Areas on the Sphere and HEALPix

Areas on the sphere

- I've provided you with a lot of options for determining distances on the sphere...but what about areas?
- The area of the entire (unit) sphere is 4π steradians or about $41252.96 \mathrm{deg}^{2}$
- One way to keep track of the area of regions of the sphere is to just subdivide it
half the sphere has an area of 2π steradians (41252.96/2 deg^{2}), a quarter of the sphere has an area of π steradians (41252.96/4 deg ${ }^{2}$), etc.
- Or, spherical calculus tells us the area of a zone (the surface area of a spherical segment)

Areas on the sphere

- The area of a zone (on the unit sphere) is $2 \pi h$ in steradians (see the link to Wolfram MathWorld on the syllabus)
- The area of a cap is then $2 \pi(1-h)$. The spherical cap will come in very
 useful in the next lecture
- The area of a "rectangle drawn on the sphere," which is a fraction of a zone, is $f 2 \pi h$ where f is the fraction in this "lat-lon rectangle"
- A "lat-lon rectangle" as I'll call it (it doesn't have an "official" name) is bounded by lines of longitude (or Right Ascension) and latitude (or declination)

Areas on the sphere

- From the coordinate discussion of a few lectures ago, we can easily find the h in $f 2 \pi h$

$$
-h=z_{2}-z_{1}=\sin \delta_{2}-\sin \delta_{1}
$$

- $2 \pi f$ depends on the fraction of the full circle covered by the α range of interest (in radians $2 \pi f$ is
 just the difference in α):

$$
-2 \pi f=\left(\alpha_{2}{ }^{\text {radians }}-\alpha_{1}{ }^{\text {radians }}\right)
$$

- From $f 2 \pi h$, the area of a lat-lon rectangle bounded by α and δ is...

$z=r \sin \delta$
$=\sin \delta$
$-\left(\alpha_{2}{ }^{\text {radians }}-\alpha_{1}{ }^{\text {radians }}\right)\left(\sin \delta_{2}-\sin \delta_{1}\right)$

Areas on the sphere - a note on spherical caps

- By definition, a spherical cap is the same area no matter where it cuts the sphere
- The radius of a cap may cover
 a different span in α but it is the same physical radius, and so corresponds to the same physical area
- Note the expression for the area of a spherical cap:

$$
\begin{aligned}
& -2 \pi(1-h)=2 \pi\left(1-z_{2}\right)=2 \pi\left(1-\sin \delta_{2}\right) \quad \text { in steradians } \\
& -=2 \pi\left(1-\sin \delta_{2}\right) *(180 / \pi)^{2} \quad \text { in } \operatorname{deg}^{2}
\end{aligned}
$$

- This is very close to (but not quite the same as) a cap area being $\pi \theta^{2}$ where θ is the cap radius drawn on the sphere
- Try, comparing, e.g., $\theta=1^{\circ}$ and $\delta_{l}=89^{\circ}$ to $\theta=60^{\circ}$ and $\delta_{2}=30^{\circ}$. From here on, we'll write $1-\sin \delta_{2}$ as $1-\cos \theta$

Areas on the sphere

- So, in steradians, the area of a lat-lon rectangle bounded by Right Ascension α and declination δ is
$-\left(\alpha_{2}{ }^{\text {radians }}-\alpha_{1}{ }^{\text {radians }}\right)\left(\sin \delta_{2}-\sin \delta_{1}\right)$
- Then, the area of a lat-lon rectangle bounded by α and δ is given by...
$-(180 / \pi)(180 / \pi)\left(\alpha_{2}{ }^{\text {radians }}-\alpha_{1}{ }^{\text {radians }}\right)\left(\sin \delta_{2}-\sin \delta_{1}\right)$
...in square degrees
- Or, in a more compact form useful when working with astronomical coordinates (for which α is usually expressed in degrees)
$-(180 / \pi)\left(\alpha_{2}{ }^{\text {degrees }}-\alpha_{1}{ }^{\text {degrees }}\right)\left(\sin \delta_{2}-\sin \delta_{1}\right)$

Hierarchical, Equal Area, iso-Latitude Pixelization

- Areas on the sphere become yet more complex if they are not simple astronomical fields bounded by lines of Right Ascension and declination
- So, a number of tricks have been developed to keep track of areas in large surveys of the sky
- One such trick, HEALPix, relies on the idea from a few slides ago ($1 / 2$ the sphere is 2π steradians, $1 / 4$ is π steradians, etc.) and is a genuine quad-tree scheme
- Go to the syllabus' JPL HEALPix primer link
- read Discretization of Functions on the Sphere (pay particular attention to Figure 2)
- also read Geometric and Algebraic Properties...

Hierarchical, Equal Area, iso-Latitude Pixelization

- Nside expresses the resolution of the grid. For Nside resolution you get $4 *$ Nside- 1 isolatitude rings and $12 *$ Nside ${ }^{2}$ pixels.
- The base-resolution has 12 pixels in 3 rings around the poles and equator. Nside is the number of divisions on a base-resolution pixel to reach the desired

Nside $=1,2,4,8$ resolution.

Hierarchical, Equal Area, iso-Latitude Pixelization

- Pixels have equal area and are centered on lines of constant latitude.
- There are two indexing schemes for pixels, ring and nested. The ring scheme is the default.

Hierarchical, Equal Area, iso-Latitude Pixelization

- Install the Python version of HEALPix in astroconda
- conda config --add channels conda-forge conda install healpy
- It can be called and used, e.g., as follows:
- import healpy; healpy.ang2pix(nside,theta,phi)
- theta and phi are in radians, $p h i=$ RA and theta $=[\pi / 2$ (radians) - dec $]$ i.e. theta $=0$ is the north pole ($\mathrm{dec}=90^{\circ}$)..see the wikipedia definition linked from the syllabus
- The most useful commands for our purposes are linked from the syllabus under HEALPix Pixelisation related functions

Python tasks

1. Generate a random set of 1000000 points on the surface of the sphere with coordinates ra, dec (α, δ) degrees that correctly populate the sphere equally in area, recall:

- $r a=360$. *(random(1000000)) and
- $\operatorname{dec}=(180 / n p . p i) * n p . a r c s i n(1 .-r a n d o m(1000000) * 2$.
- plot your points, note density near the poles and equator.

2. Use ang2pix with n side $=1$ to determine which pixels each of your ra, dec points lie within at the nside $=1$ level of the HEALpix hierarchy

- convert $r a$, dec to radians and take $90^{\circ}(\pi / 2$ radians) dec so that ra becomes phi and dec becomes theta
- What is the area of an nside $=1$ HEALpix pixel?

Python tasks

3. Use the numpy.histogram command to print out how many of your points lie in each HEALpix pixel

- Is the answer consistent with pixels being equal-area?
4.numpy.where will return the indices that obey a logic command. So, if you've called your array of pixels "pix" then $w=n p$.where (pix == 2) will make w a list of indices for which phi, theta (or ra, dec) lie in pixel 2
- Plot ra, dec using matplotlib marker 'k.' and overplot $r a[w], d e c[w]$ for those points in pixel 2, using a different color. Repeat for pixel 5 and pixel 8

5. Use ang2pix with $n s i d e=2$ to map your ra,dec points to HEALpix at the next level of the hierarchy

- Which nside $=2$ pixels lie inside pixel 5 at n side $=1$?

