
Git Primer Page 1 of 6

Git Primer
Jessie C. Runnoe

Introduction

In software development, version control is a class of tools designed to help a team manage
changes to code over time. The development of codes using a common user repository is a
feature of modern work in large collaborations – it is partly how large surveys such as the Sloan
Digital Sky Survey (SDSS) have been able to be so successful.

Git, Mercurial, and SubVersion (SVN) are a few examples of common version control soft-
ware. They share the practice of keeping track of how codes change as the development team
fixes bugs and implements new features. Beyond that, there are some general differences in
workflow (a consistent recipe for using version control software to accomplish tasks).

SVN maintains a central repository called the trunk from which users check out a working
copy. They can then pull changes from other users to update their local copy and commit
any subsequent changes that they make. With SVN, the user does not necessarily have
the entire repository stored locally.

Mercurial and Git are distributed version control systems, meaning that each user actually
clones the entire repository locally. All copies of the repository are created equally, so
users can push and pull their changes among the distributed system as necessary.

Another way that Mercurial and Git are different from SVN is that they actually track the
changes, rather than the files themselves, which saves space.

Mercurial and Git have many similarities, but we will be using Git in this course because it is
by far the most commonly used version control system in the world.

In this class, all work will be submitted1 through Git. For instance, homeworks will be issued
before the final lecture of a given week and will be due by uploading code and/or documents
to our Git repository two weeks later at the start of class (i.e. by Tuesday at 09:30AM).

Every document or piece of code in the class Git repository will be available for everyone
in the class to use and edit2. If you are worried about other students copying your homework
(and other) submissions, note that a simple “diff” in UNIX, and/or logging via “git diff”, will
make it obvious to me if another student has directly copied your submission. In fact, frequently
uploading your code to the Git repository as you write and develop it will make it far harder
for your work to be copied than uploading it in a single submission. It is always possible to
return a Git repository to an earlier state, so any unwanted changes can be easily redacted.

Version Control with Git

Think of a Git repository as a collaborative directory to which multiple people have access. The
directory is special in that it tracks how it changes with time, and logs information on who

1However, work won’t be graded through Git, as FERPA frowns on students seeing each other’s grades.
2Including this one, if you’d like to edit it.



Git Primer Page 2 of 6

has made the changes. That way, it’s possible for any user who has a clone of the repository
to track changes and use anything in the repository. Git is not intended for tracking large data
files, so think code and documents.

Git has multiple common workflows, we will use a centralized one that is appropriate for
small teams. The recipe to track a change in Git with this workflow is to select files that you
want to track to a staging area. Then, you write a message summarizing the work you have
done and commit the changes. Each repository has branches; the main/default one is called
the master. Although you won’t need to for this workflow, Git users can branch off from the
master to organize work efforts (e.g., to implement a feature), and track changes locally. The
part of a branch that is selected is called the head and is by default the tip of the master branch,
although this can change in more advanced workflows.

The Class Repository

Our directory – our Git repository – sits on my home directory on tomservo and is called
“repos/bare/S25/ASTR8080”. This repository will be cloned onto all of your classmates com-
puters in a way that can interact with your own. Furthermore, this remote directory is “bare”,
meaning there is no associated filesystem attached to it. That means that you will clone the
class repository from tomservo, but you should do this on your own laptop and not while you
are logged into tomservo. If you want access to the class repository on tomservo, then you will
need to clone it there as well.

