
Consider energy in the form of light, passing through a medium. 
The amount of energy passing through depends on location, 
direction of flow, time, frequency of light, area through which 
light is passing. 

Radiative Transfer 

dA dΩ



Radiative Transfer 
E
Eν

Energy 

Specific Energy 

Luminosity 

Specific Luminosity 

Flux 

Specific Flux 

Intensity 

Specific Intensity 

L
Lν

F
Fν
I
Iν erg s−1cm−2st−1Hz−1

erg s−1cm−2st−1

erg s−1cm−2Hz−1

erg s−1cm−2

erg s−1

erg s−1Hz−1

erg Hz−1

erg

dE = Iν ⋅dt ⋅dA ⋅dΩ⋅dν



Iv is constant along a ray travelling on a path, whereas flux  
decreases as r -2. 

Radiative Transfer 

dA
r1

dA

r2

dA

r1

dA

r2

Fewer rays from a given 
source cross an area dA 

that is farther away 
because that area is a  
smaller fraction of the  
whole sphere at that  

radius. 

However, an equal  
number of rays cross the 
area dA per solid angle 
because as dA is further 
away, a fixed solid angle 
corresponds to a larger 
area of emitting region 

by ~r2. 



Emission coefficient 

Radiative Transfer: Emission 

j      erg s−1cm−2st−1cm−1

jν     erg s−1cm−2st−1Hz−1cm−1

dE = jν ⋅dt ⋅dV ⋅dΩ⋅dν

dIν = jνds

jv is the change of Iv per unit length along a path. 

We are only considering spontaneous emission here.  
Stimulated emission depends on Iv and is more conveniently 
treated as a “negative absorption”. 

Electrons can recombine with atoms or drop to lower energy levels  
and emit photons 



Absorption 

Radiative Transfer: Absorption 

dIν = −αν Iνds

             fractional loss of intensity over path ds 

The change in intensity depends on intensity itself because the 
more photons try to move through a medium, the more photons 
can become absorbed by it. 

dΩdsAs light passes through a 
medium, it can be absorbed. 

ανds :

αν :  cm−1              positive αν  →  energy loss



Radiative Transfer: Absorption 

αν = nσν

If absorption is due to particles with number density      and  
cross-sectional area  

n
σν

Consider a volume element  
ds ⋅dA

Total area covered by particles: 
n ⋅dV ⋅σν = n ⋅dA ⋅ds ⋅σν

Fraction of area that is covered by particles: 
n ⋅dA ⋅ds ⋅σν

dA
= n ⋅σν ⋅ds = ανds →

ds

αν = ρκνDefine opacity as: κν :  cm2g−1

Opacity is a property of the intervening material, like a  
cross-sectional area per gram of material. 



Radiative Transfer: Optical Depth 
dτν = ανdsDefine optical depth 

Optical depth is the number of e-foldings change in intensity. 
It is an alternative variable for path. 
 
•  Fixed        = fixed distance 

•  Fixed        = fixed change of  

τν

dIν = −αν Iνds

dIν = −Iνdτν

→
dIν
ds

= −αν Iν

→
dIν
dτν

= −Iν

→ Iν = Iν 0( )e−αν s

→ Iν = Iν 0( )e−τν

Iνdτ

ds



Radiative Transfer Equation 

Sν =
jν
αν

Change in intensity over a path length is the sum of 
emission + absorption  (source + sink terms). 

In stars, the source function is close to the blackbody Planck 
function. 

dIν = −αν Iνds + jνds

dIν = −Iνdτν + jν
dτν

αν

dIν
ds

= −αν Iν + jν

dIν
dτν

= −Iν + Sν

→

→

Source function 



Radiative Transfer Equation 
dIν
dτν

+ Iν = Sν

When  

→  eτν dIν
dτν

+ eτν Iν = e
τν Sν

→
d
dτν

Iνe
τν( ) = eτν Sν →  Iνe

τν = e ′τν Sν
0

τν

∫ d ′τν  +  const

τν = 0  →   Iν =  Iν 0( ) →   const =  Iν 0( )

→  Iνe
τν = Iν 0( ) + e ′τν Sν

0

τν

∫ d ′τν

→  Iν = Iν 0( )e−τν + e− τν − ′τν( )Sν
0

τν

∫ d ′τν



Radiative Transfer Equation 

Iν = Iν 0( )e−τν + e− τν − ′τν( )Sν
0

τν

∫ d ′τν

Final intensity is initial intensity diminished by absorption 
+ integrated source function also diminished by absorption. 

