
Fitting A Line: χ2



• Fitting a model to data 
is a crucial scientific 
technique


• Even simply fitting a line  
is deceptively difficult, 
as inference relies on  
subjective choices and 
assumptions by definition


• One of the most common  
approaches adopted for fitting models to data is use of the 
χ2 statistic, introduced by Pearson in 1900 


• χ2 is imperfect, and, among other things, using χ2 to derive 
confidence intervals for bad fits can be problematic

Fitting a Line: χ2 

Credit: http://dan.iel.fm/emcee/current/



• The basic χ2 approach is: 

• bin your data into i = 1, 2, 3...n bins on the x-axis


– note that even bin size is a subjective choice!

• In those x-bins, derive “observed” (“O”) y-values and 

their variances (i.e. σ2, the square of their standard 
deviations assuming Gaussian-distributed noise)


• For your model fit, derive your “expected” (“E”) y-
values in each x-bin (e.g., for fitting a straight-line 
model these would be generated by y = E = mx + b)


• Calculate χ2 = Σi (Oi - Ei)2/σi2
 for a grid of your model 

parameters (e.g., for a straight line create a grid in m and 
b) and record χ2(m,b) for each model fit

Fitting a Line: χ2 



• To determine the best fit  
model, simply find the set of  
model parameters that correspond  
to the smallest value of χ2  

(which we’ll call χ2min)

• A critical value associated  

with statistical fitting, and 
with the χ2 goodness-of-fit approach, is the number of 
degrees of freedom, which we’ll call dof


• Typically, if you are fitting for n bins of x-values and you 
are fitting k model parameters then dof = n-k-1


• The -1 is because we estimated one parameter set already 
from the data, which was the mean y-values in the x-bins
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• To determine confidence limits (CLs) for your best model, 
calculate the probability that χ2 for each set of model 
parameters exceeds a chosen value (P(χ2) > α). Note that if  
P(χ2min)<α then your model is rejected as a fit to the data


• A typical (“1σ”) acceptance level is α = 0.32; P(χ2) > 0.32 
means that the χ2 corresponding to those model parameters 
falls within the most probable 68% of the χ2 distribution


• The fraction of the χ2 distribution > some χ2 value is given 
by scipy.stats.chi2.sf(χ2,dof). For χ2 values enclosed within 
your CLs, scipy.stats.chi2.sf(χ2(m,b),dof) >α


• By finding the contour for which scipy.stats.chi2.sf(χ2,dof) 
=α, you determine the CLs on your parameters

χ2 hypothesis testing and confidence intervals



• Using χ2 as a goodness-of-fit statistic for confidence limits 
(CLs) depends on many assumptions, such as

– were your initial errors really normally distributed? 

Only Gaussian noise properties will result in a χ2 

statistic drawn from the χ2 distribution

– is your model a good fit? If your best-fit model is 

almost rejected, then your CLs become tiny

• To circumvent this, it is common to derive ∆χ2 (∆χ2=χ2-
χ2min) which is, itself, distributed according to χ2 (So, 
∆χ2=1 gives α = 0.32 CLs for a 1-parameter fit, ∆χ2=2.3 
for a 2-parameter fit, ∆χ2=3.5 for a 3-parameter fit etc.)

– Try scipy.stats.chi2.sf(1,1) and scipy.stats.chi2.sf(2.3,2)


• We’ll improve on this method next week

Some χ2 issues and the somewhat better ∆χ2 



1.In my week13 directory in Git is a file of (x,y) data called 
“line.data”. Each of the 10 columns corresponds to an x 
bin of 0 < x < 1, 1 < x < 2, 2 < x < 3 up to 9 < x < 10. 
Each of the 20 rows is a y measurement in that x bin

• Read in the file using np.loadtxt and find the mean and 

variance of the y measurements in each bin of x using 
np.mean and np.var


• Note that np.mean and np.var can take an axis and that 
you need to pass ddof=1 to np.var, because the mean 
has already been estimated once from the data


2.The data have been drawn from a straight line of the form 
y = mx + b and scattered according to a Gaussian

• Find a range of m and b values that could fit the data 

(e.g., by plotting some y = mx + b model lines) 

Python tasks



3.Determine χ2 (= Σi (Oi - Ei)2/σi2) for a grid of m and b that 
corresponds to your range of values from above


4.Plot each of your parameters (m and b) against χ2 and 
determine the best-fit model parameters 

• the best-fit parameters correspond to the minimum χ2


5.For each pair of parameters in your grid of m and b 
determine the 68% (α = 0.32 as I defined it) and 95%  
(α = 0.05) confidence limits for your parameters from ∆χ2 

• remember that you’re fitting ∆χ2 for 2 parameters


6.Plot the data with standard deviations (not variances!) as 
error bars. Add your best-fit model and the 68% and 95% 
confidence limits as lines on the plot

• np.std may be useful (don’t forget to pass ddof=1)

Python tasks




