
Chapter 2
N-body Techniques & Tools

2.1 Introduction

Our goal is to simulate galaxy mergers consisting of dark matter and gas. To

achieve this, we must first create an equilibrium model for different galaxies with

gaseous dark matter halos. Then, we must accurately follow the evolution of two

such galaxies that are placed in a orbit around each other. Thus, there are two

aspects of the modeling: (i). creation of an equilibrium galaxy model, and (ii).

correctly computing the gravitational forces to describe the time-evolution of the

galaxies as they undergo the violent encounter. In this chapter, we will examine

the details of the various N-body techniques and tools that were used to run our

merger simulation.

2.2 Collisionless Systems

A galaxy is made up of dark matter, stars and gas that move around under the

force of mutual gravitational attraction. The global dynamics of this ensemble

of particles is determined by the overall structure and potential of the galaxy,

although external perturbations like satellite flybys can trigger long lived global

features like bars, spiral arms and warps. Due to the coarse-grainedness of an

actual galactic potential, a star will be deflected from its ‘true’ orbit in a smooth

potential. A star moving with an average velocity v in a galaxy of radius R

34

containing N equal-mass stars will have an aggregate velocity change of the order

v in one relaxation time, trelax, given by :

trelax =
N

8 ln N
× R

v
. (2.1)

In practice, we compare the relaxation time of a system with its crossing time,

tcross = R/v, to determine whether the star will suffer from significant encounters

in a Hubble time. For the N = 1011 stars in a typical galaxy with R = 20 kpc and

v = 200 km/s, tcross = 108 years, making trelax = 4.9 × 1016 years. So, a typical

star will not deviate at all over the period of a Hubble time. Such a system where

the timescale for close encounters is much longer than a Hubble time, is called

a collisionless system. Stars in the galaxy constitute such a collisionless system.

Even if the galaxy were to undergo a merger, it is unlikely for any star to directly

encounter another star; hence the stars can be treated as collisionless particles

during the course of a merger simulation. N-body models of galaxies, however, are

not collisionless systems. The smallest of our galaxies is represented with N ∼ 105

particles and has a relaxation time of ∼ 600 Gyrs (see Table 3.1). Fortunately, the

galaxies we are simulating undergo a violent merger within 1 Gyr; therefore, we

only require galaxies to be stable against two-body interactions over the period of

∼ 1 Gyr.

2.3 Distribution Function

The task of building an N-body model requires determining the six phase-space

coordinates, i.e, (x, y, z, vx, vy, vz) at some time t0. Given such a description, it

is possible to compute the state of a purely collisionless system at any later time

by using Newton’s Laws of Motion. This 6-D phase space description is called

the distribution function (hereafter, DF), f(x,v, t0). The DF gives the number

of particles in an infinitesimal spatial volume d3x around the position x and in

the infinitesimal velocity volume of d3v at the instant t0. Thus, a DF is non-

negative everywhere. The time-evolution of a collisionless system is governed by

35

the collisionless Boltzmann equation (CBE) written in its simplest form as :

d f(r,v, t)

d t
= 0. (2.2)

In general, a DF depends on the value of the specific total energy, E = Φ(r)+
1

2
v2

and the specific angular momentum, L = r × v; however, it can be shown that

the DF for a spherically symmetric density with an isotropic velocity distribution

is dependent only on the total energy per unit mass, E, i.e., f(r,v) ≡ f̂(E) given

by the Eddington inversion :

f(E) =
1√
8π2

[
∫ E

0

d2ρ

dΨ2

dΨ√
E − Ψ

+
1√
E

(dρ

dΨ

)

Ψ=0

]

(2.3)

where, E = −E, Ψ = −Φ and ρ is the density. For a finite size of a system, the

second term is equal to zero and the DF is given by just the first term. Now with

a density, ρ and a potential, Φ, we can numerically solve the above equation and

derive the numerical DF. We can recover the density from the DF by using the

relation :

ρ(r) =

∫

f(r,v)d3v. (2.4)

Therefore, given the DF for a system, it is possible to recover the underlying density

profile and vice-versa. Likewise, the integral over d3r yields a velocity profile.

