
Fitting A Line: χ2

• Fitting a model to data
is a crucial scientific
technique

• Even simply fitting a line
is deceptively difficult,
as inference relies on
subjective choices and
assumptions by definition

• One of the most common
approaches adopted for fitting models to data is use of the
χ2 statistic, introduced by Pearson in 1900

• χ2 is imperfect, and, among other things, using χ2 to derive
confidence intervals for bad fits can be problematic

Fitting a Line: χ2

Credit: http://dan.iel.fm/emcee/current/

• The basic χ2 approach is:
• bin your data into i = 1, 2, 3...n bins on the x-axis

– note that even bin size is a subjective choice!
• In those x-bins, derive “observed” (“O”) y-values and

their variances (i.e. σ2, the square of their standard
deviations assuming Gaussian-distributed noise)

• For your model fit, derive your “expected” (“E”) y-
values in each x-bin (e.g., for fitting a straight-line
model these would be generated by y = E = mx + b)

• Calculate χ2 = Σi (Oi - Ei)2/σi2
 for a grid of your model

parameters (e.g., for a straight line create a grid in m and
b) and record χ2(m,b) for each model fit

Fitting a Line: χ2

• To determine the best fit
model, simply find the set of
model parameters that correspond
to the smallest value of χ2

(which we’ll call χ2min)
• A critical value associated

with statistical fitting, and
with the χ2 goodness-of-fit approach, is the number of
degrees of freedom, which we’ll call dof

• Typically, if you are fitting for n bins of x-values and you
are fitting k model parameters then dof = n-k-1

• The -1 is because we estimated one parameter set already
from the data, which was the mean y-values in the x-bins

Fitting a Line: minimum χ2 and degrees of freedom
χ2

m

χ2min

mbest

• To determine confidence limits (CLs) for your best model,
calculate the probability that χ2 for each set of model
parameters exceeds a chosen value (P(χ2) > α). Note that if
P(χ2min)<α then your model is rejected as a fit to the data

• A typical (“1σ”) acceptance level is α = 0.32; P(χ2) > 0.32
means that the χ2 corresponding to those model parameters
falls within the most probable 68% of the χ2 distribution

• The fraction of the χ2 distribution > some χ2 value is given
by scipy.stats.chi2.sf(χ2,dof). For χ2 values enclosed within
your CLs, scipy.stats.chi2.sf(χ2(m,b),dof) >α

• By finding the contour for which scipy.stats.chi2.sf(χ2,dof)
=α, you determine the CLs on your parameters

χ2 hypothesis testing and confidence intervals

• Using χ2 as a goodness-of-fit statistic for confidence limits
(CLs) depends on many assumptions, such as
– were your initial errors really normally distributed?

Only Gaussian noise properties will result in a χ2

statistic drawn from the χ2 distribution
– is your model a good fit? If your best-fit model is

almost rejected, then your CLs become tiny
• To circumvent this, it is common to derive ∆χ2 (∆χ2=χ2-
χ2min) which is, itself, distributed according to χ2 (So,
∆χ2=1 gives α = 0.32 CLs for a 1-parameter fit, ∆χ2=2.3
for a 2-parameter fit, ∆χ2=3.5 for a 3-parameter fit etc.)
– Try scipy.stats.chi2.sf(1,1) and scipy.stats.chi2.sf(2.3,2)

• We’ll improve on this method next week

Some χ2 issues and the somewhat better ∆χ2

1.In my week13 directory in Git is a file of (x,y) data called
“line.data”. Each of the 10 columns corresponds to an x
bin of 0 < x < 1, 1 < x < 2, 2 < x < 3 up to 9 < x < 10.
Each of the 20 rows is a y measurement in that x bin
• Read in the file using np.loadtxt and find the mean and

variance of the y measurements in each bin of x using
np.mean and np.var

• Note that np.mean and np.var can take an axis and that
you need to pass ddof=1 to np.var, because the mean
has already been estimated once from the data

2.The data have been drawn from a straight line of the form
y = mx + b and scattered according to a Gaussian
• Find a range of m and b values that could fit the data

(e.g., by plotting some y = mx + b model lines)

Python tasks

3.Determine χ2 (= Σi (Oi - Ei)2/σi2) for a grid of m and b that
corresponds to your range of values from above

4.Plot each of your parameters (m and b) against χ2 and
determine the best-fit model parameters
• the best-fit parameters correspond to the minimum χ2

5.For each pair of parameters in your grid of m and b
determine the 68% (α = 0.32 as I defined it) and 95%
(α = 0.05) confidence limits for your parameters from ∆χ2
• remember that you’re fitting ∆χ2 for 2 parameters

6.Plot the data with standard deviations (not variances!) as
error bars. Add your best-fit model and the 68% and 95%
confidence limits as lines on the plot
• np.std may be useful (don’t forget to pass ddof=1)

Python tasks

