get 4 unknowns.

e.g., if we know the equation of state: K, n, and the mass M, we
can

. solve Lane-Emden to get &, and 6’(51)

9” — _%9/_911

S

 use four equationstoget r,R, p., P,

e (n+1)P v
E.=Kp, R=rg=|ele| &

M =4nr’p. I:_glze,(xél):l




Polytropes: Structure of a White Dwarf

C
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p ko] [M=amp[E0(E)] R:rna{(”“)ﬂ :

Consider a White Dwarf composed of a "= 2 P=Kp¥
degenerate, non-relativistic electron gas. 2’

5/3

F, P. _
R2~ - 2 :pc

p; P;

1/3

—p. ~R?

M~r’lp. ~RRS ~R° —|R~-M"

The radius of a White Dwarf shrinks as its mass increases!



Polytropes: Structure of a White Dwarf

R ~ M—1/3

As the white dwarf mass increases, its radius shrinks and

its central density increases.

p.~R°

Eventually, the core will become relativistic.

As the mass keeps growing, the relativistic core grows too.

= hee

M




Polytropes: Structure of a White Dwarf

C
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p ko] [M=amp[E0(E)] R:rna{(”“)ﬂ :

Consider a White Dwarf composed of a _ 43
. n=3, P=Kp
degenerate, ultra-relativistic electron gas.

P
R ~ P; - [22 = Pc_2/3 P~ R”

M~r’p. ~RR? — |M =const

When the white dwarf is fully relativistic, its mass decouples
from its radius and central density!



Polytropes: Structure of a White Dwarf
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: 4nGp;
() () (K] (£
" | 4nGp’ nGp; G " nG)
x
M = 4727rn3pc [—5129'(51)] = 47?(%) pc_lpc [_5129,(‘51)]
Plugging in numbers:
M = 4%( ) =&6(&)] M =146M

This is the Chandrasekhar limiting mass for white dwarfs.
No white dwarfs are observed with mass greater than this.



