Survey Observations

Coordinates on the Sphere

- Any position on the surface of a sphere (such as the Earth or the night sky) can be expressed in terms of the angular coordinates latitude and longitude
- Latitude runs from -90° to 90°
- -90° is a sphere's south pole (South Pole on Earth, South Celestial Pole in the sky)
- 90° is a sphere's north pole (North Pole on Earth, North Celestial Pole in the sky)
- 0° is a sphere's equator (the Equator on Earth, the Celestial Equator in the sky)

The Equatorial Coordinate System

- Longitude runs from 0° to 360° (-180° to 180° on the Earth)
- Astronomers choose longitude to increase to the right (to the east; counter-clockwise looking down on the north pole)
- On the Earth 0° of longitude is chosen to be the Greenwich Meridian
- In the sky 0° of longitude is chosen to be the Vernal Equinox, the first day of spring
- In this equatorial coordinate system used in astronomy longitude is right ascension and latitude is declination

The Earth turns around an axis through its poles

This star ($90^{\circ}{ }^{\circ}$ S declination) visible only from Southern Hemisphere

Declination is static with time

- The Earth turns around its axis through the (geometric) poles
- Declination remains the same with time ($\delta=35^{\circ} \mathrm{N}$ is always the same circle in the sky)
- For instance, Nashville is at $35^{\circ} \mathrm{N}$ latitude on the Earth, so a star above your head (at zenith)
 is always at a coordinate of $35^{\circ} \mathrm{N}$ declination in the sky, no matter the time of day or year
- Note, though that the right ascension at zenith changes with time as the Earth rotates from west to east

Local Sidereal Time and Hour Angle

- At any given time, the right ascension at zenith is called your local mean sidereal time
- The difference between your local mean sidereal time and the actual right ascension of a star of interest is called the hour angle where

$-\mathrm{HA}=\mathrm{LMST}-\alpha_{\text {star }}$
- A star starts east of your meridian, with -HA passes through your meridian with zero HA, then moves west of your meridian, with +HA

Right ascension is usually expressed in hours

- Because RA is temporal, it is often expressed in hours, not degrees...an hour is 15°
- You will see RA written in hours as, e.g., 23:12:11 or $23^{\mathrm{h}} 12^{\mathrm{m}} 11^{\mathrm{s}}$ and declination written as, e.g. $-40^{\circ} 12^{\prime} 13^{\prime \prime}$
- In this format, the m (') and $s(")$ are minutes and seconds of time (of arc) where a m is $1 / 60$ of an hour (' is $1 / 60$ a degree) and a s (') is $1 / 60$ of a minute (')
- To convert a dec of, e.g., $-40^{\circ} 12^{\mathrm{m}} 13^{\mathrm{s}}$ to degrees:

$$
-\delta(\text { degrees })=-1 \times(40+(12 / 60)+(13 / 3600))
$$

- To convert an RA of, e.g., $23^{\mathrm{h}} 12^{\mathrm{m}} 11^{\mathrm{s}}$ to degrees:

$$
-\alpha(\text { degrees })=15 \times(23+(12 / 60)+(11 / 3600))
$$

Airmass

- It becomes progressively more difficult to observe stars (and other astronomical objects) as you look through more of the Earth's atmosphere or "air"
- There are two reasons you look through more air:
- As you move north or south in latitude on the Earth from a star's declination being at zenith, the star moves south or north of your zenith

As time changes, a star at your zenith moves west of your zenith

- Airmass codifies how much atmosphere you must observe through, and so roughly the factor of extra time you need for a given observation

Airmass

- If z is the angle between your zenith and the star (or other object) at which you are pointing your telescope, then a simple model of airmass (X) is: $X=1 / \cos (z)$
(better models are linked from the course links page)
- So, if you are in Nashville, at $35^{\circ} \mathrm{N}$, and a star at your LMST has $\delta=12^{\circ} \mathrm{N}$, then the star is 23° south of zenith and $X=1 / \cos \left(23^{\circ}\right) \sim 1.08$
- If you wait 2 hours and 50 minutes after a star passes through zenith to observe it, then the hour angle is $2^{\mathrm{h}} 50^{\mathrm{m}} 0 \mathrm{~s}=42.5^{\circ}$. The star is then 42.5° west of zenith and $X=1 / \cos \left(42.5^{\circ}\right) \sim 1.36$
- Both latitude and time effect airmass. These effects can be easily combined in Cartesian coordinates (see later).

The Earth orbits the Sun

Sidereal Time

- Relative to distant background ("fixed") stars, rather than the Sun, the Earth makes one full extra rotation per year
- Keeping time using stars rather than the Sun, a clock runs about 4 minutes slower... (365.25/366.25) x $24 \times$ 60 mins per day rather than 24×60 mins per day
- The clocks we read in everyday life are solar clocks (to keep local noon when the Sun is on or near the meridian)

Distant star
on meridian

Sidereal Time

- Basically, a star will rise 4 minutes earlier each night
- 1 night after tonight, you must observe 4 minutes earlier for the same star to be on your meridian
- each month, you must observe 2 hours earlier for the same star to be on you meridian (a given RA is on your meridian 2 hours earlier each month)
- Thus, the airmass of a star changes through the year as the star becomes easier or harder to observe
- The zero point of RA is set to be the Vernal Equinox (\sim March 20-21), when the Sun will have RA $=0{ }^{\mathrm{h}} 0^{\mathrm{m}} 0^{\mathrm{s}}$, (and so $12^{\mathrm{h}} 0^{\mathrm{m}} 0^{\mathrm{s}}$ will be up in the middle of the night)
- On \sim April $20, \sim 14^{\mathrm{h}}$ is up in the middle of the night

Precise timekeeping and MJD

- Given the different time systems, leap years etc. it is useful to have a calendar with which to express exact times of observations (referred to as epochs)
- In astronomy we use a calendar based on the original Julian calendar (established by Julius Caesar)
- Julian Date (JD) is a count in days from 0 at noon on January the 1st in the year -4712 (4713 BC)
- Modified Julian Date (MJD) is a count in days from 0 midnight on November 17 in the year 1858
- The modification just makes the numbers smaller
$-\mathrm{MJD}=\mathrm{JD}-2400000.5$

Python tasks

1. Read course links for: astropy.coordinates, astropy.time
2.Use Skycoord from astropy.coordinates to convert a dec in $\left({ }^{\circ},{ }^{\prime},{ }^{\prime}\right)$ format to decimal degrees. Do the same for an RA in hms format

- Check carefully that these conversions agree with my equations from earlier slides
- Use dir() to see internal SkyCoord functions that will let you print RA in hms, hours, and deg.
3.Use Time.now() from astropy.time to obtain today's MJD and today's JD
- Check that JD and MJD are related as is indicated by the equation on the previous slide

Python tasks

4. Use numpy.arange and the output from Time.now() to list some days near today's MJD
5.The SDSS telescope is at Apache Point Observatory,

APO's longitude is $105^{\circ} 49^{\prime} 13.5^{\prime \prime} \mathrm{W}$, latitude is $32^{\circ} 46^{\prime} 49.30^{\prime \prime} \mathrm{N}$, and altitude is 2788 m . Use astropy.coordinates.EarthLocation to set APO's location, e.g., something like:

- $A P O=$ EarthLocation(lat=,lon=, height=)

6. What is the airmass from APO towards an object with α $=05 \mathrm{~h} 46 \mathrm{~m}, \delta=+28 \circ 56 \mathrm{~m}$ at 11 PM tonight and at 2 AM three months ago. Plot airmass vs. UTC for a good time to observe this object.

- see hints on calculating airmass on the links page

