Radiative Transfer

Consider energy in the form of light, passing through a medium. The amount of energy passing through depends on location, direction of flow, time, frequency of light, area through which light is passing.

Radiative Transfer

$$
\begin{array}{ll}
E & \operatorname{erg} \\
E_{v} & \operatorname{erg~Hz} \\
L & \operatorname{erg~s}^{-1} \\
L_{v} & \operatorname{erg~s}^{-1} \mathrm{~Hz}^{-1} \\
F & \operatorname{erg~s}^{-1} \mathrm{~cm}^{-2} \\
F_{v} & \operatorname{erg~s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \\
I & \operatorname{erg~s}^{-1} \mathrm{~cm}^{-2} \mathrm{st}^{-1} \\
I_{v} & \operatorname{erg~s}^{-1} \mathrm{~cm}^{-2} \mathrm{st}^{-1} \mathrm{~Hz}^{-1}
\end{array}
$$

Energy
Specific Energy
Luminosity
Specific Luminosity
Flux
Specific Flux
Intensity
Specific Intensity

$$
d E=I_{v} \cdot d t \cdot d A \cdot d \Omega \cdot d v
$$

Radiative Transfer

I_{v} is constant along a ray travelling on a path, whereas flux decreases as r^{-2}.

Fewer rays from a given source cross an area dA that is farther away because that area is a smaller fraction of the whole sphere at that radius.

However, an equal number of rays cross the area dA per solid angle because as dA is further away, a fixed solid angle corresponds to a larger area of emitting region

$$
\text { by } \sim r^{2} .
$$

Radiative Transfer: Emission

Electrons can recombine with atoms or drop to lower energy levels and emit photons

Emission coefficient

$$
\begin{aligned}
& j \quad \operatorname{erg~s}^{-1} \mathrm{~cm}^{-2} \mathrm{st}^{-1} \mathrm{~cm}^{-1} \\
& j_{v} \quad \operatorname{erg~s}^{-1} \mathrm{~cm}^{-2} \mathrm{st}^{-1} \mathrm{~Hz}^{-1} \mathrm{~cm}^{-1} \\
& d E=j_{v} \cdot d t \cdot d V \cdot d \Omega \cdot d v \\
& d I_{v}=j_{v} d s
\end{aligned}
$$

j_{v} is the change of I_{v} per unit length along a path.

We are only considering spontaneous emission here. Stimulated emission depends on I_{v} and is more conveniently treated as a "negative absorption".

Radiative Transfer: Absorption

Absorption

As light passes through a medium, it can be absorbed.

$$
d I_{v}=-\alpha_{v} I_{v} d s
$$

$\alpha_{\nu} d s$: fractional loss of intensity over path $d s$

$$
\alpha_{v}: \mathrm{cm}^{-1} \quad \text { positive } \alpha_{v} \rightarrow \text { energy loss }
$$

The change in intensity depends on intensity itself because the more photons try to move through a medium, the more photons can become absorbed by it.

Radiative Transfer: Absorption

If absorption is due to particles with number density n and cross-sectional area σ_{v}

Consider a volume element

$$
d s \cdot d A
$$

Total area covered by particles:

$$
n \cdot d V \cdot \sigma_{v}=n \cdot d A \cdot d s \cdot \sigma_{v}
$$

$-d s$
Fraction of area that is covered by particles:

$$
\frac{n \cdot d A \cdot d s \cdot \sigma_{v}}{d A}=n \cdot \sigma_{v} \cdot d s=\alpha_{v} d s \quad \rightarrow \quad \alpha_{v}=n \sigma_{v}
$$

Define opacity as: $\quad \alpha_{v}=\rho \kappa_{v} \quad \kappa_{v}: \mathrm{cm}^{2} \mathrm{~g}^{-1}$
Opacity is a property of the intervening material, like a cross-sectional area per gram of material.

Radiative Transfer: Optical Depth

Define optical depth τ_{v}

$$
d \tau_{v}=\alpha_{v} d s
$$

$$
\begin{array}{ll}
d I_{v}=-\alpha_{v} I_{v} d s & \rightarrow \frac{d I_{v}}{d s}=-\alpha_{v} I_{v}
\end{array} \rightarrow I_{v}=I_{v}(0) e^{-\alpha_{v} s} .
$$

Optical depth is the number of e-foldings change in intensity. It is an alternative variable for path.

