Distances on the Sphere

Angular distances on the sphere

- A few lectures ago, we discussed a problem where a star is 42.5° to the west of zenith (due to the Earth's rotation) and 23° south of zenith (due to the star's declination)
- I asked how we might combine this to find the airmass of the star
- airmass depends on the zenith angle
- To proceed one would determine the (x,y,z) Cartesian coordinates 42.5° west of zenith, the ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) coordinates 23° south of zenith, and then use the dot product to find the angle between those vectors

Angular distances and the dot product

- For instance, say zenith is at $\left(\alpha_{1}, \delta_{1}\right)=$ $\left(20^{\mathrm{h}} 24 \mathrm{~m} 59.9^{\mathrm{s}}, 10^{\circ} 6^{\prime} 0^{\prime \prime}\right)=\left(306.25^{\circ}, 10.1^{\circ}\right)$
- If $\left(\alpha_{2}, \delta_{2}\right)$ is 42.5° west and 23° south of $\mathrm{x}_{1, \mathrm{y}_{1}, \mathrm{Z}_{1}}$ zenith then $\left(\alpha_{2}, \delta_{2}\right)=\left(263.75^{\circ},-12.9^{\circ}\right)$
- So, $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)=(0.5821462,-0.7939473,0.1753667)$ $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)=(-0.10612625,-0.96896677,-0.22325012)$
- Now, by definition of the dot product
$-\mathbf{a . b}=|\mathbf{a}||\mathbf{b}| \cos \left(z_{\text {ang }}\right)$
- where $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right) \cdot\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)=\mathrm{x}_{1} \mathrm{X}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{Z}_{1} \mathrm{Z}_{2}$
- and $\left|\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)\right|=\left(\mathrm{x}_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}+\mathrm{z}_{1}{ }^{2}\right)^{1 / 2}$
- The zenith angle $z_{\text {ang }}$ is then straightforward to find

Angular distances and the dot product

- I have cast this problem in terms of finding the airmass for arbitrary observations
- But this is a very general problem for astronomical observations
- Another common variation would be to find the angular distance between two stars (or other astronomical objects) with different (α, δ)
- The simplest approach will always be to convert to Cartesian coordinates and then use the dot product to find the angle between those coordinates
- Or, to write code to do this in the general case (or use code that someone else has written)

Multiple distances on the sphere

- Finding multiple distances on the sphere can quickly become difficult
- consider a survey of 1 million galaxies, and you need the distances between all of them
- this is (1million x 999999)/2 distances !
- Often, you won't care about all $\sim 5 \times 10^{11}$ distances
- you may only want to measure the distances between objects that are close in the sky
- say within a $1^{\circ} \mathrm{x} 1^{\circ}$ field of a telescope
- This is where tree schemes and indexing schemes become very useful

The problem, in a nutshell

Find all pairs of points that are separated by $<100 \mathrm{~m}$

The quad tree

The quad tree

The quad tree

- Each point in a pixel is assigned the pixel name - so, the 3 points in pixel 22 are all labeled as 22
- As you progress hierarchically down the tree to the next "level", you quadruple the number of pixels
- and the label or "index" grows by one integer
- Eventually, each point has a unique index (is in its own pixel) and you can stop building the tree
- if empty pixels are then discarded, you have exactly as many pixels as points
- The pixel size is known at each level, so if only points separated by, e.g., 100 m , are needed, then only some subset of points in adjacent pixels need to be considered

The quad tree

- Tree structures are desirable for a number of reasons
- Recursive bisection is a very rapid algorithm
- The indexing is simple and easy to store as an integer
- Because each dimension is always being halved, the area and/or dimensions of each pixel are easy to track
- which means that the separation between pixels at each level is easy to calculate
- Several sophisticated tree structures are used for indexing in astronomy, with one goal being to rapidly find adjacent points in a large amount of data
- The Hierarchical Triangular Mesh (HTM) is one such scheme (a full explanation is linked from the syllabus)

Coordinate matching with astropy.coordinates

- A useful routine in astropy that uses a tree scheme to rapidly perform distance measurements on the sphere is the search_around_sky procedure
- search_around_sky uses a k-dimensional (or k-d) tree to pixelate the sky
a k-d tree, essentially, recursively bisects a dataset perpendicular to each coordinate axis (e.g. bisects in Cartesian x, y, z in turn; see the syllabus link)
- bisections occur close to the median data point along a coordinate axis, so that, on each split, about half of the data ends up in each "child" pixel
- Coordinate matching is easily my single most-used routine for data manipulation in large surveys

