
General Masking

• There are 3 main purposes to Mangling the sphere.
The two purposes we will study are

– to determine which objects in the sky lie within an
arbitrary region defining a survey footprint

– to populate that region with a catalog of random
points to model the conditions of an ideal survey

• These two purposes are often referred to as “masking”
or “creating a mask”

• The third purpose is to determine the area of the
intersecting polygons used to model surveys

– this requires a little extra math (applied to caps)
– Areas are stored in a Mangle polygon as str

Masking and Astronomical Surveys

• The spherical cap formalism  
makes it easy to determine if points  
lie in intersections of polygons

• Consider whether a point (x,y,z)  
lies in the cap (xc,yc,zc,1-hc)

• Remember, 1-hc=1-cosθc where θc is  
the “angular radius” on the sphere  
codified by the cap’s size (called the cap constraint)

• Take the dot product between the cap and the point
– (xc,yc,zc).(x,y,z) = |1||1|cosθbetween cap and point vectors

• Now if θ > θc then the point lies outside of the cap and
if θ < θc then the point lies within the cap

Spherical Cap Constraints
(xC,yC,zC,1-hC)

CAP

(x,y,z)

• Algorithms to determine if points lie in spherical caps
are very rapid, because they only require linear algebra

– i.e. it is never necessary to use trigonometric
functions (because if θ > θc then cosθ < cosθc)

• In the pymangle version of Mangle that we installed
last week, any mask (and by extension, any cap or
polygon) can be tested against a set of (RA, dec)
coordinates using contains,e.g.

– mask = pymangle.Mangle(“file.ply”)
– ra = np.array([47.3, 152.7, 23.3, 280.4])
– dec = np.array([-11.2, 12.2, 88.7, -39.2])
– good = mask.contains(ra, dec)

Spherical Cap Constraints

• In the Areas on the Sphere and HEALPix notes, I
provided equations for populating the sphere in equal-
area angular projection with random points

• To construct such a random catalog in a collection of
polygons, we could populate the entire sphere in
equal-area projection and then use mask.contains to
find just the points that lie in the mask

• pymangle implements a similar method for making
random catalogs in masks called genrand

• We already used genrand in the previous lecture, e.g.
– mask = pymangle.Mangle(“file.ply”)
– ra_rand, dec_rand = mask.genrand(10000)

Random Catalogs

• One part of a Mangle polygon I have yet to discuss in
detail is the weight

• The reason for different weights is that when genrand
creates a random catalog it will create proportionately
more random points in polygons with more weight

• This has real applications to astronomy. Consider
taking spectroscopy of a plate of targets in the sky, for
which good spectra are obtained for 80%

• If that plate is modeled as a polygon then weight=0.8
• The weight of a second plate might also be 0.8 but the

weight of the intersection of the two plates should be
higher, as more objects can be observed in the overlap

Random Catalogs and weights

1.Create a polygon in a Mangle file consisting of 4 caps
that define a “lat-lon rectangular” field bounded in RA
by 5h and 6h and in declination by 30o and 40o
• Use the ra_cap and dec_cap functions you wrote as

part of the Spherical Caps lecture
• In the Areas on the Sphere and HEALPix notes, I

showed that the area of a “lat-lon rectangle” in
steradians is (α2radians - α1radians)(sinδ2 - sinδ1)

• Calculate the correct str area for your polygon, add
it to the file, and give the polygon a weight of 0.9

2.Add a second polygon to your file for a field bounded
in RA by 10h and 12h and in declination by 60o and 70o
• add str for this polygon, and give it a weight of 0.2

Python tasks

3.Create a random catalog of 1 million objects distributed
over the entire sphere
• See, e.g., the Areas on the Sphere and HEALPix notes

4.Use mask.contains to determine which points in your
random catalog lie within the “lat-lon rectangular”
polygons in your file
• plot the entire random catalog, and over-plot just the

points that lie within the polygons in a different color
5.Use mask.genrand to generate 10,000 random points

within your polygons
• Is the density of random points that genrand creates

the same in each of your polygons? Why or why not?

Python tasks