- Fixed $d s=$ fixed distance
- Fixed $d \tau=$ fixed change of I_{v}

Radiative Transfer Equation

Change in intensity over a path length is the sum of emission + absorption (source + sink terms).

$$
\begin{array}{ll}
d I_{v}=-\alpha_{v} I_{v} d s+j_{v} d s & \rightarrow \frac{d I_{v}}{d s}=-\alpha_{v} I_{v}+j_{v} \\
d I_{v}=-I_{v} d \tau_{v}+j_{v} \frac{d \tau_{v}}{\alpha_{v}} & \rightarrow \frac{d I_{v}}{d \tau_{v}}=-I_{v}+S_{v} \\
S_{v}=\frac{j_{v}}{\alpha_{v}} \text { Source function } &
\end{array}
$$

In stars, the source function is close to the blackbody Planck function.

Radiative Transfer Equation

$$
\begin{array}{cl}
\frac{d I_{v}}{d \tau_{v}}+I_{v}=S_{v} & \rightarrow e^{\tau_{v}} \frac{d I_{v}}{d \tau_{v}}+e^{\tau_{v}} I_{v}=e^{\tau_{v}} S_{v} \\
\rightarrow \frac{d}{d \tau_{v}}\left(I_{v} e^{\tau_{v}}\right)=e^{\tau_{v}} S_{v} & \rightarrow I_{v} e^{\tau_{v}}=\int_{0}^{\tau_{v}} e^{\tau_{v}^{\prime}} S_{v} d \tau_{v}^{\prime}+\text { const }
\end{array}
$$

When $\tau_{v}=0 \rightarrow I_{v}=I_{v}(0) \rightarrow$ const $=I_{v}(0)$

$$
\begin{aligned}
& \rightarrow I_{v} e^{\tau_{v}}=I_{v}(0)+\int_{0}^{\tau_{v}} e^{\tau_{v}} S_{v} d \tau_{v}^{\prime} \\
& \rightarrow I_{v}=I_{v}(0) e^{-\tau_{v}}+\int_{0}^{\tau_{v}} e^{-\left(\tau_{v}-\tau_{v}^{\prime}\right)} S_{v} d \tau_{v}^{\prime}
\end{aligned}
$$

Radiative Transfer Equation

$$
I_{v}=I_{v}(0) e^{-\tau_{v}}+\int_{0}^{\tau_{v}} e^{-\left(\tau_{v}-\tau_{v}^{\prime}\right)} S_{v} d \tau_{v}^{\prime}
$$

Final intensity is initial intensity diminished by absorption + integrated source function also diminished by absorption.

$$
I_{v}=I_{v}(0) e^{-\tau_{v}}+S_{v}\left(1-e^{-\tau_{v}}\right) \quad \text { as } \tau_{v} \rightarrow \infty, \quad I_{v} \rightarrow S_{v}
$$

$$
\begin{aligned}
& \text { For } S_{v}=\text { const: } I_{v}\left(\tau_{v}\right)=I_{v}(0) e^{-\tau_{v}}+S_{v} \int_{0}^{\tau_{v}} e^{-\left(\tau_{v}-\tau_{v}^{\prime}\right)} d \tau_{v}^{\prime} \\
& =I_{v}(0) e^{-\tau_{v}}+S_{v}\left[e^{-\left(\tau_{v}-\tau_{v}^{\prime}\right)}\right]_{0}^{\tau_{v}}
\end{aligned}
$$

Radiative Transfer: Net Flux

- If area $d A$ is perpendicular to light rays

$$
d F_{v}=I_{v} d \Omega
$$

- If normal vector to area $d A$ is at an angle θ to light rays

$$
d F_{v}=I_{v} \cos \theta d \Omega \quad \begin{aligned}
& \text { Flux is reduced because effective } \\
& \text { area is smaller. }
\end{aligned}
$$

- "Net flux" in the direction of \vec{n} is $F_{v}(\vec{n})=\int I_{v} \cos \theta d \Omega$

For an isotropic radiation field intensity is angle-independent.

$$
F_{v}(\vec{n})=I_{v} \int \cos \theta d \Omega=0
$$

Radiative Transfer: Radiative Diffusion

Within a star there is a net radial flux (outward) causing a departure from isotropy. We can relate this flux to the temperature gradient.