Our class repository is structured as follows. Beneath the parent directory, which is called
ASTR8080/, I have put a directory runnoe/. This directory is divided into weeks of the course
(week1, week2, etc.) I will put any useful PDF notes (such as this one) into these directories
for the relevant week. The same documents will be linked from the course website. You should
similarly create a directory that is your name and beneath it you will create directories for
each week of the course (week1, week2, etc.) in which you will work and post your homework
submissions:

ASTR8080/yourusername
ASTR8080/yourusername/week1

To clone our entire remote repository to your computer, first create an ASTR8080/ directory
and change into it, then issue this command:

git clone your_username@vpac01.phy.vanderbilt.edu:/home/runnojc1/repos/bare/S25/ASTR8080

Note that you should insert your own username instead of “your_username”, but the second
instance of my username in the path should remain. This command clones everything in the
remote ASTR8080/ repository and stores it on your local machine in the directory that you are
in. If you look in the directory ASTR8080/runnoe/week1 you will even see the original of this
document (gitprimer.pdf)! Now create a working directory with your name, plus a directory for
your week1 tasks:

cd ASTR8080/



Git Primer Page 3 of 6

mkdir runnoe
cd runnoe/
mkdir week1
cd week1/
touch .gitkeep
git add .gitkeep
git commit -m "Added empty week1 working dir with dummy keep file."

Note that Git won’t let you add an empty directory to your repository, so adding an empty
.gitkeep file is the industry standard workaround. This commit has only been made to your
local version of the repository but has not yet been communicated to your classmates via our
remote repository on tomservo. In our workflow, it is considered good practice to make sure
your repository is completely up to date relative to the remote repo before you push any of
your own changes to it. So first, evaluate whether you are out of date:

git fetch
git status

If your local repository is out of date due to changes made by your classmates, git status
will tell you. The next step is to pull the latest state of the remote repository to your local
clone and merge any changes:

git pull

The workflow that I will describe for the class will make merging changes very simple since
you will never be editing the same files as your classmates. Thus, merging should largely be
handled by Git and will be pretty straightforward by following the prompts. Now you are ready
to push your changes to the bare repository:

git push origin master

This will send your updated week1 directory to the bare repository where your classmates
will be able to pull the changes. Experiment with this workflow until you are comfortable using
it and understand the outputs from git log and git status. Ask if you have questions.

For Windows Users

Windows has a couple of default behaviors that are different than unix-based operating systems
that matter for git. The first of these is that it uses a different marker for the endings of lines.
If you do not manually configure this on your Windows machine, it will cause git to always
think that every line of a file has changed because the invisible line ending is different. To
avoid this in Windows, make sure you are using a git install in your Windows Subsystem for
Linux (WSL) and Visual Studio Code (VSCode) installation. This will behave like other unix
operating systems and avoid the issue.

The second issue to be aware of is that Windows will distinguish between lowercase and
capitalized letters in filenames (e.g., files named readme and Readme are different). This is not
the case in unix-based operating systems. Thus, you should not use capitalized letters to create
distinct filenames because it will confuse the class repository.



Git Primer Page 4 of 6

Ignoring Files

You can use a .gitignore file to tell git extensions, directories, or filenames that you want it
to habitually ignore. Git will ignore them in the sense that (a) the git status command will
not print them as files you may want to stage and (b) if you try to git add one, you will see
a warning. It is good practice to use a .gitignore file, but it will be especially useful in this
class because Mac and Python both automatically create files that are problematic to track. I
have added a .gitignore to our repository, find and inspect it. Also create your own in your
working directory, adding any temporary files that your text editor of choice uses.

Be warned that though some common text editors have Git functionality embedded in them
in a way that seems very handy, they also sometimes include behaviors you don’t expect. This
can include staging files that should not go into the repository. Strategic use of your .gitignore
file can mitigate this issue.

Common Commands
git status
This command prints the status of your repository to the screen. It will tell you about files
that are added, tracked, missing, or renamed as well as the state of your local repository clone
relative to the remote.

git fetch
This command queries the remote class repository to see whether there are any changes since
your last pull. It does not download new changes. Issue this in conjunction with git status
and git pull before pushing any changes to the remote repository.

git pull
This command downloads and merges changes to your local directory to mirror the current
copy of the remote repository. Issue this command in combination with git fetch often.

git push
This command sends your commit history and changes to the remote repository. Always issue
git fetch and git pull to merge any changes before pushing your own updates to the remote.

git add anewfile
This adds a file to the staging area to be included in the next commit. Issue it every time you
want to commit a file. Use git status to find modified files that are not staged for a commit.