In order to make a galaxy model, one can get the particle positions by directly

sampling the density profile using acceptance-rejection technique (see next section);

however, obtaining the particle velocities is a bit more involved. For an isolated

galaxy in equilibrium, the DF has no dependence on time, i.e., f(r,v, t) ≡ f(r,v).

Jeans theorem states that in such a case, any solution to the CBE (Eqn 2.2) can

be represented as a function of constants of motion, e.g., angular momentum.

If the velocity distribution for the particles in the model is approximated by a

3-D Gaussian, specified by a mean velocity and velocity dispersion along each co-

ordinate axes, then the complete velocity profile can be uniquely determined by

computing the constants of motion. Most of the previous numerical work has been

done under this simplifying assumption; however, such an approach is approximate

and the density and velocity profiles can vary drastically from the intended ones

36

(Kazantzidis et al., 2004; Holley-Bockelmann et al., 2005). Therefore, we avoid

that method and calculate the distribution function of the potential-density pair

given by a density profile and draw position-velocity pairs directly from the DF.

2.4 Acceptance-Rejection Technique

The acceptance-rejection technique is a method of sampling a probability distri-

bution function (hereafter, p.d.f.) by using the fact that a random generator will

naturally produce an unbiased sample of random numbers; now, if this sample of

random numbers is compared against the p.d.f. and the random numbers greater

than the value of the p.d.f. are rejected, then the remaining sample members will

naturally reflect the shape of the original p.d.f. This class of methods where a

uniform random number generator is used to compute some property or generate

a distribution as in this case, is called a Monte-Carlo method. Figure 2.4 shows

a Monte-Carlo method to estimate the value of π. N-sets of two random numbers

are drawn in the range [0,1] and each one is plotted on the figure. The probabil-

ity that a particular number falls inside the quadrant is proportional to the area

of the quadrant. We can directly estimate the probability of a number falling in

this quadrant just by counting the number of actual such occurrences, say N1 and

dividing by the total number of tries (N, in this case). Then we can use N1/N

=Area of quadrant/Area of square, to obtain an estimate for π. As N increases,

we obtain a better estimate of π since the error of a Monte-Carlo method reduces

as O(1/
√

N).

The acceptance-rejection technique is a Monte-Carlo method to create a re-

alization of some distribution, f(x), given another distribution, g(x) such that

Ag(x) ≥ f(x)∀x, where A > 1. The acceptance-rejection technique is usually

used where the form of f(x) makes it difficult to invert and obtain f−1(x), making

sampling from f(x) difficult. Therefore, another more easily invertible distribu-

tion, g(x), is used as an limiting value for f(x), and samples are drawn from g−1(x)

and accepted when an uniform random in [0, 1] does not exceed f(x)/A g(x). This

value of x drawn from g(x) is then accepted as a sample of f(x). The efficiency of

the algorithm depends on the value of A; for values of A closer to 1 the algorithm

is more efficient since values of x sampled from g(x) get rejected less frequently.

37

The flow-chart for the acceptance-rejection technique is shown in Fig. 2.4.

Figure 2.1. Monte-Carlo estimate of the area of the positive quadrant of an unit circle
given by x2 + y2 = 1. Analytically the result is known to be π/4, and numerically it
can be approximated by the ratio of the number of points that occur in the shaded
region to the total number of points. Here, we show a random sample of N = 100
(x, y) pairs plotted as the solid circles, and we find an approximate value for π to be
3.0. As the number of tries increase, better convergence is achieved. One of the biggest
advantages of a Monte-Carlo method is that the error is always O(1/

√
N) irrespective

of the dimensionality of the problem itself. The Monte-Carlo method relates to the
acceptance-rejection technique in that the number of solid circles in the shaded region
is larger for a smaller value of x (and a corresponding larger value of y =

√
1 − x2).

Thus, the actual filled circles in the shaded region for a given value of x can be used as
a representative sample of the probability distribution given by the quadrant.

