Fitting A Line: X^{2} with correlated data

Fitting a Line: χ^{2} with covariance

- Previously, we discussed the basic χ^{2} statistic and how it can be used to test whether a model fits data and, if so, to find confidence limits on the model parameters
- Although there are some issues with χ^{2} it is simple, quick and often defensible
- One issue with χ^{2} as it was presented in the last set of class notes is that it assumes that bins of data are independent
- In other words, if you have a bin x_{1} and a bin x_{7} the basic χ^{2} statistic assumes that these bins are not correlated, and have no knowledge of the patterns of data in the other
- There are many examples in astronomy where this is not true (consider periodic light curves for exoplanet crossings, for instance)

Variance and covariance

- We are typically used to dealing with variances. We write variances as σ^{2}, and think of σ as the standard deviation, without really attaching significance to the squared part of the variance term
- If we have two bins, a bin x_{1} and a bin x_{7} we calculate and write the variances as $\sigma_{1}^{2}=\sigma_{1} \sigma_{1}$ and $\sigma_{7}^{2}=\sigma_{7} \sigma_{7}$
but the term σ_{17} is also meaningful. It is called the covariance and it characterizes how correlated are the data in bin x_{1} and $\operatorname{bin} \mathrm{x}_{7}$ (i.e. whether it is reasonable to assume that they are independent)
- If a matrix is constructed with row $1,2 \ldots n$ corresponding to $\sigma_{1}, \sigma_{2} \ldots \sigma_{\mathrm{n}}$ and column $1,2 \ldots n$ corresponding to $\sigma_{1}, \sigma_{2} \ldots \sigma_{\mathrm{n}}$ then the diagonal elements are the variances and the offdiagonal elements are the covariances

The covariance matrix

- If variance (for n samples of normally distributed data) is

$$
-\sigma_{\mathrm{i}}^{2}=1 /(\mathrm{n}-1) \Sigma_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}\right)^{2}
$$

- Then the covariance matrix is

$$
-\mathrm{C}_{\mathrm{ij}}=1 /(\mathrm{n}-1) \Sigma_{\mathrm{i}, \mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}\right)\left(\mathrm{x}_{\mathrm{j}}-\mu_{\mathrm{j}}\right)
$$

- where i, j are corresponding samples in different bins
- Which looks like the following matrix (for $n=5$)

$$
\begin{array}{lllll}
\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} & \sigma_{14} & \sigma_{15} \\
\sigma_{21} & \sigma_{2}^{2} & \sigma_{23} & \sigma_{24} & \sigma_{25} \\
\sigma_{31} & \sigma_{32} & \sigma_{3}^{2} & \sigma_{34} & \sigma_{35} \\
\sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_{4}^{2} & \sigma_{45} \\
\sigma_{51} & \sigma_{52} & \sigma_{53} & \sigma_{54} & \sigma_{5}^{2}
\end{array}
$$

The correlation matrix

- If each term in the covariance matrix is divided by the two corresponding standard deviations, the resulting matrix is 1 along the diagonal elements and runs from -1 to 1 on the off-diagonal elements
- For instance $\sigma_{11}=\sigma_{1}^{2}$ becomes $\sigma_{1}{ }^{2} / \sigma_{1} \sigma_{1}$
- σ_{12} becomes $\sigma_{12} / \sigma_{1} \sigma_{2}$
- σ_{41} becomes $\sigma_{41} / \sigma_{4} \sigma_{1}$
- This matrix, called the correlation matrix is a good indicator of whether the bins of data are independent
- the correlation matrix values are 0 for independent bins, 1 for highly correlated bins and -1 for highly anti-correlated bins

χ^{2} with covariance

- Just as we formulated the χ^{2} statistic using variances (for normally distributed data) we can generalize the χ^{2} statistic to incorporate the full covariance matrix:

$$
\begin{aligned}
-\chi^{2} & =\Sigma_{i}\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2 / \sigma_{\mathrm{i}}^{2}} \quad \ldots \text { Becomes } \ldots \\
-\chi^{2} & =\Sigma_{\mathrm{i}, \mathrm{j}}\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right) \mathrm{C}_{\mathrm{ij}}^{-1}\left(\mathrm{O}_{\mathrm{j}}-\mathrm{E}_{\mathrm{j}}\right)
\end{aligned}
$$

- Where $\mathrm{C}_{\mathrm{ij}}{ }^{-1}$ is the inverse of the covariance matrix
- matrix manipulation and inversion can be conducted with numpy's matrix module (see the links from the syllabus for some simple examples)
- This version of χ^{2} better describes data that are not independent. The hypothesis testing and confidence limit (etc.) tricks are the same as in the previous class notes

Python tasks

1. In my week 13 directory is a file of (x, y) data called "line.data" Each of the 10 columns is an x bin of $0<x<1,1<x<2,2<x<3$, etc. Each of the 20 rows is a trial set of y measurements in that x-bin

- Read in the file and determine the covariance matrix of the y measurements in each bin of x using $n p . c o v$
- Should the resulting covariance matrix be a 10×10 matrix, or a 20×20 matrix? Why?
- Use np.var to confirm that the diagonal elements of the covariance matrix are the variances of the data

2. Determine the values and locations of the most anticorrelated and most correlated columns of data

- Ignoring the perfectly correlated diagonal of the matrix, which data columns are the most correlated?

Python tasks

3. The data have been drawn from a straight line of the form $\mathrm{y}=m \mathrm{x}+b$. Using the full matrix formalism, determine the χ^{2} statistic for a grid of m and b

- Find the minimum value of χ^{2} and the corresponding values of m and b.
- Do the best-fit values of m and b differ from the results from the previous lecture? Should they be?