git commit -m “this is what I did”
This command commits everything in the staging area to the local repository. It will be com-
mitted to the directory in the repository that mirrors the directory that you are in locally. The
-m switch commits a comment that will be logged by Git. Always include a comment.

git log
This command lists all of the changes to the repository. Use git log –oneline for a compact,



Git Primer Page 5 of 6

easy-to-read version. To see recent changes, pipe it to more at the command line (e.g., git log
| more). To see changes somebody specific made, grep that person’s username at the command
line (e.g., git log | grep runnoe -A 3).

git ls-files
This command lists what is in the repository. This is a useful command as you may expect
to find a file in the Git repository when, in fact, you forgot to add or commit that file. This
command, then, will allow you to see what is actually in the repository as compared to what
is in your local directory.

git diff revA..revB
This command shows the differences in the repository between commits with hashes A and B.
This allows you to track changes that people have made. One use, e.g., would be to see who
has added what to a LATEX document since you went to bed last night.
git checkout revA
You can find revA, the SHA-1 hash for a revision of interest, with a git log command. It
will be the very long string of characters. This command will then take your repository to a
“detached head” state, where you can look around and inspect the state of the repository at
that revision. It is not a good idea to edit anything in this situation, but it is useful for looking
around (I use it to grade your work at the time it was submitted). You can return to the working
repository with git checkout master.

git checkout filename
If git status reveals that a file has been modified, this command will return it to the state
of the previous commit. This is useful if you modify a file (e.g., a Jupyter notebook just by
opening it) and want to return it to its original state.

If you find yourself using many other different commands, feel free to add them to this
document.

Good Practice with Git

There are various examples of good Git etiquette for our workflow to help people share docu-
ments and code:

1. Always git fetch and then git pull before committing anything new to the directory.
This way, if somebody else commits something new just before you, then you won’t lose
track of which version of the directory you’re working with.

2. Git is for storing code and documents, not large data files. Large data files will make the
repository slow to operate. If you have a large data file, keep it local to your machine and
share it with people in other ways.

3. Git requires good coding practices. Place comments within the body of your code carefully
using your initials. So, my code will have many comment lines of the form, e.g., # JCR



Git Primer Page 6 of 6

this line of code does this. When writing documents collaboratively, make similar
comments if you make major changes to the document.

4. When you commit a new document using the git commit command, always provide a
comment as in git commit -m "this is what I did".

Class Rules for Git

Do not abuse the collaborative power of Git to plagiarize other student’s work. You will learn
nothing by copying other people in full. Here are some specific rules designed to allow us to
share a collaborative workflow in this course:

1. Do not edit code written by another member of the class without their permission. The
reason for this is twofold: a) it maintains separate spaces for each student to submit
their independent work and b) it facilitates a workflow that makes merging changes to
the repository straightforward. Editing other people’s code that is placed in any directory
that contains their name (i.e. ASTR8080/theirname/weekx/somecode) will be considered
grounds for failing the course.

2. It is permissible to read and to make a copy of any member of the class’s code after it
has been graded as a homework submission...so, in week 2, it will be permissible to raid
people’s week1 directory. But, use other people’s code by making a copy of it in your
personal directory or linking to it in full and always reference where it came from. Do
not edit it in their directory. Editing other people’s code that is placed in any directory
that contains their name (i.e. theirname/weekd/somecode) will be considered grounds
for failing the course. If you have questions about whether it is okay to look at your
classmate’s code in specific situations, just ask!

3. Provide your own homework solutions. Do not copy each other’s work. It is very easy
for me to check in Git whether your homework submission greatly resembles another
student’s submission. Plagiarizing each other’s homework submissions will be considered
grounds for failing the course. Feel free to discuss homework problems and issues with
each other but write your own submissions sitting by yourself.


	Git Primer
	Introduction
	Version Control with Git
	The Class Repository
	For Windows Users
	Ignoring Files
	Common Commands
	Good Practice with Git
	Good Practice with Git


