
Flagging Bad Data

• Observations are never perfect, 
due to observing conditions

– e.g., bad seeing, moonlight, 
the solar wind, clouds,  
airplanes, cosmic rays, 
telescope malfunctions etc.

• Further, even good observations 
can be rendered unusable by 
astronomical sources

– e.g., very bright objects can 
create diffraction spikes,  
double or “ghost” images 
saturated CCD pixels etc.

Flagging Bad Data in Imaging

• As many as half of the observations in the SDSS may
be spurious because of these effects

• To attempt to allow users to correct for “bad” imaging
data, most surveys have sets of “flags” that can be
employed to discard spurious objects

• The common way to express flags is as a bitmask

• Say you have a collection of 4 flags that represent,
respectively, a saturated pixel (0), a diffraction spike
(1), terrible seeing (2) and a ghost image (3). For an
object that contains a saturated pixel and ghosting:

– flag = (1x20)+(0x21)+(0x22)+(1x23) = 9

Flagging Bad Data in Imaging

• In the SDSS sweeps files the flags are recorded in the
columns “OBJC_FLAGS” and “OBJC_FLAGS2”

• A description of the meanings of the flags is in the file  
/ASTR8080/runnoe/week11/sdssMaskbits.par under
maskbits OBJECT1 and maskbits OBJECT2

• Each flag is also described in the SDSS Schema (see
the syllabus link and search for photoflags)

– note that in the online SDSS catalog archive
server, the two sets of flags are combined into one

• The sweeps files contain flag information both for the
imaging combined across all filters (as OBJC_FLAGS
and OBJC_FLAGS2) and for the imaging in each
individual (ugriz) band (as FLAGS and FLAGS2)

Flagging Bad Data in Imaging

• To use the flags in the sweeps files, the following
sequence of commands will be common:

– flag = 2**9

– w = np.where((objs[“OBJC_FLAGS”] & flag) == 0)

– objs = objs[w]

• Where, here, I’ve used OBJC_FLAGS but for the
second set of flags I’d use OBJC_FLAGS2

• Here, I’ve assumed that we’ve read the sweeps file into
a structure called objs and that we want to recover the
objects that do not have the flag set (== 0)

• The value of “flag” would be looked up for the flag of
interest (e.g. “CR” for a cosmic ray would be flag =
2**12 for the column OBJC_FLAGS)

Flagging Bad Data in Imaging

• Beyond flags, the SDSS (and other current surveys) use
bitmasks to capture a range of information

• Because the SDSS scans the sky multiple times, objects
can be detected multiple times (or can be flagged as
spurious due to only appearing in one scan)

• The best observation of each real object is stored as
SURVEY_PRIMARY (2**8) in the RESOLVE_STATUS
column of the sweeps. To recover PRIMARY objects, e.g.

– flag = 2**8

– w = np.where((objs[“RESOLVE_STATUS”] & flag) != 0)

– obj = objs[w]

• Often, it takes a great deal of trial-and-error to determine
which flags should be applied, but you will almost always
want to restrict to SURVEY_PRIMARY

Other useful bitmasks

1.Find the closest galaxy in the SDSS sweep files to the
point (α,δ) = (336.4388o,-0.8343o)

• When looking up only a few objects (and not matching

to WISE forced photometry), it will be quicker to use
the sdss_sweep_circle.py code in my week 10 directory
rather than using sdss_sweep_data_index.py

• Galaxy-like images can be retrieved by passing
(objtype=‘gal’ to sdss_sweep_circle.py)

2.Is this galaxy a set of blended images? Does it contain
any pixels that are saturated? Is it blended or saturated in
every band or just in the overall combined image?

• Find the image of this galaxy in the SDSS Navigator

Tool. Does it look saturated? Is it even a galaxy?

Python tasks

3.Last lecture, you wrote code to separate spectroscopically
confirmed quasars and stars using ugriz color cuts. Let’s
see how well that would work in a real imaging survey

• retrieve every point source (“objtype=star”) in the

SDSS sweeps files imaging that lie within a 3o radius of
the coordinate (α,δ) = (180o,30o). We’ll call these objs

• For a circular area, you can use sdss_sweep_circle to
retrieve the objs...but in this case, also send all=True so
we can illustrate the use of SURVEY_PRIMARY

• restrict the objs in magnitude to i < 20

• coordinate-match the objs to the qsos-ra180-dec30-

rad3.fits file in my week 10 git directory, to find which
i < 20 objects in SDSS imaging are quasars

Python tasks

4.Apply the color-cut code you wrote last lecture to the objs
to determine which of them are likely to be quasars

• What is the area of the circle of radius 3o within which
we are considering the objs?

• Given that spectroscopy is the only way to know for
sure if an object is a quasar or a star, how many spectra
would we have to obtain per sq. deg. to determine the
number of quasars per sq. deg. that your code recovers?

• Find flag cuts on the objs that retain > 90% of known
quasars (the quasars from my qsos-ra180-dec30-
rad3.fits file) but that reduce the number of spectra per
sq. deg. we’d have to obtain to confirm new quasars

• (SURVEY_PRIMARY would be a good place to start...)

Python tasks

