Spherical Caps

The Spherical Cap

- Spherical caps are useful models for representing arbitrary regions on the surface of the sphere
- A spherical cap is centered at a specific, Right Ascension and declination (α, δ)
- The height (1-h) of a spherical cap corresponds to some radius (θ) on the surface of the unit sphere
- By intersecting multiple spherical caps it is possible to construct general shapes on the surface of the sphere

Vectorial representation of the spherical cap

- As we know, spherical coordinates can be represented in Cartesian form ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) by the vector that points in the direction of (α, δ)
- Previously, for a point on the surface of the sphere we noted that $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1$
- For a cap instead of a point, the size of the cap (which controls θ, the radius drawn on the surface of the sphere) can be controlled by $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{h}^{2}$
- Thus, one simple way to represent a cap is the 4 -array given by $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $\mathrm{h} . .$. we will choose the convention ($\mathrm{x}, \mathrm{y}, \mathrm{z}, 1-\mathrm{h}$) as it is used by Mangle (next class' focus)

Vectorial representation of the spherical cap

- Caps can be represented by (x,y,z,1-h)
- (x, y, z) is easy to determine, $i t$'s just the Cartesian conversion from (α, δ) (e.g., using SkyCoord)
- For astronomers, the natural way to think about the cap size is the radius drawn on the surface of the sphere (θ from the last 2 slides, the radius we would put in search_around_sky)
- As shown in the diagrams to the right, $1-\mathrm{h}=1-\cos \theta$
- $\operatorname{So},(\mathrm{x}, \mathrm{y}, \mathrm{z}, 1-\mathrm{h}) \equiv(\mathrm{x}, \mathrm{y}, \mathrm{z}, 1-\cos \theta)$

The area of a spherical cap

- Recall that the area of
a lat-lon rectangle that runs from 0 to 2π in RA is $2 \pi\left(z_{2}-z_{l}\right)$ where

$$
z_{2}-z_{1}=\sin \delta_{2}-\sin \delta_{1}
$$

- For a spherical cap $\delta_{2}=90^{\circ}$ and the area is then $2 \pi\left(1-z_{1}\right)$
- But z_{l} here is just what I called $|z|$ or h in previous slides
- So, the area of a spherical cap, $2 \pi(1-\cos \theta)$ is easy to determine from the vector form for a cap
- which is $(x, y, z, 1-\cos \theta)$

Caps bounded by Right Ascension

- So far we've discussed the general form, a "circle of radius θ on the surface of the sphere"
- Other main astronomy uses are fields bound by RA or dec
- Bounds in RA (α ') map out a great circle on the sphere...a
 spherical cap that slices off exactly half of the sphere
- So, the vector representation of a bound in RA is
$-(\mathrm{x}, \mathrm{y}, \mathrm{z}, 1-\mathrm{h})=\left(x y z\left(\alpha^{\prime}+90^{\circ}, 0^{\circ}\right), 1\right)$
- By $x y z()$ I mean "conversion to Cartesian coordinates"

Caps bounded by Declination

- Bounds in dec $\left(\delta^{\prime}\right)$ map out lines of $\quad(\alpha, \delta)=\left(0^{\circ}, 90^{\circ}\right)$ constant latitude on the sphere...a cap that slices off increasingly less of the sphere as δ^{\prime} increases
- The $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ vector direction is always towards the north pole
- The size of the cap is given by $\mathrm{h}=\sin \delta$
- So, the vector representation of a bound in declination is

$$
-(\mathrm{x}, \mathrm{y}, \mathrm{z}, 1-\mathrm{h})=\left(x y z\left(0^{\circ}, 90^{\circ}\right), 1-\sin \delta^{\prime}\right)
$$

Python tasks

1. Write a function to create the vector 4 -array for the spherical cap bounded by 5^{h} in Right Ascension

- the answer is $[-0.96592582629,0.25881904510,0,1]$

2. Write a function to create the vector 4 -array for the spherical cap bounded by $36^{\circ} \mathrm{N}$ in declination

- the answer is $[0,0,1,0.41221474770752686]$

3. Write a function to create the vector 4 -array for the spherical cap that represents a circular field drawn on the surface of the sphere at $(\alpha, \delta)=\left(5^{\mathrm{h}}, 36^{\circ} \mathrm{N}\right)$ with a radius of $\theta=1^{\circ}$

- the answer is [0.20938900596, 0.78145040877, $0.58778525229,0.00015230484]$

Python tasks

4. Write a function that outputs your three spherical caps to a file in the following format:

1 polygons
polygon 1 (3 caps, 1 weight, 0 pixel, 0 str):
$-0.965925826290 .2588190451001$
0010.41221474770752686
0.2093890060 .7814504090 .5877852530 .00015230
hint:
$h d r=$ 'this text will go first'
np.savetxt(filename, [cap1,cap2], $f m t=1 \% 1.16 f^{\prime}$, header $=h d r$, comments $=$ ', newline $=\prime \mid n$ ')

The reason for the formatting should become clear next week