Angular separations between sets of points

- One common use of separation is to take two sets of object coordinates in arrays [ra1], [dec1] and [ra2], [dec2] and find angular distances between the objects
- The syntax for this case is, e.g.
- ral, dec1 = [8.,9.,10.] *u.degree,[0.,0.,0.]*u.degree
- ra2, dec $2=$ [18.,19.,21.] *u.degree,[0.,0.,0.] *u.degree
$-c 1=\operatorname{SkyCoord}($ ral, decl, frame $=$ 'icrs')
$-c 2=\operatorname{SkyCoord}(r a 2, \operatorname{dec} 2$, frame $=$ 'icrs')
- c1.separation(c2)
- The result, here is $<$ Angle [10., 10., 11.] deg>
- because [8.,0.] is separated from [18.,0.] by 10° and [10.,0.] is separated from [21.,0.] by 11° etc.

Matching a set of points to another set of points

- You can also match all of a set of points to all of a second set using SkyCoord's search_around_sky method
- The syntax for search_around_sky is, e.g.
- ral, decl = [8.,9.,10.] *u.degree,[0.,0.,0.] *u.degree
- ra2, dec2 = [18.,19.,21.]*u.degree,[0.,0.,0.]*u.degree
$-c 1=\operatorname{SkyCoord}($ ral, decl, frame = 'icrs')
$-c 2=\operatorname{SkyCoord}(r a 2$, dec2, frame $=$ 'icrs')
- id1, id2, d2, d3 = c2.search_around_sky(c1, 9.1*u.deg)
- The result is $i d 1=[1,2,2]$ and $i d 2=[0,0,1]$
- because [9.,0.] is separated from [18.,0.] by $<9.1^{\circ}$ and [10.,0.] is separated from [18.,0.] by $<9.1^{\circ}$ and [10.,0.] is separated from [19.,0.] by $<9.1^{\circ}$

Matching one point to a set of points

- A second use of separation is to take a single point in the sky and find all objects within some distance of it
- This is useful, e.g., if you are following-up a "circular" area on the sky with a spectroscopic plate
- Say I'm placing a 1.5° radius plate at $\alpha=20^{\circ}, \delta=0^{\circ}$ and I want to know which objects in the sky will fall on it:
- ral, dec1 $=$ [20.] *u.degree,[0.]*u.degree
- ra2, dec $2=[18 ., 19 ., 21 .]^{*}$ u.degree,[0.,0.,0.]*u.degree
- cl = SkyCoord(ral, decl, frame='icrs’)
$-c 2=\operatorname{SkyCoord}(r a 2$, dec2, frame $=$ 'icrs')
$-w=n p . w h e r e(c 1 . s e p a r a t i o n(c 2)<1.5 *$ u.degree)
- Here, w is $\operatorname{array}([1,2])$ because the $1 s t$ and $2 n d$ points are within 1.5° of $\alpha=20^{\circ}, \delta=0^{\circ}$

Python tasks

1. Use astropy.coordinates.SkyCoord to convert $\left(\alpha_{1}, \delta_{1}\right)=$ (263.75 $\left.{ }^{\circ},-12.9^{\circ}\right)$ and $\left(\alpha_{2}, \delta_{2}\right)=\left(20^{\mathrm{h}} 24 \mathrm{~m} 59.9^{\mathrm{s}}, 10^{\circ} 6^{\prime} 0^{\prime \prime}\right)$) to Cartesian coordinates, and hence use the dot product to determine the angle between these coordinates

- Use SkyCoord's separation method to check your result

2. Use $n p$.random to populate the area of the sky between α $=2^{\mathrm{h}}$ and $\alpha=3^{\mathrm{h}}$ and $\delta=-2^{\circ}$ and $\delta=2^{\circ}$ with two different sets of 100 random points $\left(\alpha_{1}, \delta_{1}\right)$ and $\left(\alpha_{2}, \delta_{2}\right)$

- plot your two sets of points, in different colors and using different symbols

3. Use the search_around_sky method to find which of your points are within 10^{\prime} of each other (remember 1^{\prime} is $1^{\circ} / 60$)

- plot those points on the same plot in a third color

Python tasks

4. Combine your two sets of points into one array (e.g., $r a=$ $n p \cdot$ append(ra1,ra2) and dec $=n p \cdot$ append(dec1,dec2)

- plot them all again using the same symbol and color

5. You are observing objects in your mock data set using a spectroscopic plate of 1.8° radius that is to be placed at $(\alpha, \delta)=\left(2^{\mathrm{h}} 20^{\mathrm{m}} 5^{\mathrm{s}},-0^{\circ} 6^{\prime} 12^{\prime \prime}\right)$

- Use SkyCoord's separation method to find all of the points that will fall on your plate and plot this subset of points (on the same plot as before) in a different color
- Remember the usefulness of $n p$.where