- plane-parallel approximation
- angular dependence through θ only

$$
\cdot \mu=\cos \theta \quad d s=d z / \mu
$$

$$
\frac{d I_{v}}{d s}=-\alpha_{v}\left(I_{v}-S_{v}\right)=-\rho \kappa_{v}\left(I_{v}-S_{v}\right)
$$

$$
\rightarrow \mu \frac{\partial I_{v}}{\partial z}=-\rho \kappa_{v}\left(I_{v}-S_{v}\right)
$$

$$
\rightarrow I_{v}=S_{v}-\frac{\mu}{\rho \kappa_{v}} \frac{\partial I_{v}}{\partial z}
$$

Radiative Transfer: Radiative Diffusion

$$
I_{v}=S_{v}-\frac{\mu}{\rho \kappa_{v}} \frac{\partial I_{v}}{\partial z}
$$

$\rho \kappa_{v}$ is the fractional loss of I_{v} per unit length.
$\left(\rho \kappa_{v}\right)^{-1}$ is the mean-free-path.

This second term is the change in intensity over the mean-free-path.
This is small $\rightarrow I_{v} \approx S_{v} \approx B_{v}$
To first order: $I_{v} \approx B_{v}-\frac{\mu}{\rho \kappa_{v}} \frac{\partial B_{v}}{\partial z}$

Integrate to get flux in z-direction:

$$
F_{v}(z)=\int I_{v} \cos \theta d \Omega=-2 \pi \int_{+1}^{-1} I_{v}(\mu, z) \mu d \mu
$$

$$
d \Omega=2 \pi \sin \theta d \theta=-2 \pi d \mu
$$

Radiative Transfer: Radiative Diffusion

$$
I_{v} \approx B_{v}-\frac{\mu}{\rho \kappa_{v}} \frac{\partial B_{v}}{\partial z}
$$

$$
F_{v}(z)=2 \pi \int_{-1}^{+1} I_{v}(\mu, z) \mu d \mu
$$

B_{v} is isotropic so only the derivative term has a non-zero angle dependence.

$$
\begin{aligned}
F_{v}(z) & =2 \pi \int_{-1}^{+1}\left(-\frac{\mu}{\rho \kappa_{v}} \frac{\partial B_{v}}{\partial z}\right) \mu d \mu=-\frac{2 \pi}{\rho \kappa_{v}} \frac{\partial B_{v}}{\partial z} \int_{-1}^{+1} \mu^{2} d \mu \\
& =-\frac{2 \pi}{\rho \kappa_{v}} \frac{\partial B_{v}}{\partial z}\left[\frac{\mu^{3}}{3}\right]_{-1}^{+1}=-\frac{2 \pi}{\rho \kappa_{v}} \frac{\partial B_{v}}{\partial z} \frac{2}{3} \\
F_{v}(z) & =-\frac{4 \pi}{3 \rho \kappa_{v}} \frac{\partial B_{v}}{\partial T} \frac{\partial T}{\partial z}
\end{aligned}
$$

Radiative Transfer: Radiative Diffusion

$$
F_{v}(z)=-\frac{4 \pi}{3 \rho \kappa_{v}} \frac{\partial B_{v}}{\partial T} \frac{\partial T}{\partial z}
$$

Total flux (integrating over frequency):

$$
F(z)=\int_{0}^{\infty} F_{v}(z) d v=-\frac{4 \pi}{3} \frac{\partial T}{\partial z} \int_{0}^{\infty} \frac{1}{\rho \kappa_{v}} \frac{\partial B_{v}}{\partial T} d v
$$

Define the Rosseland mean opacity:

Can be computed for any material, at any density and any temperature (albeit with difficulty).

$$
\frac{1}{\rho \kappa_{R}} \equiv \frac{\int_{0}^{\infty} \frac{1}{\rho \kappa_{v}} \frac{\partial B_{v}}{\partial T} d v}{\int_{0}^{\infty} \frac{\partial B_{v}}{\partial T} d v}
$$