2.5 Simulation Software

We use the parallel, hydrodynamic code GADGET-2 (Springel et al., 2001; Springel,

2005)1 for all the numerical simulations in this paper. GADGET-2 computes

38

start
read in
desired
model

choose
random
number

compare
with model

reject
random
number

is random
number
less than
model?

add to
model

realization

are there
enough
points?

end

NO

YES

YES

NO

Figure 2.2. A flow-chart for the acceptance-rejection algorithm. This is a Monte-Carlo
method to create a realization of some distribution, f(x), given another distribution,
g(x) such that A g(x) ≥ f(x)∀x. This involves generating a uniform random number in
[0,1] and a value x from the distribution g(x). If the value of the random number is less
than the ratio of f(x)/A g(x), then the value of x is accepted a sample of f(x).

39

the gravitational forces with a hierarchical tree algorithm (Barnes & Hut, 1986)

while gas particles receive additional hydrodynamic acceleration as calculated us-

ing Smooth Particle Hydrodynamics (Gingold & Monaghan, 1977, hereafter SPH).

The code explicitly conserves energy and entropy for the SPH particles and uses

adaptive time-steps for the time-evolution. Since this is a first attempt to model

the gas behavior during the merger, cooling, star formation and radiative feedback

have all been neglected.

2.6 N-body Mechanics

N-body mechanics refers to simulations of dark matter and stars where a group

of ‘N’ particles are evolved from an initially specified set of (−→r ,−→v) under mutual

gravitational forces. The arrangement of the ‘N’ particles are chosen to model a

particular situation from planetary rings to the Universe as a whole.

The dominant force on the largest length scales relevant to astrophysics is

Newtonian gravity. The set of initial positions and velocities can be evolved using

the standard equation of motion under gravity :

ai = −
∑

j 6=i

Gmj|−→ri −−→rj |
|−→ri −−→rj |3

, (2.5)

where ai represents the net acceleration of the ith particle from all the other j

particles, each with mass mj . This equation is valid for each individual particle

and leads to a set of N coupled, non-linear second order differential equations that

must be numerically integrated ∀N > 2. However, the force law, written in the

above form suffers from a numerical singularity as |−→ri − −→rj | → 0. In order to

retain relative accuracy of the numerical integration, the time-steps for particles

with vanishing separation become infinitesimally small, thereby reducing the over-

all computational efficiency of the simulation. Constant time-stepping could be

used to avoid this scenario, but the accumulated errors for such close encounters

then becomes large and may lead to unphysical situations such as spurious binary

formation. This close encounter scenario is avoided in numerical simulations by

1GADGET-2 is available for download at http://www.mpa-garching.mpg.de/gadget/

40

modifying the force law at small separations by adding a ‘softening parameter’,

ǫ > 0, to the force equation such that the force does not diverge. This modified

force law can be written as :

−→
Fi = −

∑

j 6=i

Gmimj|−→ri −−→rj |
(|−→ri −−→rj |2 + ǫ2)

3/2
. (2.6)

The choice of the softening parameter is highly dependent on the simulation

type and the exact object being simulated, but is generally taken to be on the

order of the mean inter-particle separation. It has to be noted that any simulation

with a finite ǫ can not be used to predict results for length scales < ǫ. Thus, the

spatial resolution of a gravitational simulation is set by the choice of ǫ. To make

sure that this modification of the small-scale force does not have an effect on the

large-scale dynamics, a gravitational kernel is defined so that the force becomes

exactly Newtonian at some length scale ǫ. This is done in GADGET-2 by using a

spline kernel (Monaghan & Lattanzio, 1985) W (|x|, h = 2.8ǫ) of the form :

W (r, h) =
8

πh3















































1 − 6
(r

h

)2

+ 6
(r

h

)3

, 0 ≤ r

h
≤ 1

2
,

2
(

1 − r

h

)3

,
1

2
<

r

h
≤ 1,

0,
r

h
> 1.