For  Sν = const: Iν τν( ) = Iν 0( )e−τν + Sν e− τν − ′τν( )

0

τν

∫ d ′τν

= Iν 0( )e−τν + Sν e− τν − ′τν( )⎡⎣ ⎤⎦0
τν

Iν = Iν 0( )e−τν + Sν 1− e−τν( ) as τν → ∞,    Iν → Sν



•  If area dA is perpendicular to light rays 

Radiative Transfer: Net Flux 

dA

dΩ

dA

dΩ

 
n

θ

dFν = IνdΩ

•  If normal vector to area dA is at an angle     to light rays 

dFν = Iν cosθdΩ
θ

•  “Net flux” in the direction of      is 
 
Fν
n( ) = Iν cosθ dΩ∫ 

n

Flux is reduced because effective 
area is smaller. 

For an isotropic radiation field 
intensity is angle-independent.  

Fν
n( ) = Iν cosθ dΩ∫ = 0



Radiative Transfer: Radiative Diffusion 
Within a star there is a net radial flux (outward) causing a departure 
from isotropy.  We can relate this flux to the temperature gradient. 

dz ds
θ

dIν
ds

= −αν Iν − Sν( ) = −ρκν Iν − Sν( )

•  plane-parallel approximation 

•  angular dependence through     only 

•   

θ

µ = cosθ ds = dz µ

→ µ ∂Iν
∂z

= −ρκν Iν − Sν( ) → Iν = Sν −
µ
ρκν

∂Iν
∂z



Radiative Transfer: Radiative Diffusion 
Iν = Sν −

µ
ρκν

∂Iν
∂z

ρκν  is the fractional loss of Iν  per unit length.
ρκν( )−1  is the mean-free-path.

This second term is the change in intensity over the mean-free-path. 

 
  

This is small  → Iν ≈ Sν ≈ Bν

Iν ≈ Bν −
µ
ρκν

∂Bν

∂z
To first order: 

Integrate to get  
flux in z-direction: Fν z( ) = Iν cosθ dΩ∫

dΩ = 2π sinθdθ = −2πdµ

= −2π Iν µ, z( )µ dµ
+1

−1

∫



Radiative Transfer: Radiative Diffusion 

Bv is isotropic so only the derivative term has a non-zero angle 
dependence. 

Iν ≈ Bν −
µ
ρκν

∂Bν

∂z Fν z( ) = 2π Iν µ, z( )µ dµ
−1

+1

∫

Fν z( ) = 2π −
µ
ρκν

∂Bν

∂z
⎛
⎝⎜

⎞
⎠⎟
µ dµ

−1

+1

∫ = −
2π
ρκν

∂Bν

∂z
µ2 dµ

−1

+1

∫

= −
2π
ρκν

∂Bν

∂z
µ3

3
⎡

⎣
⎢

⎤

⎦
⎥
−1

+1

= −
2π
ρκν

∂Bν

∂z
2
3

Fν z( ) = −
4π
3ρκν

∂Bν

∂T
∂T
∂z



Radiative Transfer: Radiative Diffusion 

Total flux (integrating over frequency): 

Fν z( ) = −
4π
3ρκν

∂Bν

∂T
∂T
∂z

F z( ) = Fν z( )dν
0

∞

∫ = −
4π
3

∂T
∂z

1
ρκν

∂Bν

∂T
dν

0

∞

∫

Define the Rosseland mean opacity: 

1
ρκ R

≡

1
ρκν

∂Bν

∂T
dν

0

∞

∫
∂Bν

∂T
dν

0

∞

∫
Can be computed for any material, 
at any density and any temperature 
(albeit with difficulty). 



