Areas on the Sphere and HEALPix

Areas on the sphere

- I've provided you with a lot of options for determining distances on the sphere...but what about areas?
- The area of the entire (unit) sphere is 4π steradians or about 41252.96 deg²
- One way to keep track of the area of regions of the sphere is to just subdivide it

- half the sphere has an area of 2π steradians (41252.96/2 deg²), a quarter of the sphere has an area of π steradians (41252.96/4 deg²), etc.

• Or, spherical calculus tells us the area of a zone (the surface area of a spherical segment)

Areas on the sphere

- The area of a zone (on the unit sphere) is 2πh in steradians (see the link to Wolfram MathWorld on the syllabus)
- The area of a *cap* is then $2\pi(1-h)$.
 - The spherical cap will come in very useful in the next lecture

- The area of a "*rectangle drawn on the sphere*," which is a fraction of a zone, is $f2\pi h$ where f is the fraction in this "*lat-lon rectangle*"
- A "*lat-lon rectangle*" as I'll call it (it doesn't have an "official" name) is bounded by lines of longitude (or Right Ascension) and latitude (or declination)

- Areas on the sphere become yet more complex if they are not simple astronomical fields bounded by lines of Right Ascension and declination
- So, a number of tricks have been developed to keep track of areas in large surveys of the sky
- One such trick, *HEALPix*, relies on the idea from a few slides ago (1/2 the sphere is 2π steradians, 1/4 is π steradians, etc.) and is a genuine quad-tree scheme
- Go to the syllabus' JPL HEALPix primer link
 - read Discretization of Functions on the Sphere (pay particular attention to Figure 2)
 - also read *Geometric and Algebraic Properties*...

- Nside expresses the resolution of the grid. For Nside resolution you get 4*Nside-1 isolatitude rings and 12*Nside² pixels.
- The base-resolution has 12 pixels in 3 rings around the poles and equator. *Nside* is the number of divisions on a base-resolution pixel to reach the desired resolution.

Nside = 1, 2, 4, 8

- Pixels have equal area and are centered on lines of constant latitude.
- There are two indexing schemes for pixels, *ring* and *nested*. The *ring* scheme is the default.

- Install the Python version of *HEALPix* in *astroconda*
 - conda config --add channels conda-forge conda install healpy
- It can be called and used, e.g., as follows:
 - import healpy; healpy.ang2pix(nside,theta,phi)
 - *theta* and *phi* are in radians, *phi* = RA and *theta* = $[\pi/2 \text{ (radians)} - \text{dec}]$ i.e. *theta* = 0 is the north pole (dec = 90°)..see the wikipedia definition linked from the syllabus
- The most useful commands for our purposes are linked from the syllabus under *HEALPix Pixelisation related functions*

Python tasks

- 1. Generate a random set of 1000000 points on the surface of the sphere with coordinates ra,dec (α,δ) degrees that correctly populate the sphere equally in area, recall:
 - *ra* = 360. *(*random*(1000000)) and
 - dec=(180/np.pi)*np.arcsin(1.-random(1000000)*2.)
 - plot your points, note density near the poles and equator.
- 2.Use *ang2pix* with *nside=1* to determine which pixels each of your *ra*, *dec* points lie within at the *nside=1* level of the *HEALpix* hierarchy
 - convert *ra*, *dec* to radians and take 90° ($\pi/2$ radians) *dec* so that *ra* becomes *phi* and *dec* becomes *theta*
 - What is the area of an *nside=1 HEALpix* pixel?

Python tasks

- 3.Use the *numpy.histogram* command to print out how many of your points lie in each *HEALpix* pixel
 - Is the answer consistent with pixels being equal-area?
- 4.*numpy.where* will return the indices that obey a logic command. So, if you've called your array of pixels "pix" then w = np.where(pix == 2) will make w a list of indices for which phi, theta (or ra, dec) lie in pixel 2
 - Plot *ra*, *dec* using matplotlib marker 'k.' and overplot *ra*[*w*], *dec*[*w*] for those points in pixel 2, using a different color. Repeat for pixel 5 and pixel 8
- 5.Use *ang2pix* with *nside=2* to map your *ra,dec* points to HEALpix at the next level of the hierarchy
 - Which *nside=2* pixels lie inside pixel 5 at *nside=1*?