(2.7)

where, r is the separation between the particles between which the force is being

computed. Even with softening, directly summing the gravitational forces over N

particles involves computing
1

2
N(N−1) forces, which is an algorithm of O(N2); the

processor time per time-step becomes prohibitively large for values of N required

to describe astrophysical systems (e.g., current state of the art simulations use

up to 1010 particles, and that number is ever-increasing in keeping with Moore’s

Law). The long range nature of gravity makes it difficult to compute the forces

accurately and efficiently. One method that is used to achieve the required spatial

adaptivity groups particles in a hierarchical multipole expansion, usually referred

to as a ‘tree’ algorithm. The specific algorithm used is the Barnes-Hut (BH) octal

41

tree (Barnes & Hut, 1986), which involves grouping distant particles together such

that the total force for each particle can be computed by O(logN) interactions.

This strategy reduces the overall complexity of the computation to O(N logN),

and yields an acceptable total run-time for a simulation. The BH tree uses a cubic

parent node that contains the entire mass distribution and continues to recursively

sub-divide each node into 8 spatially equal ‘daughter cells’ until only one particle

is contained within a node (called a ‘leaf’). Each node is then associated with

a multipole expansion of all the daughter nodes. The parameter that controls

the accuracy of the tree algorithm is the ‘cell opening angle’, or the tolerance,

represented by α in the following equation for a node of mass M and size l at a

distance r :
GM

r2

(

l

r

)2

≤ α |a|, (2.8)

where |a| is the total acceleration obtained in the previous time-step. While com-

puting the gravitational force, each node is opened and compared with the set

parameter, α, to see if the multipole expansion is accurate enough (this happens

if the node is small and distant from the particle for which the force is being

computed). If so, the multipole expansion is used, the ‘tree walk’ is terminated;

if not, the daughter nodes are opened recursively until the desired accuracy is

reached. As such, the accuracy can be increased to match the exact force given by

Eqn. (2.6), albeit at a higher computational cost. The cell-opening criteria used

in GADGET-2 (refer to Eqn. 2.8) compares an estimate of the total force with the

truncation error for each particle-node interaction and limits the absolute error. It

has the advantage that the cell opening adaptively adjusts with the acceleration.

Such a cell opening criteria can be subject to unbounded errors in the case that

a particle is sufficiently close to a node (Salmon & Warren, 1994); to prevent this

from occurring an additional criteria is imposed such that a node is always opened

if a particle is located inside geometric boundaries 10% larger than the node.

42

Figure 2.3. Top. A schematic for the Barnes-Hut method of tree construction that
is used in GADGET-2. Each cube (node) is recursively divided into 8 smaller cubes
until all the smallest cubes contain exactly one particle. Bottom. An illustration of the
opening angle for the tree code. If θ is small as per Eqn 2.8, then the multiple expansion
is used. Otherwise the node is opened and similar comparisons are carried out with the
daughter cells. Figure is taken from (Wadsley et al., 2004).

43

2.7 Smooth Particle Hydrodynamics

Gas is difficult to simulate accurately, due to the additional hydrodynamic evolu-

tion equations that the gas must follow. In numerical simulations, gas is usually

represented as a fluid that must satisfy the continuity equation in addition Newto-

nian gravity. Conventional grid-based numerical techniques have extreme memory

requirements for 3-D simulations of very large scale regions. This is because each

point in space is a part of the mesh which serves to compute spatial derivatives for

quantities like velocity, pressure etc. This means that even empty regions in space

must contain grid points, which requires enormous memory if sufficient resolution

is to be maintained throughout the simulation box.

Smooth Particle Hydrodynamics is a particle method (Lucy, 1977; Gingold &

Monaghan, 1977; Monaghan, 1992) that overcomes the memory constraints by rep-

resenting the fluid with a finite number of particles that interact hydro-dynamically

with each other – characteristic of gas in astrophysical situations. Each particle

experiences gravitational forces as well as gas pressure from the particles that are

nearby. Ideally, if the particle interacts with every other particle then a complete

analytic solution is obtained. In practice, SPH schemes use an interpolating func-

tion, a kernel similar to the one used in evaluating softened gravitational forces1,

that has a finite value for small separations between two interacting particles and

is zero when the separation is too large compared to a hydrodynamic length scale.