Radiative Transfer: Radiative Diffusion

$$
\begin{aligned}
F(z) & =-\frac{4 \pi}{3} \frac{\partial T}{\partial z} \int_{0}^{\infty} \frac{1}{\rho \kappa_{v}} \frac{\partial B_{v}}{\partial T} d v \\
& =-\frac{4 \pi}{3} \frac{\partial T}{\partial z} \frac{1}{\rho \kappa_{R}} \int_{0}^{\infty} \frac{\partial B_{v}}{\partial T} d v \\
& =-\frac{4 \pi}{3} \frac{\partial T}{\partial z} \frac{1}{\rho \kappa_{R}} \frac{\partial}{\partial T} \int_{0}^{\infty} B_{v} d v \\
& =-\frac{4 \pi}{3 \rho \kappa_{R}} \frac{\partial T}{\partial z} \frac{\partial B}{\partial T} \quad \text { where } B \text { is the total intensity }
\end{aligned}
$$

Radiative Transfer: Radiative Diffusion

Sphere of uniform brightness. At an exterior point,

$$
I=\left\{\begin{array}{cc}
B, & \theta<\theta_{c} \\
0, & \theta>\theta_{c}
\end{array}\right.
$$

Find flux: $F=\int I \cos \theta d \Omega=B \int_{0}^{2 \pi} d \phi \int_{0}^{\theta_{c}} \cos \theta \sin \theta d \theta$

$$
\sin \theta_{c}=\frac{R}{r}
$$

$$
F=\pi B\left(\frac{R}{r}\right)^{2}
$$

At surface: $F=\pi B$

$$
r=R
$$

Radiative Transfer: Radiative Diffusion

We found that the flux coming from an enclosed sphere is: $\quad F=\pi B$

Also, for a blackbody:

$$
\left.\begin{array}{l}
F=\pi B \\
F=\sigma T^{4}
\end{array}\right\} B=\frac{\sigma T^{4}}{\pi}
$$

$$
F(z)=-\frac{4 \pi}{3 \rho \kappa_{R}} \frac{\partial T}{\partial z} \frac{\partial B}{\partial T}
$$

$$
\frac{\partial B}{\partial T}=\frac{4 \sigma T^{3}}{\pi}
$$

$$
F(z)=-\frac{16 \sigma T^{3}}{3 \rho \kappa_{R}} \frac{\partial T}{\partial z}
$$

Equation of radiative diffusion

- Applies provided that quantities change slowly on scale of mean free path.
- Material properties enter through κ_{R}

Radiative Transfer: Radiative Diffusion

Spherical symmetry: $\quad z \rightarrow r$

$$
\left.\begin{array}{rl}
L_{r} & =F(r) 4 \pi r^{2} \\
\sigma & =\frac{a c}{4}
\end{array}\right\} L_{r}=-\frac{16\left(\frac{a c}{4}\right) T^{3}}{3 \rho \kappa_{R}} \frac{d T}{d r} 4 \pi r^{2}
$$

$$
L_{r}=-\frac{16 \pi a c r^{2} T^{3}}{3 \rho \kappa_{R}} \frac{d T}{d r}
$$

$$
\frac{d T}{d r}=-\frac{3 \rho \kappa_{R} L_{r}}{16 \pi a c r^{2} T^{3}}
$$

The Eddington Limit

Photons carry momentum \rightarrow absorption of photons must lead to a force.

Spherical symmetric source with luminosity L

- Energy flux at distance $r: \quad \frac{L}{4 \pi r^{2}} \quad\left(\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}\right)$
- Momentum flux :

$$
(E=p c)
$$

$$
\frac{L}{4 \pi c r^{2}} \quad\left(\mathrm{erg} \mathrm{~cm}^{-3}\right)
$$

- Multiply by opacity to get force per unit mass

$$
\left(F=\frac{d p}{d t}\right) \quad F_{\mathrm{rad}}=\frac{\kappa L}{4 \pi c r^{2}} \quad\left(\mathrm{erg} \mathrm{~cm} \mathrm{~g}^{-1}\right)
$$

Opacity is the fraction of momentum flux absorbed per unit mass.

