
Likelihood Functions and 
Markov Chain Monte Carlo 



• In the last few lectures, we’ve been working with χ2 

goodness-of-fit tests 
• The origin of χ2 is the assumption that data are drawn 

from a normal distribution. The probability density 
function (PDF) for the Gaussian distribution is 
(equations courtesy of wikipedia): 

• How the χ2 test works should be clear from the exponent 
– we sum the deviations from the expectation value 

(the theoretical mean) to test whether a set of data 
is distributed normally  
 

The normal distribution



• The PDF for the distribution gives us the likelihood of 
an individual data point (x) given a model distribution 
(i.e. given a Gaussian with some mean and variance) 

• To test if a set of data is likely for a particular model, we 
would determine the likelihood of each datum, and 
multiply them to determine an overall likelihood. The 
most probable model would maximize this likelihood:  
 

• In the χ2 test maximizing the product of probabilities 
becomes minimizing the sum across the exponent values 

– i.e. try a model (µ,σ), compare to each datum (xi), 
sum the difference, find the minimum χ2

The likelihood function



• Given the sum in the exponent term, it is typically easier 
to rewrite this likelihood as the log of the likelihood 
(with no loss of generality as maximizing a log-
likelihood is the same as maximizing a likelihood) 

• So, finding the best model (finding the probability of the 
data for the best model) is equivalent to maximizing: 

• I’ve switched back to using the more familiar data 
(“observed” O) and model (“expected” E) notation from 
the χ2 lecture notes

The log likelihood function



Bayes’ theorem

• Bayes’ theorem famously relates the conditional 
probability of A given that B is true to that of B given 
that A is true and the individual probabilities of A and B: 
 
  

• If we wish to determine the best model given our data, 
we could rewrite this as: 

• The probability of the data given the model is simply 
the likelihood function from the previous slides 

• P(model) is the prior probability of the model in the 
absence of any new data



• For model inference, Bayes’ theorem is sometimes 
written as: 
 

• Where the Posterior Probability is the probability of the 
model (given the data) and the P(data) term is encoded 
in the proportionality, due to the fact that the equation 
has to equal 1 (as we are determining a probability) 

• For log-likelihoods, the right-hand-side of this equation 
could be written as: 

• The likelihood (for a normal distribution) is as given a 
few slides ago 

Bayes’ theorem and the likelihood function



• Last week when we were considering goodness-of-fit 
and the χ2 statistic our model of choice was always a line 
given by: 
 

                                y = mx + b 

• For such a model, the log of the likelihood function (the 
probability of the data given the model) would be: 

• Check this equation makes sense, given the derivations 
on the first few slides of this lecture ... and note, again 
the similarity with χ2 for part of this equation

Log-likelihood function for a straight line model



Uninformative Priors

• The prior acts to reweight the likelihood based on our 
existing knowledge. Any justifiable choice can be made 

• Remember, the prior looks like a probability, so it must 
exist in the range 0 to 1 

• The most basic acceptable choice is to use a flat or 
uninformative prior, which is basically setting the 
acceptable fitting range (i.e. the parameter space you 
believe you’d have to search to find the best model) 

• For instance, if I only wanted to fit an intercept in the 
range 0 < b < 10 then my prior would be: 
 

              0  for b > 10 or b < 0          1 for 0 < b < 10



• Note the large number of assumptions that appear to be 
entering into this method of fitting a model 

– We assumed a Gaussian PDF to derive the likelihood 
function (we could have assumed any PDF) 

– We have the option to choose priors in any form 
• These assumptions were also being implicitly made for 
χ2 fitting. The difference is that the Bayesian approach is 
making these assumptions explicit 

• The Bayesian framework allows model inference to be 
made with a wider range of assumptions but the 
Gaussian-based likelihood function I have derived, 
combined with flat priors will always be as good as χ2

Model Assumptions



• For χ2 we made a grid of values at some resolution, and 
then found the minimum χ2 for the values in that grid 

• This is inefficient unless we have some a priori 
knowledge about the correct grid resolution  

• MCMC samplers instead walk through probability space 
with steps appropriate to the probability density, to 
efficiently map the posterior probability, P(model|data) 

• Another reason walking is more practical than using a 
grid is that if the probability space is correctly traced, 
then there is no need to mess around with, e.g., ∆χ2 

– A 68% contour will enclose 68% of the probability, 
thus naturally mapping out a 68% confidence limit 

Markov Chain Monte Carlo



• A common MCMC algorithm for mapping out 
probability space is Metropolis-Hastings: 

• Select initial parameter values 
– e.g., for a straight line choose m and b values 

• Move away from those values using a proposal function 
– a typical choice is to move away using a Gaussian 

(so for a straight line shift m by ∆m and b by ∆b 
according to a Gaussian centered on m and b) 

– Note that for a Gaussian proposal you get to choose 
the standard deviation. A rule of thumb is that if 
your step is efficient then ultimately ~30% of 
proposals will be accepted (see next slide)

The Metropolis-Hastings Algorithm



• Move away from those values using a proposal function 
– The proposal function does not have to be Gaussian, 

you can choose any symmetric proposal 
– A wrong choice of proposal function does not ruin 

the method, it just makes the sampler inefficient 
• For the old and the new model parameters, determine 

the posterior (the log likelihood + the log prior) and find 
R = Pnew/Pold (which is lnR = lnPnew - lnPold in log space) 
– If R > 1 always accept the new parameters 
– If R < 1 accept the new parameters with probability R 
– Check how often the new parameters are accepted. If 

this is far from ~30%, change the proposal step size

The Metropolis-Hastings Algorithm



• The values of the (log) posterior probability, the (log) 
likelihood and of each parameter should be recorded 

– this series of parameter values is called the chain 
• Chain values corresponding to the maximum posterior 

probability represent the model that best fits the data 
– In the absence of a prior these would be called the 

maximum likelihood values 
• The, e.g., 68% (or, e.g., 95%) of values enclosing the 

maximum posterior probability are the confidence limits 
– note these drop naturally out of the method ... as we 

have been sampling probability space, so, where the 
space is more probable we have more values

The Metropolis-Hastings Algorithm



1.In my week15 directory in Git is a file of (x,y) data called 
“line.data”. Each of the 10 columns corresponds to an x 
bin of 0 < x < 1, 1 < x < 2, 2 < x < 3 up to 9 < x < 10. 
Each of the 20 rows is a y measurement in that x bin 

• Read the file and find the variance (σi; remember to pass 
ddof=1) and mean (yi) of the y data in each bin (i) of x 

2.The data have been drawn from a straight line of the form 
y = mx + b and scattered according to a Gaussian 

• Write a function that calculates the (ln) posterior 
probability for a straight line model for the data when 
passed values of m and b 

• Use “flat” priors that correspond to the extent of the m, 
b space that needs to be sampled (e.g. 0 < b < 10)

Python tasks