This characteristic length scale within which particles interact is called the smooth-

ing length, hi. The smoothing length is adaptive in most SPH simulations and ad-

justs to encompass a fixed number of neighbors. Since the particle motion matches

the fluid flow, an adaptive smoothing length naturally ensures higher resolution in

denser locations.

Any function, f(r) can be recast in terms of the kernel as :

finterp(ri) =
∑

j 6=i

mj
f(rj)

ρ(rj)
W (ri − rj; h), (2.9)

where the usual integral has been replaced by a more convenient summation. Re-

placing f(r) with ρ(r), one can immediately see that the density of an SPH particle

1In GADGET-2, the kernels for SPH and gravity are identical

44

is given by :

ρi =
∑

j 6=i

mjW (ri − rj; hi) (2.10)

The derivative of any function, f(r), written in terms of the interpolant becomes:

∇finterp(ri) =
∑

j 6=i

mj
f(rj)

ρ(rj)
∇W (ri − rj; hi) (2.11)

Such a formulation ensures that derivatives of numerically ill-behaved quantities

can be easily computed without having to resort to special formulations to deal

with numerical discontinuities. The derivative of any function then becomes the

convolution of the value of the function and the pre-computed analytic derivative

of the kernel, an incredible simplification in terms of the numerical overhead. This

advantage, however, becomes a problem when it comes to resolving actual physical

discontinuities – shocks. SPH techniques will intrinsically smooth out a shock

and broaden it over 2-3 smoothing lengths; though observations indicate that the

shock front is very sharp. We will discuss the methods used in SPH simulations to

realistically capture shocks in a later section.

The conservation of momentum locally requires Newton’s third law be satisfied

for each force calculation between two particles. To achieve this, the kernel and

its derivatives are symmetrized (Hernquist & Katz, 1989):

Wij =
1

2
[Wi(r; hi) + Wj(r; hj)] ; r = ri − rj (2.12)

∇Wij =
1

2
[∇iWi(ri; hi) + ∇jWj(rj; hj)] , (2.13)

where i and j refer to two different particles between which hydrodynamic forces

are being computed, Wi and Wj are the values of the kernel obtained using the

respective smoothing lengths, hi and hj respectively. The equation of motion in

this discretized representation of the gas then becomes :

dvi

dt
= −

Nngb
∑

j=1

mj

[

fi
Pi

ρ2
i

∇iWij(hi) + fj
Pj

ρ2
j

∇iWij(hj)

]

, (2.14)

45

where fi =

(

1 +
hi

3ρi

∂ρi

∂hi

)−1

and Pi is the pressure of the ith gas particle. We

explicitly include the fact that the hydrodynamic sum is carried out only over

the Nngb neighbors. If the gas were to be isentropic throughout the course of a

simulation, then the above equations are enough to describe the state of the gas

at all times. Unfortunately, actual astrophysical situations involve shocks quite

frequently which changes the entropy of the system. To handle this additional

term, SPH methods use a viscous force and ‘hide’ all the micro-physics of shock

generation and dissipation into a term known as artificial viscosity (Monaghan

& Gingold, 1983; Monaghan, 1992; Balsara, 1995). This viscous force causes an

additional acceleration term to be present in the equation of motion for the gas

particles :

dvi

dt

∣

∣

∣

∣

visc

= −
Nngb
∑

j=1

mjΠij∇iWij , (2.15)

where Πij is a viscous term that takes on a non-zero value only for a convergent

flow (v · r < 0). This viscous force results in an irreversible transformation of gas

kinetic energy into thermal energy with a corresponding rate of entropy generation

given by :

dSi

dt
=

1

2

γ − 1

ργ−1
i

Nngb
∑

j=1

mjΠijvij · ∇iWij , (2.16)

where Si is the entropy for the ith gas particle, γ is the polytropic index, vij is the

relative velocity between the ith and the jth gas particle and ρi is the density of

the ith particle. In GADGET-2, Πij is computed from the formula:

Πij = −α

2

[ci + cj − 3wij] wij

ρij

, (2.17)

wij =







vij · rij/|rij| if vij · rij < 0,

0 otherwise,
(2.18)

where ci is the sound speed for the ith gas particle, rij is the relative separation

between the ith and jth particle, and α is the artificial viscosity parameter (here-

after, AVP). This ensures that the gas particles receive this additional force only

when they approach each other and that the viscous force does not diverge at small

46

separations, causing the particles to fly apart. Such a formulation of Πij does not

diverge and halts the particles but does not allow them to receive an additional

acceleration once they are stationary. The SPH time-step is then calculated with :

∆thydro =
CCourant hi

maxj(ci + cj − 3wij)
(2.19)

where CCourant is a parameter less than 1.0 and the denominator is the maximum

found over all the neighbors j for the ith particle. The Courant-Friedrichs-Lewy

condition (Courant et al., 1928, 1967), commonly shortened as the Courant condi-

tion, is a limitation for ensuring convergence while solving time-dependent differ-

ential equations. This condition ensures that the time-step taken in a numerical

simulation must be smaller than the time taken by a characteristic signal to cross

a characteristic length. For SPH simulations, the relevant quantities are the sound

speed, ci and the smoothing length, hi for the ith gas particle. CCourant is taken to

be 0.15 in all our simulations.

2.8 Time Integration

Gravity naturally leads to large density contrasts in all collapsed objects resulting

in a corresponding range in timescales (∝ 1/
√

ρ). If all the particles were to share

the same time-step, low density regions would have artificially small time-steps.

Adaptive and individual time-steps are, thus, a very essential requirement for all

numerical simulations. The most commonly used time integration scheme used

is the ‘leapfrog’ – a second-order method. The method gets the name because

the velocity and position are evaluated at half time-steps, with the velocity and

position ‘leaping’ over each other. Mathematically, for a system with an uniform

time-step dt, position xi, velocity vi and acceleration ai at time ti, the leapfrog

method advances the particle with the following algorithm :

xi = xi−1 + vi−dt/2 × dt/2,

ai = f(xi),

vi+dt/2 = vi−dt/2 + ai × dt.

(2.20)

47

where, f(xi) is some function that gives the net acceleration based on the position

of the particle. Thus, the velocities are defined at ti−1/2, ti+1/2, ti+3/2 . . . while the

positions are defined at ti, ti+1, ti+2

The leapfrog method is symplectic, meaning that it is time-reversible and en-

sures that the total energy oscillates near the true total energy of the system. For

small enough errors in the integrator, all stable orbits in a real astrophysical system

will also be stable in the numerical simulation (Quinn et al., 1997).

In GADGET-2 the time-step, ∆tgrav, for an individual particle is determined by

the formula:

∆tgrav = min

(

∆tmax,
(2 η ǫ

|a|
)1/2

)

, (2.21)

where ∆tmax defines the maximum time-step permitted for a particle, η is the

numerical accuracy parameter, ǫ is the gravitational softening parameter and |a|
is the acceleration of the particle. The time-step for an SPH particle also has to

satisfy the Courant condition and is taken as the minimum of ∆tgrav computed

above and ∆thydro computed in Eqn. 2.19. In practice, GADGET-2 subdivides

individual time-steps in powers of two of a global time-step. Particles are allowed

to move into a smaller time-step at every iteration but only allowed to attain a

larger time-step at every second step if that leads to synchronization with the

higher time-step hierarchy.

2.9 Overview

In this chapter, we discussed various N-body methods: Eddington inversion for

computing the DF; acceptance-rejection technique; tree codes to compute softened

gravitational forces in an efficient manner; SPH methods to capture hydrodynam-

ics; and the time-stepping strategies to accurately evolve astrophysical systems.

In the following chapters we will see the application of all of these techniques to

create equilibrium galaxies and run merger simulations.