Radiative Transfer: Radiative Diffusion 

F z( ) = −
4π
3

∂T
∂z

1
ρκν

∂Bν

∂T
dν

0

∞

∫

= −
4π
3

∂T
∂z

1
ρκ R

∂Bν

∂T
dν

0

∞

∫

= −
4π
3

∂T
∂z

1
ρκ R

∂
∂T

Bν dν
0

∞

∫

= −
4π
3ρκ R

∂T
∂z

∂B
∂T

where B is the total intensity 



Radiative Transfer: Radiative Diffusion 

R

r
θc

Sphere of uniform brightness. 
At an exterior point, 
 

I =
B, θ < θc

0, θ > θc

⎧
⎨
⎪

⎩⎪

Find flux: F = I cosθ dΩ∫ = B dφ
0

2π

∫ cosθ sinθ dθ
0

θc

∫

= 2πB cosθ sinθ dθ
0

θc

∫ = 2πB xdx
0

sinθc

∫ = 2πB sin
2θc

2

sinθc =
R
r

F = πB R
r

⎛
⎝⎜

⎞
⎠⎟
2

F = πBAt surface: 
r=R 



Radiative Transfer: Radiative Diffusion 

F z( ) = −
4π
3ρκ R

∂T
∂z

∂B
∂T

F = πBWe found that the flux coming  
from an enclosed sphere is: 
Also, for a blackbody: F = σT 4

⎫
⎬
⎭
B =

σT 4

π

F z( ) = −
16σT 3

3ρκ R

∂T
∂z

Equation of radiative diffusion 
 
•  Applies provided that quantities change  
  slowly on scale of mean free path. 
 
•  Material properties enter through κ R

∂B
∂T

=
4σT 3

π



Radiative Transfer: Radiative Diffusion 
Spherical symmetry: z→ r

Lr = F r( )4πr2

σ =
ac
4

⎫
⎬
⎪

⎭⎪
Lr = −

16 ac
4

⎛
⎝⎜

⎞
⎠⎟ T

3

3ρκ R

dT
dr
4πr2

Lr = −
16πacr2T 3

3ρκ R

dT
dr

dT
dr

= −
3ρκ RLr

16πacr2T 3



The Eddington Limit 
Photons carry momentum à absorption of photons must  
lead to a force. 

L
4πr2      erg s−1cm−2( )

Spherical symmetric source with luminosity L 

•  Energy flux at distance r : 

L
4πcr2      erg cm−3( )•  Momentum flux : 

Frad =
κL

4πcr2      erg cm g−1( )
•  Multiply by opacity to get force per unit mass 

E = pc( )

F =
dp
dt

⎛
⎝⎜

⎞
⎠⎟

Opacity is the fraction of momentum flux absorbed per unit mass. 



The Eddington Limit 
Fgrav =

GM
r2

•  Inward force per mass due to gravity: 

κL
4πcr2

=
GM
r2

•  Assume opacity is due to Thompson scattering by free electrons 

κ =
α
ρ

Radiation balances gravity when Frad = Fgrav 

→ L =
4πcGM

κ
At greater luminosities, Frad>Fgrav and gas will be blown away. 

=
nσ
ρ

=
σ
m

=
σT

mH

Ledd =
4πcGMmH

σT  
Ledd = 3.2 ×10

4 M
M

⎛
⎝⎜

⎞
⎠⎟
L



The Eddington Limit 

 
Ledd = 3.2 ×10

4 M
M

⎛
⎝⎜

⎞
⎠⎟
L This is the Eddington limit 

Assumptions: 
•  Thompson scattering only 
   other opacity sources increase opacity à lower Ledd 
•  spherical symmetry 

 

L
L

⎛
⎝⎜

⎞
⎠⎟
= 34.2 M

M

⎛
⎝⎜

⎞
⎠⎟

2.4

•  Mass-Luminosity relation for very massive stars 

Formation of more massive stars cannot be spherically symmetric 

 = Ledd → Mmax  100M



Opacity Sources: Electron Scattering 
The opacity of a material depends on the composition 
the temperature     and the density     of gas. ρT

X,Y ,Z( )

κ =κ 0ρ
nT − s

1.  Electron scattering 

κ =
nσ
ρ

=
neσ e

ρ

In an ionized mixture of H and He: ne =
ρNA

µe

µe =
2

1+ X

κ e =
ρNA 1+ X( )

2
σ e

ρ
=
σ eNA 1+ X( )

2



Opacity Sources: Electron Scattering 
If electrons are non-degenerate and non-relativistic, their  
cross-section is equal to the Thompson cross-section. 

σT =
8π
3

e2

mec
2

⎛
⎝⎜

⎞
⎠⎟

2

κ e =
σT NA 1+ X( )

2

= 0.6652 ×10−24 cm2

κ e = 0.2 1+ X( )cm2g−1

Cannot use if  
•  heavy elements are abundant or gas is partially ionized  
•  density is high à degenerate 
•  temperature is high à relativistic 

e- opacity has no frequency, density or temperature dependence 

κ =κ 0ρ
nT − s ,       n = s = 0



Opacity Sources: Free-Free Absorption 
2.  Free-Free Absorption   

γ + e− + ion→ e− + ion

Since free electrons are required, free-free opacity will be 
negligible for                  since H will not be ionized. 

