
Distances on the Sphere



• A few lectures ago, we discussed a  
problem where a star is 42.5o to the 
west of zenith (due to the Earth’s  
rotation) and 23o south of zenith  
(due to the star’s declination) 

• I asked how we might combine this to  
find the airmass of the star 

– airmass depends on the zenith angle 
• To proceed one would determine the (x,y,z)  

Cartesian coordinates 42.5o west of zenith, the  
(x,y,z) coordinates 23o south of zenith, and then use 
the dot product to find the angle between those vectors
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• For instance, say zenith is at (α1,δ1) =  
(20h24m59.9s,10o6’0’’) = (306.25o,10.1o) 

• If (α2, δ2) is 42.5o west and 23o south of  
zenith then (α2,δ2) = (263.75o,-12.9o) 

• So, (x1,y1,z1) =  ( 0.5821462,-0.7939473,0.1753667) 
(x2,y2,z2) =  (-0.10612625,-0.96896677,-0.22325012) 

• Now, by definition of the dot product 
– a.b = |a||b|cos(zang) 
– where (x1,y1,z1).(x2,y2,z2) = x1x2 + y1y2 + z1z2 
– and |(x1,y1,z1)| = (x12 + y12 + z12)1/2  

• The zenith angle zang is then straightforward to find
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• I have cast this problem in terms of finding  
the airmass for arbitrary observations 

• But this is a very general problem for  
astronomical observations 

• Another common variation would be to find the 
angular distance between two stars (or other 
astronomical objects) with different (α,δ) 

• The simplest approach will always be to convert to 
Cartesian coordinates and then use the dot product to 
find the angle between those coordinates 

• Or, to write code to do this in the general case (or use 
code that someone else has written)
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• Finding multiple distances on the sphere can quickly 
become difficult 

– consider a survey of 1 million galaxies, and you 
need the distances between all of them 
• this is (1million x 999999)/2 distances ! 

• Often, you won’t care about all ~5 x 1011 distances 
– you may only want to measure the distances 

between objects that are close in the sky 

• say within a 1o x 1o field of a telescope 
• This is where tree schemes and indexing schemes 

become very useful

Multiple distances on the sphere



The problem, in a nutshell

1km

Find all pairs of points that are separated by < 100m



The quad tree
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• Each point in a pixel is assigned the pixel name 
– so, the 3 points in pixel 22 are all labeled as 22 

• As you progress hierarchically down the tree to the next 
“level”, you quadruple the number of pixels 

– and the label or “index” grows by one integer 
• Eventually, each point has a unique index (is in its own 

pixel) and you can stop building the tree 
– if empty pixels are then discarded, you have 

exactly as many pixels as points 
• The pixel size is known at each level, so if only points 

separated by, e.g., 100m, are needed, then only some 
subset of points in adjacent pixels need to be considered

The quad tree



• Tree structures are desirable for a number of reasons 
• Recursive bisection is a very rapid algorithm 
• The indexing is simple and easy to store as an integer 
• Because each dimension is always being halved, the 

area and/or dimensions of each pixel are easy to track 
– which means that the separation between pixels at 

each level is easy to calculate 
• Several sophisticated tree structures are used for 

indexing in astronomy, with one goal being to rapidly 
find adjacent points in a large amount of data 

• The Hierarchical Triangular Mesh (HTM) is one such 
scheme (a full explanation is linked from the syllabus)

The quad tree



• A useful routine in astropy that uses a tree scheme to 
rapidly perform distance measurements on the sphere 
is the search_around_sky procedure 

• search_around_sky uses a k-dimensional (or k-d) tree 
to pixelate the sky 
– a k-d tree, essentially, recursively bisects a dataset 

perpendicular to each coordinate axis (e.g. bisects 
in Cartesian x, y, z in turn; see the syllabus link) 

– bisections occur close to the median data point 
along a coordinate axis, so that, on each split, about 
half of the data ends up in each “child” pixel 

• Coordinate matching is easily my single most-used 
routine for data manipulation in large surveys

