
Mangle

Intersections of multiple caps

• By intersecting multiple spherical  
caps it is possible to construct general  
shapes on the surface of the sphere

• So, e.g., a “square” field bounded  
by (αmin’, αmax’, δmin’, δmax’) can  
be represented by the intersection  
of 4 spherical caps

• One cap bounded by αmin’, one by αmax’ etc.
• But, for this sort of scheme, it is sometimes necessary

to represent the sphere on the other side of the cap
• This is achieved simply in our convention by flipping

the sign of (1-h) so that (x,y,z,(1-h)) → (x,y,z,-(1-h))

δ’, the bound in δ

(α,δ) = (0o,90o)

1-h

-(1-h)

Intersections of multiple caps - Polygons

• Consider the red area in the diagram
• It consists of CAP1 and CAP2, but 

we want the intersection of  
everything that is in CAP2 with 
everything that is not in CAP1

• We can create everything that is  
not in CAP1 by flipping the sign of  
the cap constraint (the cap size)

• So, if CAP2 is represented by (x2,y2,z2,1-h2) and CAP1
by (x1,y1,z1,1-h1), then the red area is represented by the
intersection of (x2,y2,z2,1-h2) and (x1,y1,z1,-(1-h1))

• We will refer to shapes represented by the intersection
of multiple caps as polygons

(α1,δ1)

θ1
CAP1

CAP2

θ2

(α2,δ2)

• Software called Mangle has been developed to apply
the spherical cap formalism. The astroconda software
stack has a basic Python implementation that can be
imported with import pymangle (e.g. see the syllabus
links)

– pip install pymangle
• Recall that pip is for managing Python package

installations within a conda environment. i.e. your
conda environment will have pip installed in it to
manage Python packages for that one environment.

• You can also install astroconda (see the syllabus
links), which includes pymangle, but it is much slower.

Basic Python implementation of Mangle

• Mangle expects input files with caps combined into
polyons in the following format:  
 

1 polygons  
polygon 1 (3 caps, 1 weight, 0 pixel, 0 str):  
 -0.96592582629 0.25881904510 0 1  
 0 0 1 0.41221474770752686  
 0.209389006 0.781450409 0.587785253 0.00015230

• The first line states how many polygons are in the file
note that polygon(s) and cap(s) are always plural!

• In the second line, caps specifies how many caps are
in the polygon and str lists the area of the polygon in
steradians (which you can leave as 0 str for now)

Basic Python implementation of Mangle

• Note that if you wanted to create multiple polygons
you could specify several blocks of caps, e.g.  
 

2 polygons  
polygon 1 (3 caps, 1 weight, 0 pixel, 0 str):  
 -0.96592582629 0.25881904510 0 1  
 0 0 1 0.41221474770752686  
 0.209389006 0.781450409 0.587785253 0.00015230  
polygon 2 (2 caps, 1 weight, 0 pixel, 0 str):  
 0.087155742747 -0.9961946980 0 1  
 0.785012134782 0.0686796625 0.615661475 1

• A collection of multiple polygons is typically referred
to as a mask (or, occasionally, a footprint)

• The weight allows polygons to be weighted differently
when creating catalogs of random coordinates (a
weight=1 polygon would contain twice as many
random points as a weight=0.5 polygon)

Basic Python implementation of Mangle

Please save all the plots you create as .png files in Git!
1.Use your circle_cap function from the previous lecture

to create two caps, one of radius θ=5o centered at (α,δ) =
(76o, 36o), which I will call cap 1 and one of radius θ=5o

centered at (α,δ) = (75o, 35o), which I will call cap 2
2.Create a file containing these two caps as a single

polygon in the Mangle format. The file should be called
intersection.ply. Create a second Mangle file containing
these two caps as two different polygons (i.e. polygon 1
should contain cap 1 and polygon 2 should contain cap
2). This second file should be called bothcaps.ply
• Note that the Mangle convention is to use an

extension of .ply for files containing polygons

Python tasks

3.import pymangle and read in each of your masks, e.g.
• minter = pymangle.Mangle(“intersection.ply”)
then use genrand (see the syllabus link) to populate
each mask with 10,000 random points. Plot the random
points corresponding to each mask on a single plot with
each mask’s points plotted in a different color
• do you understand exactly how and why the masks

are different? If not, then ask Jessie
4.Consider the file intersection.ply and its mask (minter)

• Flip the sign of the constraint on cap 1 and read it in
as a mask (mflip1)

• Plot minter and mflip1 on one plot in different colors

Python tasks

5.Now make the constraint on cap 1 positive again, and
instead flip the constraint on cap 2
• Read in this new mask as mflip2
• Plot minter, mflip1 and mflip2 in different colors on a

single plot
• Do you understand what happened when the caps’

constraints became negative? If not, then ask Jessie
• How would the plot you’ve just made compare to the

mask in the file bothcaps.ply?
6.Make both cap constraints in intersection.ply negative.

Read in this mask and generate 1 million random points
in it. This will take a suspiciously short amount of time.
• Plot the random catalog. Does this mask make sense?

Python tasks