The Eddington Limit

- Inward force per mass due to gravity:

$$
F_{\mathrm{grav}}=\frac{G M}{r^{2}}
$$

Radiation balances gravity when $F_{\text {rad }}=F_{\text {grav }}$

$$
\frac{\kappa L}{4 \pi c r^{2}}=\frac{G M}{r^{2}} \rightarrow L=\frac{4 \pi c G M}{\kappa}
$$

At greater luminosities, $F_{\text {rad }}>F_{\text {grav }}$ and gas will be blown away.

- Assume opacity is due to Thompson scattering by free electrons

$$
\begin{array}{cl}
\kappa=\frac{\alpha}{\rho}=\frac{n \sigma}{\rho} & =\frac{\sigma}{m}=\frac{\sigma_{T}}{m_{H}} \\
L_{\text {edd }}=\frac{4 \pi c G M m_{H}}{\sigma_{T}} & L_{\text {edd }}=3.2 \times 10^{4}\left(\frac{M}{M_{\odot}}\right) L_{\odot}
\end{array}
$$

The Eddington Limit

$$
L_{\text {edd }}=3.2 \times 10^{4}\left(\frac{M}{M_{\odot}}\right) L_{\odot}
$$

This is the Eddington limit

Assumptions:

- Thompson scattering only other opacity sources increase opacity \rightarrow lower $L_{\text {edd }}$
- spherical symmetry
- Mass-Luminosity relation for very massive stars

$$
\left(\frac{L}{L_{\odot}}\right)=34.2\left(\frac{M}{M_{\odot}}\right)^{2.4}=L_{\text {edd }} \rightarrow M_{\max } \sim 100 M_{\odot}
$$

Formation of more massive stars cannot be spherically symmetric

Opacity Sources: Electron Scattering

The opacity of a material depends on the composition (X, Y, Z) the temperature T and the density ρ of gas.

$$
\kappa=\kappa_{0} \rho^{n} T^{-s}
$$

1. Electron scattering

$$
\kappa=\frac{n \sigma}{\rho} \quad=\frac{n_{e} \sigma_{e}}{\rho}
$$

In an ionized mixture of H and $H e: \quad n_{e}=\frac{\rho N_{A}}{\mu_{e}} \quad \mu_{e}=\frac{2}{1+X}$

$$
\kappa_{e}=\frac{\rho N_{A}(1+X)}{2} \frac{\sigma_{e}}{\rho}=\frac{\sigma_{e} N_{A}(1+X)}{2}
$$

Opacity Sources: Electron Scattering

If electrons are non-degenerate and non-relativistic, their cross-section is equal to the Thompson cross-section.

$$
\begin{aligned}
& \sigma_{T}=\frac{8 \pi}{3}\left(\frac{e^{2}}{m_{e} c^{2}}\right)^{2}=0.6652 \times 10^{-24} \mathrm{~cm}^{2} \\
& \kappa_{e}=\frac{\sigma_{T} N_{A}(1+X)}{2} \quad \kappa_{e}=0.2(1+X) \mathrm{cm}^{2} \mathrm{~g}^{-1}
\end{aligned}
$$

Cannot use if

- heavy elements are abundant or gas is partially ionized
- density is high \rightarrow degenerate
- temperature is high \rightarrow relativistic
e^{-}opacity has no frequency, density or temperature dependence

$$
\kappa=\kappa_{0} \rho^{n} T^{-s}, \quad n=s=0
$$

Opacity Sources: Free-Free Absorption

2. Free-Free Absorption A free electron cannot absorb a photon because energy and momentum cannot both be conserved. However, the presence of a charged ion near the electron can make this possible.
$\gamma+e^{-}+$ion $\rightarrow e^{-}+$ion \quad inverse of Bremsstrahlung

$$
\kappa_{f f} \approx 10^{23} \frac{\rho}{\mu_{e}} \frac{Z_{c}^{2}}{\mu_{I}} T^{-3.5} \mathrm{~cm}^{2} \mathrm{~g}^{-1} \quad Z_{c}: \text { average nuclear charge }
$$