Coordinate matching with astropy.coordinates



• One common use of separation is to take two sets of 
object coordinates in arrays [ra1], [dec1] and [ra2], 
[dec2] and find angular distances between the objects 

• The syntax for this case is, e.g. 
– ra1, dec1 = [8.,9.,10.]*u.degree,[0.,0.,0.]*u.degree 
– ra2, dec2 = [18.,19.,21.]*u.degree,[0.,0.,0.]*u.degree 
– c1 = SkyCoord(ra1, dec1, frame=‘icrs’) 
– c2 = SkyCoord(ra2, dec2, frame=‘icrs’) 
– c1.separation(c2) 

• The result, here is <Angle [ 10., 10., 11.] deg> 
– because [8.,0.] is separated from [18.,0.] by 10 

o 
and [10.,0.] is separated from [21.,0.] by 11 

o etc.

Angular separations between sets of points



• You can also match all of a set of points to all of a 
second set using SkyCoord’s search_around_sky method 

• The syntax for search_around_sky is, e.g. 
– ra1, dec1 = [8.,9.,10.]*u.degree,[0.,0.,0.]*u.degree 
– ra2, dec2 = [18.,19.,21.]*u.degree,[0.,0.,0.]*u.degree 
– c1 = SkyCoord(ra1, dec1, frame=‘icrs’) 
– c2 = SkyCoord(ra2, dec2, frame=‘icrs’) 
– id1, id2, d2, d3 = c2.search_around_sky(c1, 9.1*u.deg) 

• The result is id1 = [1, 2, 2] and id2 = [0, 0, 1] 
– because [9.,0.] is separated from [18.,0.] by < 9.1 

o 
and [10.,0.] is separated from [18.,0.] by < 9.1 

o  

and [10.,0.] is separated from [19.,0.] by < 9.1 
o

Matching a set of points to another set of points



• A second use of separation is to take a single point in 
the sky and find all objects within some distance of it 

• This is useful, e.g., if you are following-up a “circular” 
area on the sky with a spectroscopic plate 

• Say I’m placing a 1.5o radius plate at α = 20o, δ = 0o and 
I want to know which objects in the sky will fall on it: 

– ra1, dec1 = [20.]*u.degree,[0.]*u.degree 
– ra2, dec2 = [18.,19.,21.]*u.degree,[0.,0.,0.]*u.degree 
– c1 = SkyCoord(ra1, dec1, frame=‘icrs’) 
– c2 = SkyCoord(ra2, dec2, frame=‘icrs’) 
– w = np.where(c1.separation(c2) < 1.5*u.degree) 

• Here, w is array([1, 2]) because the 1st and 2nd points 
are within 1.5o of α = 20o, δ = 0o

Matching one point to a set of points



1.Use astropy.coordinates.SkyCoord to convert (α1,δ1) = 
(263.75o, -12.9o) and (α2,δ2) = (20h24m59.9s,10o6’0’’) to 
Cartesian coordinates, and hence use the dot product to 
determine the angle between these coordinates 
• Use SkyCoord’s separation method to check your result 

2.Use np.random to populate the area of the sky between α 
= 2h and α = 3h and δ = -2o and δ = 2o with two different 
sets of 100 random points (α1,δ1) and (α2,δ2) 
• plot your two sets of points, in different colors and 

using different symbols 
3.Use the search_around_sky method to find which of your 

points are within 10’ of each other (remember 1’ is 1o/60) 
• plot those points on the same plot in a third color

Python tasks



4.Combine your two sets of points into one array (e.g., ra = 
np.append(ra1,ra2) and dec = np.append(dec1,dec2) 
• plot them all again using the same symbol and color 

5.You are observing objects in your mock data set using a 
spectroscopic plate of 1.8o radius that is to be placed at  
(α,δ) = (2h20m5s, -0o6’12’’)  

• Use SkyCoord’s separation method to find all of the 
points that will fall on your plate and plot this subset of 
points (on the same plot as before) in a different color 

• Remember the usefulness of np.where

Python tasks


