Flagging Bad Data

Flagging Bad Data in Imaging

e Observations are never perfect,
due to observing conditions

e.g., bad seeing, moonlight,
the solar wind, clouds,
airplanes, cosmic rays,
telescope malfunctions etc.

e Further, even good observations
can be rendered unusable by
astronomical sources

€.g., very bright objects can
create diffraction spikes,
double or “ghost” images
saturated CCD pixels etc.

Flagging Bad Data in Imaging

e As many as half of the observations in the SDSS may
be spurious because of these effects

e To attempt to allow users to correct for “bad” 1imaging
data, most surveys have sets of “flags™ that can be
employed to discard spurious objects

e The common way to express flags is as a bitmask

e Say you have a collection of 4 flags that represent,
respectively, a saturated pixel (0), a diffraction spike
(1), terrible seeing (2) and a ghost image (3). For an
object that contains a saturated pixel and ghosting:

flag = (1x29)+(0x21H)+(0x2%)+(1x23) =9

Flagging Bad Data in Imaging

e In the SDSS sweeps files the flags are recorded in the
columns “OBJC FLAGS” and “OBJC FLAGS2”

e A description of the meanings of the flags is in the file

/ASTRSE020/runnoe/weekll1/sdssMaskbits.par under
maskbits OBJECTI and maskbits OBJECT?2

e Each flag 1s also described in the SDSS Schema (see
the syllabus link and search for photofiags)

note that in the online SDSS catalog archive
server, the two sets of flags are combined 1nto one

e The sweeps files contain flag information both for the
imaging combined across a// filters (as OBJC_FLAGS
and OBJC FLAGS2) and for the imaging in each
individual (ugriz) band (as FLAGS and FLAGS?)

Flagging Bad Data in Imaging

e To use the flags in the sweeps files, the following
sequence of commands will be common:

flag = 2**9
w = np.where((objs] “OBJC FLAGS”] & flag) == 0)
objs = objs[w]
e Where, here, I’ve used OBJC FLAGS but for the
second set of flags I’d use OBJC FLAGS?2

e Here, I’ve assumed that we’ve read the sweeps file into
a structure called objs and that we want to recover the
objects that do not have the flag set (== 0)

e The value of “flag” would be looked up for the flag of

interest (e.g. “CR” for a cosmic ray would be flag =
2**] 2 for the column OBJC FLAGS)

Other useful bitmasks

e Beyond flags, the SDSS (and other current surveys) use
bitmasks to capture a range of information

e Because the SDSS scans the sky multiple times, objects
can be detected multiple times (or can be flagged as
spurious due to only appearing in one scan)

e The best observation of each real object 1s stored as
SURVEY PRIMARY (2**8) in the RESOLVE STATUS
column of the sweeps. To recover PRIMARY objects, e.g.

flag = 2**§
w = np.where((objs][“RESOLVE STATUS”] & flag) = 0)
obj = objs[w]

e Often, it takes a great deal of trial-and-error to determine

which flags should be applied, but you will almost always
want to restrict to SURVEY PRIMARY

Python tasks

1.Find the closest galaxy in the SDSS sweep files to the
point (a,0) = (336.4388°,-0.8343°)

e When looking up only a few objects (and not matching
to WISE forced photometry), it will be quicker to use
the sdss sweep circle.py code in my week 10 directory
rather than using sdss sweep data index.py

e Galaxy-like 1mages can be retrieved by passing
(objtype=‘gal to sdss sweep circle.py)

2.1s this galaxy a set of blended 1mages? Does it contain
any pixels that are saturated? 1s 1t blended or saturated 1n
every band or just in the overall combined image?

e Find the image of this galaxy in the SDSS Navigator
1ool. Does it look saturated? Is it even a galaxy?

Python tasks

3.Last lecture, you wrote code to separate spectroscopically
confirmed quasars and stars using ugriz color cuts. Let’s
see how well that would work 1n a real imaging survey

e retrieve every point source (“objtype=star”) in the
SDSS sweeps files imaging that lie within a 3° radius of
the coordinate (a,0) = (180°,30°). We’ll call these objs

* For a circular area, you can use sdss_sweep_circle to

retrieve the obyjs.. but in this case, also send all=True so
we can 1llustrate the use of SUR VE Y PRIMARY

 restrict the objs in magnitude to i < 20

e coordinate-match the objs to the gsos-ral80-dec30-
rad3.fits file in my week 10 git directory, to find which
i < 20 objects in SDSS 1maging are quasars

Python tasks

4. Apply the color-cut code you wrote last lecture to the objs
to determine which of them are likely to be quasars

* What 1s the area of the circle of radius 3° within which
we are considering the 0bjs?

e (G1ven that spectroscopy 1s the only way to know for
sure 1f an object 1s a quasar or a star, how many spectra
would we have to obtain per sq. deg. to determine the
number of quasars per sq. deg. that your code recovers?

e Find flag cuts on the objs that retain > 90% of known
quasars (the quasars from my gsos-ral80-dec30-
rad3.fits file) but that reduce the number of spectra per
sq. deg. we’d have to obtain to confirm new quasars

e (SURVEY PRIMARY would be a good place to start...)