Since free electrons are required, free-free opacity will be negligible for $T<10^{4} \mathrm{~K}$ since H will not be ionized.

$$
\kappa_{f f} \approx 4 \times 10^{22}(X+Y)(1+X) \rho T^{-3.5} \mathrm{~cm}^{2} \mathrm{~g}^{-1}
$$

- fully ionized
- no metals

$$
\kappa=\kappa_{0} \rho^{n} T^{-s}, \quad n=1, s=3.5 \quad \text { Kramers opacity }
$$

Opacity Sources: Bound Absorption

3. Bound-Free Absorption

A photon gets absorbed by a bound electron, ionizing it.

$$
\kappa_{b f} \approx 4 \times 10^{25} Z(1+X) \rho T^{-3.5} \mathrm{~cm}^{2} \mathrm{~g}^{-1}
$$

$$
\cdot T>10^{4} \mathrm{~K}
$$

$$
\kappa=\kappa_{0} \rho^{n} T^{-s}, \quad n=1, s=3.5 \quad \text { Kramers opacity }
$$

4. Bound-Bound Absorption

A photon gets absorbed and causes a transition between bound energy levels in an atom.

- Very complex calculation: absorption line profiles, line broadening.
- ~10 times smaller than f-f or b-f

Kramers opacity

Opacity Sources: H- Absorption

5. H^{-}Opacity

At low temperature, an extra electron can attach to the H atom.
H - has an ionization potential of 0.75 eV so it's very easy to ionize if $T>$ a few thousand K .

$$
\kappa_{H^{-}} \approx 2.5 \times 10^{-31}\left(\frac{Z}{0.02}\right) \rho^{1 / 2} T^{9} \mathrm{~cm}^{2} \mathrm{~g}^{-1}
$$

$$
3000<T<6000 \mathrm{~K}
$$

$$
10^{-10}<\rho<10^{-5} \mathrm{~g}
$$

Relevant to Sun's

$$
X \sim 0.7, \quad 0.001<Z<0.03
$$ atmosphere!

$$
\kappa=\kappa_{0} \rho^{n} T^{-s}, \quad n=0.5, s=-9
$$

Opacity Sources: Tabulated Opacities

In practice, stellar models use opacities calculated using detailed physics.

As a function of $\rho, T, X, Y, Z+$ breakdown of metals

- Calculate all the relevant b-b, b-f, f-f, $\mathrm{H}^{-}, \mathrm{e}^{-}$, scattering effects.
- Get a correct Rosseland mean opacity.
- LANL 1960s following defense calculations
- OPAL Rogers \& Iglesias (1992), Iglesias \& Rogers (1996)
- Opacity Project Seaton et al. (1994)
- Opacity tables do not cover whole ρ, T, X, Y, Z space. Extrapolation is dangerous.
- Need to do smart interpolation.
- Differences of as much as 30\% between projects occur.

Opacity Sources: Tabulated Opacities

Opacity Sources: Tabulated Opacities

Opacity Sources: Tabulated Opacities

Heat Transfer by Conduction

When the density gets very high, degenerate electrons transfer heat by conduction in addition to providing hydrostatic support.

Total energy flux is additive: $\quad F_{\text {tot }}=F_{\text {rad }}+F_{\text {cond }}$

$$
\begin{aligned}
F_{\text {rad }}=-\frac{4 a c T^{3}}{3 \rho \kappa_{R}} \frac{d T}{d r} & F_{\text {cond }}=-\frac{4 a c T^{3}}{3 \rho \kappa_{\text {cond }}} \frac{d T}{d r} \\
\frac{1}{\kappa_{\text {tot }}}=\frac{1}{\kappa_{R}}+\frac{1}{\kappa_{\text {cond }}} & \text { Like resistance in a parallel circuit }
\end{aligned}
$$

- In normal stars, $\kappa_{\text {cond }}$ is large \rightarrow conduction is negligible In center of sun: $\kappa_{R} \sim 0.2, \kappa_{\text {cond }} \sim 2 \times 10^{9}!!!$
- In degenerate dense stars, it can be smaller than κ_{R} In center of cool white dwarf: $\kappa_{R} \sim 0.2, \kappa_{\text {cond }} \sim 5 \times 10^{-5}$