Zc :  average nuclear chargeκ ff ≈ 10
23 ρ
µe

Zc
2

µI

T −3.5cm2g−1

                                           A free electron cannot absorb a  
photon because energy and momentum cannot both be 
conserved.  However, the presence of a charged ion near  
the electron can make this possible. 

inverse of Bremsstrahlung 

T < 104K

κ ff ≈ 4 ×10
22 X +Y( ) 1+ X( )ρT −3.5cm2g−1

κ =κ 0ρ
nT − s ,       n = 1, s = 3.5

•  fully ionized 
•  no metals 

Kramers opacity 



Opacity Sources: Bound Absorption 
3.  Bound-Free Absorption   

A photon gets absorbed by a bound electron, ionizing it. 

κ bf ≈ 4 ×10
25Z 1+ X( )ρT −3.5cm2g−1

κ =κ 0ρ
nT − s ,       n = 1, s = 3.5

•  T>104 K 

Kramers opacity 

4.  Bound-Bound Absorption   
A photon gets absorbed and causes a transition between 
bound energy levels in an atom. 

•  Very complex calculation: absorption line profiles, line 
broadening. 
•  ~10 times smaller than f-f or b-f 

Kramers opacity 



Opacity Sources: H- Absorption 
5.  H- Opacity 

At low temperature, an extra electron can attach to the H atom. 

κ
H − ≈ 2.5 ×10−31 Z

0.02
⎛
⎝⎜

⎞
⎠⎟
ρ1 2T 9cm2g−1

κ =κ 0ρ
nT − s ,       n = 0.5, s = −9

H- has an ionization potential of 0.75 eV so it’s very easy to 
ionize if T > a few thousand K. 

 

3000 < T < 6000K
10−10 < ρ < 10−5g
X  0.7,   0.001 < Z < 0.03

Relevant to Sun’s 
atmosphere! 



Opacity Sources: Tabulated Opacities 
In practice, stellar models use opacities calculated using detailed 
physics. 

As a function of  ρ,  T , X, Y , Z  + breakdown of metals
•  Calculate all the relevant b-b, b-f, f-f, H-, e-, scattering effects. 
•  Get a correct Rosseland mean opacity. 

•  LANL 1960s following defense calculations 
•  OPAL Rogers & Iglesias (1992), Iglesias & Rogers (1996) 
•  Opacity Project  Seaton et al. (1994) 

•  Opacity tables do not cover whole                        space. 
    Extrapolation is dangerous. 
•  Need to do smart interpolation. 
•  Differences of as much as 30% between projects occur. 

ρ,  T , X, Y , Z



Opacity Sources: Tabulated Opacities 

logT

logκ 2 −

5 −

3−

4 −

3 4 5 6 7

1−

0 −

−1−

low ρ

high ρ

H−

f-f, b-f, b-b

e−  scattering

X = 0.7,  Z = 0.02



Opacity Sources: Tabulated Opacities 

log 1−m M( )

logκ 2 −

5 −

3−

4 −

0 −3 −6 −9

1−

0 −

−1−
 15M

 1M

 

m
M
 1−10−6

T  5 ×104K

X = 0.7,  Z = 0.02

 

m
M
 1−10−3

T  105K

center surface 



Opacity Sources: Tabulated Opacities 

logρ

logT

6 −

9 −

7 −

8 −

−4 −2 0 2 4 6

e- scattering 

conduction 
degenerate e- 

b-f 

f-f 



Heat Transfer by Conduction 
When the density gets very high, degenerate electrons transfer 
heat by conduction in addition to providing hydrostatic support. 

Total energy flux is additive: Ftot = Frad + Fcond

Frad = −
4acT 3

3ρκ R

dT
dr

Fcond = −
4acT 3

3ρκ cond

dT
dr

1
κ tot

=
1
κ R

+
1

κ cond

Like resistance in a parallel circuit 

•  In normal stars,          is large à conduction is negligible 

 
•  In degenerate dense stars, it can be smaller than  

κ cond

κ R

 In center of sun:  κ R  0.2,   κ cond  2 ×109 !!!

 In center of cool white dwarf:  κ R  0.2,   κ cond  5 ×10−5


