
Spherical Caps



• The area of a zone (on the unit sphere)  
is 2πh in steradians (see the link to  
Wolfram MathWorld on the syllabus) 

• The area of a cap is then 2π(1-h).  
– The spherical cap will come in very  

useful in the next lecture 

• The area of a “rectangle drawn on the sphere,” which 
is a fraction of a zone, is f2πh where f is  
the fraction in this “lat-lon rectangle”  

• A “lat-lon rectangle” as I’ll call it (it  
doesn’t have an “official” name) is  
bounded by lines of longitude (or Right  
Ascension) and latitude (or declination)

taken from 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• From the coordinate discussion of  
a few lectures ago, we can easily  
find the h in f2πh 

– h = z2 - z1 = sinδ2 - sinδ1 

• 2πf depends on the fraction of  
the full circle covered by the α  
range of interest (in radians 2πf is  
just the difference in α): 

– 2πf = (α2radians - α1radians)  
• From f2πh, the area of a lat-lon  

rectangle bounded by α and δ is… 
– (α2radians - α1radians)(sinδ2 - sinδ1) 
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• By definition, a spherical cap  
is the same area no matter  
where it cuts the sphere 

• The radius of a cap may cover  
a different span in α but it is the same physical  
radius, and so corresponds to the same physical area 

• Note the expression for the area of a spherical cap: 
– 2π(1-h) = 2π(1-z2) = 2π(1-sinδ2)     in steradians 
–  = 2π(1-sinδ2)* (180/π)2     in deg2 

• This is very close to (but not quite the same as) a cap area 
being πθ2 where θ is the cap radius drawn on the sphere 

• Try, comparing, e.g., θ=1o and δ2=89o to θ=60o and 
δ2=30o. From here on, we’ll write 1-sinδ2 as 1-cosθ
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• So, in steradians, the area of a lat-lon rectangle 
bounded by Right Ascension α and declination δ is 

– (α2radians - α1radians)(sinδ2 - sinδ1) 
• Then, the area of a lat-lon rectangle bounded by α and 
δ is given by… 

– (180/π)(180/π)(α2radians - α1radians)(sinδ2 - sinδ1)  
 
                 …in square degrees 

• Or, in a more compact form useful when working with 
astronomical coordinates (for which α is usually 
expressed in degrees) 

– (180/π)(α2degrees - α1degrees)(sinδ2 - sinδ1)

Areas on the sphere



• Spherical caps are useful models  
for representing arbitrary regions  
on the surface of the sphere 

• A spherical cap is centered at  
a specific, Right Ascension  
and declination (α,δ) 

• The height (1-h) of a spherical cap  
corresponds to some radius (θ)  
on the surface of the unit sphere 

• By intersecting multiple  
spherical caps it is possible  
to construct general shapes  
on the surface of the sphere
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• As we know, spherical coordinates  
can be represented in Cartesian  
form (x,y,z) by the vector that  
points in the direction of (α,δ)  

• Previously, for a point on the 
surface of the sphere we noted that  
x2 + y2 + z2 = 1 

• For a cap instead of a point, the size of the  
cap (which controls θ, the radius drawn on the surface 
of the sphere) can be controlled by x2 + y2 + z2 = h2 

• Thus, one simple way to represent a cap is the 4-array 
given by x, y, z and h...we will choose the convention 
(x,y,z,1-h) as it is used by Mangle (next class’ focus)

Vectorial representation of the spherical cap
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• Caps can be represented by (x,y,z,1-h) 
• (x,y,z) is easy to determine, it’s just  

the Cartesian conversion from (α,δ)  
(e.g., using SkyCoord) 

• For astronomers, the natural way to  
think about the cap size is the radius  
drawn on the surface of the sphere  
(θ from the last 2 slides, the radius we  
would put in search_around_sky) 

• As shown in the diagrams to  
the right, 1-h = 1-cosθ 

• So, (x,y,z,1-h) ≡ (x,y,z,1-cosθ)

Vectorial representation of the spherical cap
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• Recall that the area of  
a lat-lon rectangle that runs from  
0 to 2π in RA is 2π(z2 - z1) where 

– z2 - z1 = sinδ2 - sinδ1 

• For a spherical cap δ2 =90o and  
the area is then 2π(1 - z1) 

• But z1 here is just what I called |z|  
or h in previous slides 

• So, the area of a spherical cap,  
2π(1-cosθ) is easy to determine  
from the vector form for a cap 

– which is (x,y,z,1-cosθ)

The area of a spherical cap
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• So far we’ve discussed the  
general form, a “circle of radius  
θ on the surface of the sphere”  

• Other main astronomy uses  
are fields bound by RA or dec 

• Bounds in RA (α’) map out a  
great circle on the sphere...a  
spherical cap that slices off exactly  
half of the sphere 

• So, the vector representation of a bound in RA is 
– (x,y,z,1-h) = (xyz(α’+90o,0o), 1) 
– By xyz() I mean “conversion to Cartesian coordinates”
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• Bounds in dec (δ’) map out lines of  
constant latitude on the sphere...a  
cap that slices off increasingly  
less of the sphere as δ’ increases  

• The (x,y,z) vector direction is  
always towards the north pole 

• The size of the cap is given by  
h = sinδ 

• So, the vector representation  
of a bound in declination  is 

– (x,y,z,1-h) = (xyz(0o,90o), 1-sinδ’)  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1.Write a function to create the vector 4-array for the 
spherical cap bounded by 5h in Right Ascension 
• the answer is [-0.96592582629, 0.25881904510, 0, 1] 

2.Write a function to create the vector 4-array for the 
spherical cap bounded by 36oN in declination 
• the answer is [0, 0, 1, 0.41221474770752686] 

3.Write a function to create the vector 4-array for the 
spherical cap that represents a circular field drawn on 
the surface of the sphere at (α,δ) = (5h,36oN) with a 
radius of θ = 1o 
• the answer is [0.20938900596, 0.78145040877, 

0.58778525229,0.00015230484]

Python tasks



4.Write a function that outputs your three spherical caps 
to a file in the following format:  
 
1 polygons  
polygon 1 ( 3 caps, 1 weight, 0 pixel, 0 str):  
  -0.96592582629 0.25881904510 0 1  
  0 0 1 0.41221474770752686  
  0.209389006 0.781450409 0.587785253 0.00015230  
 
 

hint:  
hdr = ‘this text will go first’  
np.savetxt(filename, [cap1,cap2], fmt='%1.16f', 
header=hdr, comments='', newline='\n  ')  
 
The reason for the formatting should become clear  
next week

Python tasks


